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Application of Physicochemical Properties and Process Parameters
in the Development of a Neural Network Model for Prediction
of Tablet Characteristics
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Abstract. The importance of in silico modeling in the pharmaceutical industry is continuously increasing.
The aim of the present study was the development of a neural network model for prediction of the
postcompressional properties of scored tablets based on the application of existing data sets from our
previous studies. Some important process parameters and physicochemical characteristics of the powder
mixtures were used as training factors to achieve the best applicability in a wide range of possible
compositions. The results demonstrated that, after some pre-processing of the factors, an appropriate
prediction performance could be achieved. However, because of the poor extrapolation capacity, broad-
ening of the training data range appears necessary.
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INTRODUCTION

The use of in silicomodeling in the pharmaceutical industry
is continuously increasing. This is due in part to the quality by
design approach to new pharmaceutical product developments,
which requires exact and well-supported design of experiments.
However, the quality of pharmaceutical products has a multi-
factorial background that is influenced by many parameters.
The screening of appropriate factors is time-consuming and
demands considerable financial outgoings.

A decrease in the number of screening experiments
through the use of artificial neural network (ANN) models for
getting predictions based on previous data is of a great benefit
(1). These systems demonstrate considerable advances over
traditional factorial design of experiment (DoE) methods, in-
cluding greater flexibility or their ability to handle a large num-
ber of input factors and to model nonlinear problems, which
makes them a useful complementary method and/or extension
of the DoE methods during the early pharmaceutical develop-
ment by screening of the appropriate factors, and in the im-
provement of the production process via the processing and
mining of data of the routine production (2). ANN models in
basics mimic the structure and function of the human brain; they
are adaptive, self-organizing and fault-tolerant. These principles
make them able to accommodate to different problems, and
hence ANNs are able to “learn”. Thanks to these properties,

ANNs demonstrate certain ability to predict the outcomes of a
given data set. Their combination with other systems, such as
neurofuzzy logic, leads to the added advantage of the generation
of rule sets representing the cause–effect relationships contained
in the experimental data (3). In recent years, there has been
increasing interest in these systems with regard to formulation
(4) or process optimization (5,6), often in association with a
design space approach (2,7), as these examples from the field
of solid dose forms supports. Systems of great interest are those
in which the physicochemical properties of the rawmaterials are
taken into account in the prediction of the product quality
attributes (8–10). In these cases, however, considerable care
must be taken concerning the selection of the appropriate inputs
and learning parameters of the ANNs: an inappropriate (small,
narrow range, etc.) training data set or the non-inclusion of
important factors strongly limits the predictive capacity of the
systems and restricts the possibility of predicting outcomes
based on new data. We set out to develop a neural model that
can be used in the early screening of suitable tablet formulations
in a quality by design development, through prediction of the
postcompressional properties of various scored tablet formula-
tions. The assurance of the appropriate mechanical properties is
a poorly studied field of pharmaceutical technology. Most of the
articles are dealing with the question from clinical side through
the problems of the application. The technological aspects were
investigated in our previous studies (11–13), and the present
work applies the data of these former results.

MATERIALS AND METHODS

Drotaverine hydrochloride, microcrystalline cellulose
(Vivapur 102, J. Rettenmeier & Söhne, Germany), spray-dried
mannitol (Pearlitol SD 200, Roquette Pharma, France),
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agglomerated α-lactose monohydrate (Tablettose 70, Meggle
Pharma, Germany) and magnesium stearate (Ph. Eur.) were
used to prepare samples. The compositions are presented in
Table I.

The powders were mixed with a Turbula mixer (Willy A.
Bachofen Maschienenfabrik, Switzerland; 8 min+2 min after
the addition of the lubricant, at 50 rpm). The surface free
energies of the materials and mixtures were determined
with a Dataphysics OCA 20 optical contact angle tester
(Dataphysics, UK), with use of the sessile drop method. The
method is based on measurement of the equilibrium contact
angle, the value of which is determined by the surface tensions
in the solid, liquid and vapour phases, described by the Young
equation (Eq. 1):

0 ¼ gSL � gSV � gLV cos θ ð1Þ
where θ is the equilibrium contact angle, γ is the surface
tension between the given phases, S is solid, L is liquid and
V is vapour. The disperse and polar components of the solid
materials were calculated with the Wu equations (Eqs. 2 and 3)
in the knowledge of the surface tensions of polar (water) and
apolar (diiodomethane) test liquids. The liquids were dropped
onto the surface of comprimates 10 mm in diameter prepared
with a Specac hydraulic press (Specac Inc, UK) at a pressure of
4 tons.
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where γd is the disperse and γp is the polar component of the
surface tension, γ1 is the surface tension of the first and γ2 is
the surface tension of the second test liquid, and γs is the
surface free energy of the solid material.

The polarity of materials can be calculated as the
quotient of the polar and the total surface free energy
(Eq. 4).

Polarity percentageð Þ ¼ gps =gs ð4Þ
where ys

p is the polar component of the surface free energy
and γs is the total surface free energy of the solid material.

The strength of the adhesion between the different mate-
rials can be characterized by the value of the work of adhe-
sion, which can be calculated via the following equation
(Eq. 5):
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where γd is the disperse and γp is the polar component of the
surface free energy, γ1 is the surface free energy of the first
and γ2 is the surface free energy of the second material.

The plasticities of materials and mixtures were deter-
mined with a computer-connected Korsch EK0 (E. Korsch
Maschienenfabrik, Germany) eccentric tablet press, instru-
mented with strain gauges on both punches and a displace-
ment transducer (Micropulse, BTL5-A11-M0050-P-532,
Balluff, Germany) on the upper punch. The strain gauges
were calibrated with a Wazau HM-HN-30kN-D cell (Kaliber
Ltd., Hungary). The transducer distance accuracy was
checked by using five measuring pieces of accurately known
thickness (1.0, 2.0, 5.0, 7.5 and 10.0 mm) under zero load
(Mitutoyo, Japan). The materials and mixtures were filled into
the die and compressed manually (to ensure similar conditions
for the well and poorly compressible materials) in the com-
pression force range from 1 to 30 kN. The plasticity was
calculated from the results of force displacement measure-
ments with the Stamm–Mathis equation (Eq. 6):

Pl ¼ E2= E2þ E3ð Þ ð6Þ
where E2 and E3 are the given areas of the force-displacement
curve (14).

Samples S1–S8 were compressed on a Korsch EK0 ec-
centric- and on a Ronchi AM8S (Officine Meccanice F.lli
Ronchi, Italy) rotary tablet press. For the compression of
samples S9–S12, a Kilian SP300 (IMA, UK) eccentric press
was used in a collaboration with University of Ljulbljana. All
tablet presses were mounted with strain gauges, with flat
single punches 8 mm in diameter, with a bisecting line. The
air temperature was 22–25°C at a relative humidity of 57–
65%. The tablet mass was 0.18 g, and the compression rate
was 36 tablets/min. The applied compression pressure was
100, 200 or 300 MPa.

The hardness of the resulting tablets was measured with a
Heberlein tablet hardness tester (Heberlein & Co. AG,

Table I. Compositions of Powder Mixtures

Sample
Vivapur
102 (g)

Pearlitol
SD 200 (g)

Tablettose
70 (g)

Drotaverine
HCl (g)

Magnesium
stearate (g)

S1 50 50 – – 1
S2 30 70 – – 1
S3 10 90 – – 1
S4 90 – 10 – 1
S5 70 – 30 – 1
S6 50 – 50 – 1
S7 30 – 70 – 1
S8 10 – 90 – 1
S9 85.5 9.5 – 5 1
S10 81 9 – 10 1
S11 76.5 8.5 – 15 1
S12 67.5 7.5 – 25 2

Table II. Physicochemical Properties of the Powder Mixtures

Sample

Surface
free energy
(mJ/m2) Polarity (%)

Slope
of plasticity

funct.

Intercept
of plasticity

funct.

S1 70.95 40.04 −0.0864 90.821
S2 69.37 38.53 −0.0763 86.251
S3 68.60 38.67 −0.0688 85.385
S4 70.98 38.19 −0.0898 94.561
S5 70.47 38.73 −0.0740 89.688
S6 72.12 39.90 −0.0622 84.507
S7 72.09 40.50 −0.0520 80.321
S8 70.94 40.51 −0.0744 82.248
S9 78.04 41.66 −0.0591 95.010
S10 77.96 44.45 −0.0575 93.814
S11 76.95 42.68 −0.0642 93.933
S12 70.01 45.32 −0.0659 94.114
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Table III. Compression Conditions and the Corresponding Tablet Properties

Sample
Tablet
press

Compression
pressure (MPa) SD

Compression
time (ms)

Tensile
strength (MPa) SD Subdivision (%)

S1 Eccentric 136.40 27.50 320 1.61 0.24 60
188.13 1.84 327 2.15 0.31 100
259.64 2.15 344 2.35 0.17 80

Rotary 84.40 1.87 139 0.73 0.27 10
200.44 3.33 152 2.07 0.41 30
302.47 2.27 162 2.65 0.36 40

S2 Eccentric 102.97 0.90 296 0.99 0.10 50
186.31 1.49 330 1.61 0.18 80
277.21 1.31 347 2.03 0.14 70

Rotary 107.46 1.13 139 0.75 0.15 0
192.05 3.37 153 1.77 0.14 10
299.14 2.25 170 2.31 0.21 40

S3 Eccentric 120.96 1.44 317 0.85 0.11 30
186.31 1.49 367 1.58 0.08 80
300.17 1.16 363 1.83 0.23 90

Rotary 107.80 2.29 134 0.46 0.06 0
195.36 2.69 144 1.56 0.27 10
305.38 3.34 153 2.46 0.45 30

S4 Eccentric 118.79 1.73 259 4.03 0.35 60
202.13 3.65 291 5.91 0.52 70
314.87 4.94 360 6.20 0.62 90

Rotary 102.31 1.43 144 2.98 0.37 0
204.03 3.15 158 5.43 0.28 20
287.77 2.82 166 5.72 0.32 40

S5 Eccentric 121.42 1.93 280 3.46 0.14 50
216.17 4.64 321 4.09 0.24 30
310.83 2.22 348 4.44 0.30 30

Rotary 96.96 0.86 149 2.06 0.18 0
199.56 4.42 153 3.51 0.14 60
302.57 2.92 164 3.90 0.40 70

S6 Eccentric 83.50 1.19 301 1.82 0.11 20
225.96 1.73 341 3.21 0.35 20
321.06 1.74 368 3.29 0.38 40

Rotary 103.67 1.48 143 1.37 0.17 0
193.24 3.06 152 3.11 0.34 0
294.90 3.52 160 3.07 0.40 10

S7 Eccentric 112.06 0.79 291 1.30 0.19 10
208.43 1.47 304 2.17 0.38 10
303.19 2.41 326 2.71 0.44 50

Rotary 102.35 1.62 135 0.66 0.12 0
198.83 4.22 154 1.52 0.30 0
290.68 7.72 153 2.21 0.38 0

S8 Eccentric 103.35 2.03 284 0.60 0.10 0
208.59 2.68 306 1.12 0.17 0
272.43 1.46 387 1.25 0.23 10

Rotary 96.93 2.25 135 0.25 0.05 0
217.60 9.17 146 1.05 0.22 0
312.48 7.66 151 1.49 0.18 20

S9 Eccentric 106.60 1.50 263 2.08 0.17 50
193.57 3.03 267 2.00 0.22 90
292.85 5.52 299 1.74 0.29 90

S10 Eccentric 102.55 1.16 258 1.98 0.23 63
198.37 3.29 267 1.97 0.14 100
284.17 2.61 293 1.84 0.14 90

S11 Eccentric 120.83 2.52 258 2.85 1.19 70
202.50 4.05 270 2.74 0.15 70
284.13 2.28 275 2.45 0.17 100

S12 Eccentric 109.16 1.46 254 1.74 0.10 40
198.73 4.14 260 1.92 0.11 72
281.48 6.55 270 1.79 0.11 70
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Switzerland). To the better comparison of the hardness of
tablets with different geometrical parameters, the tensile
strength of tablets was calculated according to the Fell-
Newton equation (Eq. 7) (15,16).

σ ¼ 2F=pDt

Where F is the applied force, D is the tablet diameter and
t is the thickness of the tablet.

For measurement of the force required to break the
tablets into halves, and get information about the ratio of
the appropriate subdivision of tablets, a laboratory-con-
structed hardness tester was utilized, with three-bend tablet
hardness testing. The tablet must be centered under the
breaking item, which moves vertically down. The load is
detected with a computer-connected measuring cell, which is
placed under the sample holder table (11).

The results were analysed with the Neural Network
module of the StatSoft Statistica 6.1 software (StatSoft
Inc., Tulsa, Oklahoma, USA). Twelve formulations were
compressed into tablets, eight of them (S1–S8) in both
eccentric and rotary presses (11). Three different compres-
sion pressures were applied in every case. The data on 20
tablets were collected in each of 60 settings. The results
on samples S7, S9 and S10 (0, 1 or all of the physico-
chemical parameters, respectively, lay outside the training
set (see below), demanding more or less data extrapola-
tion during the modeling) and some randomly selected
cases from the other settings were used for external val-
idation of the prediction performance. The data on ran-
domly selected 490 tablets were used for training,
randomly divided into training, selection and test sets,
containing 400, 45 and 45 cases, respectively. The selec-
tion set was dedicated to the internal validation of the
prediction performance during the training, while the test
set was utilized for internal validation after the training.
The internal validation was performed according to a
tenfold cross-validation scheme. As external validation,
the correlation between the observed and predicted values
of the selected data sets was tested.

The prediction performances of the different models
were compared with the non-parametric Kruskal–Wallis
test, with the use of post hoc comparisons. Use of the
non-parametric test was necessary because of the small
number and unknown distribution of the studied samples.
The statistical analysis was carried out with the StatSoft
Statistica 8 software.

RESULTS

The aim of the current study was to investigate how the
results and findings of previous studies (12,13) can be imple-
mented into the development of an ANN for general model-
ing of similar processes. As mentioned above, one of the most
important problems in neural modeling is the selection of
appropriate training factors among the numerous physico-
chemical properties of the materials and process parameters
of the compression influencing the final tablet characteristics.
The main conclusions of the above mentioned studies were
that for characterization of the physicochemical properties of
the applied materials, the surface free energy, polarity index
(good descriptors and predictors of inter-particulate interac-
tions) and deformation properties seem to be appropriate
parameters. The commonly used indices, such as the Heckel,
Walker and Kawakita, are poorly applicable due to their
constant nature. No direct relation can be drawn with the
actual process parameters. The problem necessitates the use
of parameters which can describe the actual behavior of the
system. The shape parameters of the Stamm–Mathis plasticity-
compression force function should be appropriate indices. The
parameters applied for the training of the models are displayed
in Table II.

Concerning the process parameters, besides the applied
compression force (the most important process parameter),
the tablet compression time and the mechanism of compres-
sion (determined by the type of tablet press) are also impor-
tant. The conditions of compression with the corresponding
tablet properties are presented in Table III.

DISCUSSION

Surface free energy, polarity index, shape parameters of
the plasticity function, compression force and compression
time were used as input variables; the output variables were
the tensile strength and the breakability (subdivision or halv-
ing properties) of the tablets. On the basis of previous results
(13), an MLP network was used with n+m+1 hidden neurons
(Fig. 1a).

Delta-bar-Delta (17) was used as the training algorithm.
The minimum error level was reached in less than 100 training
epochs. The results of the internal validation revealed an
excellent correlation between the observed and predicted data
(R200.924). However, the predictive force of the network in
external validation tests was very poor (R2<0.1). The system
made no differentiation between tablets prepared at different

Fig. 1. The structure of the network before a and after b the modification of the data preprocessing
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compression forces; only the difference between samples was
visible. The results did not improve either in response to the
change to different backpropagation- or gradient-based training
algorithms or to the changes in the complexity of the system via
the modification of the number of hidden neurons or layers. This
is probably due to the high proportion of the material-related
parameters among the input variables, which made it necessary
to reduce these parameters in the original data set. The pruning of
input factors was impossible during the network training, the
omission of information from the model resulting in a decrease
in prediction performance. As the application of less information
in such a complex model should be avoided, combination of the
different parameters with computational preprocessing (18)
appeared to be more advantageous. The surface free energies
and polarity indices of the materials were replaced by the
calculated work of adhesion against stainless steel, and the shape
parameters of the plasticity function were replaced by the
calculated plasticity value corresponding to the applied
compression force. The modified structure is displayed in Fig. 1b.

The preprocessing of the training data was effective be-
cause the training with the modified data set was followed by a
significant increase in the prediction performance of the sys-
tem (p<0.05). However, both the Delta-bar-Delta and the
quick-propagation algorithm converged too quickly with the
previously applied stopping conditions. The changes in the
stopping conditions, e.g. in the minimum improvement in the
selection set from 0.001 to 0.01 and the window from 10 to 100
epochs, resulted in some, but not significant improvement.
Further improvement was achieved when the training algo-
rithm was changed to back-propagation, which in this case
provided greater accuracy at the expense of slower conver-
gence. For the best model, a second training phase was used,
with a gradient-based quasi-Newton algorithm (19).

The results of the internal testing demonstrated appropri-
ate observed vs. predicted correlation coefficients (R200.874 for
the tensile strength and R200.899 for the breakability).
However, the external testing of the prediction performance
yielded much poorer results. There was no correlation
between the observed and the predicted tensile strength
(Fig. 2), and the data seemed to be slightly overestimated.

Nevertheless, when only those data which were within the
limits of the training data set and required no extrapolation were
investigated, the correlation coefficients increased significantly
(R200.7823). The reason for this may be that, when some
parameters were outside the training set, and therefore an

extrapolation calculation was necessary in the modeling, the
overestimation of the data was considerably higher and the
results displayed a negative correlation. Moreover, it is clearly
visible that because of the stopping conditions of the learning
mechanism, the natural deviation of the tensile strength (caused
by the slightly different compaction conditions) cannot be
followed by the smoothing of the response surface. However,
the increase of the model sensitivity resulted in an overfitting of
the model. Nevertheless, if the disturbing effect of the hardness
deviation is taken into account, and the results are compared
with the average hardness of the different compositions, the
values of the correlation can be further improved (Fig. 3).

For the breakability, the external testing also gave poorer
results than the internal testing. The halving properties were
usually overestimated for lower values, and slightly underesti-
mated for higher ones (Fig. 4). However, when these defor-
mations are taken into account, appropriate screening can be
carried out for the potentially well-breakable compositions,
despite the poorer correlations.

CONCLUSIONS

An ANN model was developed on the basis of existing
data for prediction of the postcompressional properties of
tablets prepared from independent samples. The main benefit

Fig. 3. Correlations of observed and predicted average tensile
strength

Fig. 4. Correlations of observed and predicted breakabilityFig. 2. Correlations of observed and predicted tensile strength
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was that the tablet properties could be predicted applying ap-
propriate physicochemical properties of mixtures, irrespectively
of the composition. In the present work, the applied data orig-
inated from three different experiments, including both API
free and API containing compositions. The main limitation is
that, despite of the theoretical possibility, the model has a poor
extrapolation capacity, which can be solved with the implemen-
tation of data into the model, which are out of the range of the
original data set. However, the extension of the ranges requires
a large number of further experiments if there is no possibility to
collect data from the results of other existing experiments. The
incrementing of the training data could be advantageous also
from the aspect of the decreasing of the effect of the unpredict-
able inter-individual deviation of the tablet properties.
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