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a b s t r a c t

27The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical
28developments. In the past decade a lot of knowledge was collected about the practical realization of the
29concept, but there are still a lot of unanswered questions.
30The key requirement of the concept is the mathematical description of the effect of the critical factors
31and their interactions on the critical quality attributes (CQAs) of the product. The process design space
32(PDS) is usually determined by the use of design of experiment (DoE) based response surface methodolo-
33gies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation
34of the real trends and changes making the calculations uncertain, especially in the edge regions of the
35PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly
36used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the
37use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the
38aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial,
39Central Composite, Box–Behnken, 3 level fractional and 3 level full factorial design) on the model pre-
40dictability and to compare model sensitivities according to the organization of the experimental data set.
41It was revealed that the size of the design space could differ more than 40% calculated with different
42polynomial models, which was associated with a considerable shift in its position when higher level lay-
43outs were applied. The shift was more considerable when the calculation was based on RSM. The model
44predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit
45considerable sensitivity to the organization of the experimental data set, and the use of design layouts
46is recommended, where the extreme values factors are more represented.
47� 2016 Elsevier B.V. All rights reserved.
48

49

50

51 1. Introduction

52 Biotechnologically produced active pharmaceutical ingredients
53 (APIs), such as monoclonal antibodies, enzymes or other proteins
54 and peptides have increasing importance in the pharmaceutical
55 industry. A breakthrough is expected because of these APIs in the
56 treatment of numerous severe conditions such as cancer, autoim-
57 mune or neurodegenerative diseases. Nevertheless, their produc-
58 tion and processing is challenging because of their high
59 sensitivity to the change of the environmental parameters, which
60 may cause misfolding and loss of activity [1–3].

61These APIs are mostly used in parenteral administration, but
62there is a great demand to change to oral formulations. Neverthe-
63less, the low gastric pH, the presence of digestive enzymes and the
64poor absorption capacity of the highly hydrophilic macromolecules
65result in the poor bioavailability of such therapeutic agents [4].
66There are many methods found in the literature dealt with the
67increase of the oral bioavailability of proteins. Enteric coatings [5],
68enzyme inhibitors [6,7], hydrogels [8], solid in oil formulations [9],
69liposomes [10] or other polymer nano- or microparticles [11–15]
70are used to protect the API from the gastrointestinal conditions.
71Liposomes, or functionalized microparticles may also increase the
72intestinal absorption. However, despite the numerous advantages,
73the difficult production method, the stability issues and the poor
74entrapment efficiency are considerable drawbacks of these formu-
75lations [10]. Furthermore, the appropriate administration of these
76delivery systems requires further formulation into different dosage
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77 forms, whichmeans extra stress on the protein containing systems.
78 From an industrial aspect, the use of conventional dosage forms
79 combined with absorption enhancers and mucoadhesive coatings
80 to prolong the GI residence time in the site of absorption seems
81 to be a more reliable solution [16,17]. The use of special absorption
82 sites, such as buccal or sublingual mucosa is also a promising way
83 to decrease the number of critical issues of oral protein administra-
84 tion [11].
85 As it was characterized in the previous paragraph, protein for-
86 mulation has numerous critical issues, and the assurance of the
87 appropriate bioavailability requires the application of complex
88 delivery systems. Formulating proteins into multiparticulate
89 dosage forms may decrease the risks from the damaged protective
90 mechanisms (e.g. ruptured coating, insufficient release of enzyme
91 inhibitors, etc.) and may provide better controllable drug release
92 kinetics. Nevertheless, since granulation/pelletization is a complex
93 and highly variable process [18], the use of Quality by Design
94 (QbD) principles and appropriate modelling methods is essential
95 to ensure the required quality of the product and protect the
96 enzyme from the thermal and mechanical stresses induced by
97 the production process [1–3,17,18].
98 One of the most critical issues of QbD methodology is the deter-
99 mination of the process design space (PDS) [19,20]. The PDS is a

100 multivariate combination of the process parameters where the
101 required values of the critical quality attributes (CQAs) of the pro-
102 duct can be ensured. According to the relevant ICH guidelines
103 [21–23], there is no need for process revalidation or applying
104 change control protocols when the process parameters are changed
105 within those ranges. The authorities require a complete mathemat-
106 ical description of the influence of critical process parameters
107 (CPPs) on CQAs, and the clarification of the effect of factor interac-
108 tions. The determination of factor interactions necessitates the use
109 of design of experiment (DoE) based selection of experimental set-
110 tings, instead of the formerly used changing one factor at a time in a
111 sequential testing (COST or OFAT) based selection methods. As
112 Eriksson [24] mentions in his book the COST based methods do
113 not necessarily provide information on the optimum conditions
114 and definitely no information on factor interactions. In contrast
115 DoE, which varies all factors at the same time, according to a special
116 algorithm provides different level information on both linear and
117 nonlinear main factor effects and factor interactions, depending
118 on the number of the applied experimental settings [24]. Neverthe-
119 less, the mathematical models describing the response surface are
120 usually limited for linear or second order polynomials and have
121 limited predictive force. There are numerous studies which investi-
122 gated the possibilities to improve the reliability of the PDS and
123 achieve better predictions of the product behaviour [25,26], with
124 the combination of DoE with multivariate data analysis [27–30],
125 data resampling [31,32], and advanced nonlinear modelling meth-
126 ods such as genetic algorithms or artificial neural networks (ANNs)
127 [33–36]. ANNs are self-adaptive, iterative algorithms mimicking
128 the learning mechanism of the human brain [37,38]. ANNs have
129 numerous advantages over a simple DoE based statistical data anal-
130 ysis. ANNs may be associated with a wide range of functions (poly-
131 nomial, exponential, logarithmic, power, etc.), and can handle large
132 datasets and factors which are non-controllable due to economical
133 and/or technical reasons and therefore cannot be implemented into
134 the DoE. Furthermore, their structure is less hierarchical and more
135 flexible in comparisonwith DoE, which helps the integration of data
136 from routine production batches into the analysis.
137 Despite the numerous studies published on the combination of
138 DoE with advanced nonlinear modelling techniques, there is a lack
139 of information on how the applied DoE layout and the organization
140 of the resulting experimental data set influence the reliability of the
141 determined PDS. The reason for this phenomenon is that the rele-
142 vant papers use a given experimental layout for the investigation

143of the given problem, without involving additional data into the
144analysis.
145In order to resolve this problem, the present work is focusing on
146the determination of the effect of the application of various DoE
147layouts on the reliability of the PDS determination. The work is
148based on our previous study [39] on the formulation of a solid mul-
149tiparticulate system for lyzozyme delivery. Lyzozyme is a natural
150enzyme with antimicrobial, anti-inflammatory and immune-
151modulator activity. In the past years it has re-emerged as a topic
152for research since the number of antibiotic resistant bacteria tribes
153increased extensively. It can also be used in paediatrics as a com-
154fortable and harmless treatment of GI infections [40] and inflam-
155matory diseases.

1562. Materials and methods

1572.1. Materials

158Crystalline egg-white lyzozyme was purchased from Handary S.
159A. (Lysoch 40000, Handary S.A., Brussels, Belgium). Mannitol (Hun-
160garopharma, Budapest, Hungary) was used as a stabilizer and
161microcrystalline cellulose (Avicel PH 101, FMC Biopolymer,
162Philadelphia, USA) as a plastic carrier in the formulations.

1632.2. Methods

16410 g of lysozyme, 40 g of mannitol and 50 g of cellulose were
165homogenized in a Turbula mixer (Willy A. Bachofen Maschinenfab-
166rik, Basel, Switzerland) for 10 min.
167The homogenized powder mixture was wetted and kneaded in
168a ProCepT 4M8 high-shear granulator (ProCepT nv., Zelzate, Bel-
169gium) with 60 ml of purified water. CPPs (impeller and chopper
170speed, liquid addition rate, impeller torque and temperature) were
171recorded throughout the process.
172The wet mass was extruded with a Caleva mini screw extruder
173(Caleva Process Solutions Ltd., Sturminster Newton, UK) and then
174spheronized with a Caleva MBS spheronizer (Caleva Process Solu-
175tions Ltd., Sturminster Newton, UK). The extruder was water-
176cooled with the application of a laboratory-developed cooling
177jacket, and the temperature was monitored with a laser ther-
178mometer every 30 s. The moisture content of the mass was
179checked continuously during extrusion and spheronization, with
180halogen moisture content analyser (Mettler Toledo Hungary Ltd.,
181Budapest, Hungary) using 1 g of samples and 105 �C drying tem-
182perature. The extruded samples were stored in tightly-closing con-
183tainers so as to avoid evaporation and decrease of the moisture
184content of the extruded mass before spheronization. The particles
185were spheronized at 2000 rpm friction plate speed for 15 min.
186The spheronized samples were dried for 24 h at room temperature.
187The activity of pellets was determined via the degradation of
188Micrococcus lysodeicticus (VWR International, Budapest, Hun-
189gary). 25 mg of the lyophilized bacteria was suspended in 100 ml
190of pH 6.24 phosphate buffer. The basic absorbance of the suspen-
191sion at 450 nm was approx. 0.7. 10 mg of lysozyme or 100 mg of
192pellets was dissolved in 25 ml of phosphate buffer, 2.5 ml of the
193suspension was measured into a 1 cm quartz cell, 0.1 ml of sample
194was added to the suspension and the absorbance was recorded
195every 5 s for 5 min. Since the error of activity determination when
196it was calculated from the absorbance change during a 1 min inter-
197val at the maximum linear rate was too high, the activity of the pel-
198lets was expressed as a percentage of the activity of the native
199lysozyme, based on the speed rates of the fitted exponential decay
200curves.
201A Zeiss stereomicroscope (Carl Zeiss, Oberkochen, Germany)
202and Leica Quantimet 500 C image analysis software (Leica
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203 Microsystems, Wetzlar, Germany) were used for the determination
204 of the size and shape of the pellets. The length, width, perimeter,
205 area and aspect ratio of the pellets were measured or calculated.
206 The hardness of the pellets was tested with a special hardness
207 testing apparatus developed at the Department of Pharmaceutical
208 Technology, University of Szeged. A vertical load is exerted on the
209 pellets by a conical breaking item with 2 mm in diameter breaking
210 surface. The force required for the deformation and breaking of pel-
211 lets is detected by a 50 N load cell mounted to the bottom of the
212 sample holder table, and recorded with 50 Hz sampling frequency
213 during the whole deformation process. A general breaking curve
214 and the discussion of the breaking process are presented in our
215 previous paper [39].
216 The DoE and the statistical analysis of the results were per-
217 formed with the application of Statistica for Windows v 12.0 (Stat-
218 soft Inc., Tulsa, OK, USA) software. The detailed description of the
219 factor selection and justification of the determination of minimum
220 and maximum settings may be found in our previous paper [39].
221 The advanced nonlinear modelling was performed with the help
222 of a feed forward backpropagation algorithm using NNModel 32
223 v. 1.0.2.0 (Neural Fusion Shareware) software.

224 3. Results and discussion

225 One of the key issues of the QbD is the determination and ver-
226 ification of the PDS [19,20]. The present work was focused on the
227 research of how the applied design layout influences the estima-
228 tion and prediction accuracy of PDS. A 33 full factorial DoE was per-
229 formed with 2 randomized replications on the basis of the previous
230 study [39]. The studied factors were impeller speed (x1) and liquid
231 addition rate (x2) in the kneading phase and extrusion speed (x3).
232 As CQAs, the enzymatic activity and the shape and hardness of the
233 pellets were investigated. The detailed experimental settings and
234 the corresponding results (mean and relative standard deviations
235 (RSD) are displayed in Table 1. The data were selected and analysed
236 according to the requirements of different experimental layouts (2

237level full factorial, face centred central composite, Box–Behnken, 3
238level fractional, 3 level full factorial).
239The descriptive model was fitted to the results on the basis of
240linear regression using the least squares method. The fitting accu-
241racy was evaluated with the goodness of fit (R2) and mean squared
242distance of data points from the fitted model (MS Residual)
243(Table 2). The significance of the factor coefficients (change of
244the CQA when a factor is raised from 0 to +1 level) was evaluated
245with two-way ANOVA test. The coefficients from the equations of
246the response surfaces are displayed in Table 3.
247The results showed that the effect of some factors and factor
248interactions results in a significant nonlinearity in the behaviour
249of pellet hardness and aspect ratio. The applied test calculates
250the distance of the centre point from the linear model fitted to
251the corner points of the experimental settings to test the model
252adequacy. If the distance is insignificant, the use of the linear
253model is appropriate, if not, nonlinear models should be applied
254[24]. In the case of enzyme activity, the result of the nonlinearity
255test was statistically insignificant, probably due to the fact that
256high standard deviation of the activity results in the centre point
257of experiments. Nevertheless, the considerable high value of the

Table 1
Settings and results of the DoE.

Impeller speed (x1) (rpm) Liquid addition rate (x2) (ml/min) Extruder speed (x3) (rpm) Activity (%) Hardness (N) Aspect ratio

Mean RSD (%) Mean RSD (%) Mean RSD (%)

500 5 70 88.19 13.25 18.99 13.70 1.20 7.20
500 5 95 85.48 8.81 20.35 64.31 1.23 4.84
500 5 120 70.08 12.47 25.99 14.08 1.17 1.24
500 7.5 70 74.60 6.50 15.14 13.60 1.21 2.46
500 7.5 95 87.19 5.86 17.37 13.13 1.19 0.60
500 7.5 120 47.72 41.59 17.45 7.88 1.20 2.73
500 10 70 40.00 13.79 14.55 30.15 1.26 4.48
500 10 95 88.49 6.36 19.84 19.78 1.27 10.24
500 10 120 49.90 21.31 9.05 11.73 1.21 0.56

1000 5 70 72.15 0.92 22.42 10.43 1.18 2.75
1000 5 95 77.71 5.11 14.49 6.91 1.22 2.57
1000 5 120 85.23 4.61 8.60 26.90 1.26 3.45
1000 7.5 70 42.86 9.11 20.36 16.26 1.18 1.03
1000 7.5 95 49.73 30.16 21.03 13.19 1.15 1.72
1000 7.5 120 48.01 30.15 20.43 7.12 1.19 2.22
1000 10 70 80.52 6.01 9.15 86.40 1.19 0.49
1000 10 95 80.09 6.90 20.73 2.43 1.19 4.44
1000 10 120 81.60 3.52 17.16 25.47 1.21 1.96
1500 5 70 55.48 21.44 11.14 43.00 1.20 1.12
1500 5 95 90.36 4.44 17.04 25.64 1.22 7.62
1500 5 120 65.58 21.87 14.10 11.04 1.20 2.75
1500 7.5 70 84.70 7.66 18.53 18.57 1.22 1.04
1500 7.5 95 70.69 20.85 18.22 12.50 1.26 1.33
1500 7.5 120 46.91 17.07 14.20 21.27 1.26 2.13
1500 10 70 38.85 9.99 18.13 21.78 1.18 1.38
1500 10 95 85.37 6.19 17.48 3.46 1.24 1.49
1500 10 120 63.72 11.00 13.96 39.22 1.23 3.32

Table 2
Results of the statistical analysis.

Design
layout

Activity Hardnessa Aspect ratioa

R2 MS
residual

R2 MS
residual

R2 MS
residual

2 level full 0.9886 84.27 0.7347 12.30 0.4325 0.0016
Central

composite
0.7925 158.47 0.6164 11.57 0.3783 0.0014

3 level
fractional

0.7892 103.68 0.5562 19.81 0.2846 0.0042

Box–
Behnken

0.8111 146.44 0.5097 21.79 0.4703 0.0023

3 level full 0.8427 131.34 0.3211 25.49 0.3625 0.0019

a The curvature check showed a significant presence of nonlinearity, and the best
models are highlighted with boldfaced letters.
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Table 3
Coefficients of response surface equations.

Factor Design type b0 b1 b11 b2 b22 b3 b33 b12 b122 b112 b1122 b13 b133 b113 b1133 b23 b233 b223 b2233

Activity 23 58.98 3.07 10.86 3.34 6.23 5.40 5.35
CC 62.10 �4.10 10.66 �8.44 10.61 3.19 22.85 6.23 5.39 5.34
33-1 75.41 2.39 2.69 5.17 11.01 9.45 5.55 12.2 9.95
BB 76.93 1.38 �5.32 0.34 13.52 6.31 1.55 2.00 0.94 0.83 2.73 9.85 3.00
33 68.56 1.66 0.07 �4.54 5.39 1.03 8.17 3.49 0.34 4.29 �8.22 2.68 0.59 3.19 5.83 2.56 3.45 6.66 1.73

Hardness 23 15.74 1.82 1.41 0.03 3.53 2.45 0.34
CC 20.48 1.37 2.41 0.50 2.59 0.03 0.19 3.53 2.45 0.34
33-1 15.62 0.44 2.02 0.98 2.58 1.25 3.50 3.56 0.25
BB 16.45 0.93 0.09 0.41 1.09 0.82 2.26 0.24 0.73 0.58 1.66 0.47 5.45
33 16.88 0.88 0.20 0.72 0.89 �0.41 1.22 2.43 0.78 0.73 1.27 0.78 0.06 0.41 0.01 0.18 1.32 0.07 0.47

Aspect ratio 23 1.21 0.014 0.005 0.003 0.011 0.002 0.02
CC 1.18 0.019 0.029 0.007 0.008 0.000 0.006 0.012 0.002 0.016
33-1 1.22 0.001 0.012 0.002 0.019 0.034 0.018 0.035 0.033
BB 1.22 0.0003 0.026 0.007 �0.02 0.012 0.009 0.003 0.013 0.011 0.011 0.009 0.01
33 1.22 0.003 0.012 0.006 0.004 0.006 0.005 0.009 0.015 0.012 0.009 0.015 0.002 0.009 0.010 0.004 0.001 0.0002 0.008

23: 2 level full factorial design, CC: Face-centred central composite design, 33-1: 3 level fractional design, BB: Box–Behnken design, 33: 3 level full factorial design; significant factors and factor interactions are shown with boldface
type.
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258 curvature coefficient indicated the presence of nonlinearity. It was
259 confirmed that a considerable drawback of the use of the DoE
260 based RSM is that although the use of second order polynomial
261 equations may add extra information and enhance the process of
262 understanding whether a nonlinear relationship exists between
263 critical process parameters (CPPs) and CQAs, it is notable that the
264 increment of the number of experiments did not necessarily result
265 in a better fitting model. Furthermore, as it is well visible, the
266 weight of the single coefficients decreased with the increment of
267 the number of experimental settings (Table 3). In this particular
268 case, it was a general tendency that the significance of the coeffi-
269 cients shifted from the linear to the nonlinear elements and from
270 the single nonlinear effects to the nonlinear interactions, which
271 indicated the complexity of effect of CPPs to CQAs. The presence
272 of significant second order factor interactions made the interpreta-
273 tion of the models and the determination of the effect of the single

274factor changes extremely difficult, since in these complex systems
275the effect of a minor change had a great effect on the behaviour of
276the whole system.
277The evaluation of the prediction performances of the different
278models was based on the testing of the correlation of observed
279and predicted values. Fig. 1 displays the prediction results for
280enzyme activity according to the different DoE layouts and evalu-
281ation methods. It is well visible that the use of ANN based evalua-
282tion resulted in better correlation of the measured and predicted
283values than RSM. It is notable that linear estimation provided poor
284predictability despite the nonlinear effects being estimated as
285insignificant in the RSM. The best predictions were given by Cen-
286tral Composite design where the weight of nonlinear parameters
287in the response surface equation is smaller. This can be due to
288the fact that the parabolic function is not suitable for the modelling
289of a complex surface since it cannot detect the slight changes of

Fig. 1. Observed vs. predicted data plots (full line: RSM, dashed line: ANN) on the modelling of enzyme activity. (a) 2 level full factorial design, (b) central composite design,
(c) 3 level fractional, (d) Box–Behnken design, (e) 3 level full factorial design, (f) equations and R2 values of the linear regression on the observed vs. predicted data.
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290 parameters and considerably under/overestimates the real values
291 in those regions where the response function changes its sense.
292 This effect was more considerable if the combinations where at
293 least 2 factors are on minimum or maximum levels were missing
294 from the experimental data set used for model building (3 level
295 fractional, Box–Behnken). The differences in model predictability
296 were similar also for hardness and aspect ratio, see the electronic
297 Supplementary material.
298 To unfold these problems and to compare the predictive force of
299 a higher level nonlinear modelling technique with the conven-
300 tional DoE based RSM, an ANN based model was developed on
301 the basis of a combination of genetic algorithm andmanual screen-
302 ing process (Fig. 2). The data pairs from the repeated DoE were
303 used to train and test the ANN. Therefore, the number of data
304 points was different according to the number of the experimental
305 settings used in the different DoE layouts. 80% of the randomly
306 selected data points were used for training while the remaining
307 20% was retained for the testing of model predictability according
308 to a repeated leave-p-out cross-validation method. A genetic algo-
309 rithm was used for the determination of the optimal number of
310 hidden neurons. The algorithm analysed the progress of training
311 statistically via the improvement of the error tolerance, and
312 increased the number of hidden neurons in an iterative way. A
313 new hidden neuron was added to the system if the improvement
314 of the observed vs. predicted R2 statistics decreased below 0.005
315 in a 100 epoch window. The momentum of the learning was 0.8
316 and 0.5 was selected as threshold value. The modification of these
317 values did not result in any significant improvement. The learning
318 rates were kept as defaults 0.75 and 1.5 of the input to hidden and
319 hidden to output layer, respectively. Nevertheless, a 0.75 value was
320 selected to decrease the initial learning rates when an extra neuron
321 was added to the system. The maximum number of hidden neu-
322 rons was set to 20, and the maximum number of learning cycles
323 was 1 million. Three different stopping criteria were applied. The
324 learning procedure would be stopped if all the predicted values
325 were within the ±5% tolerance band of the accepted total error or
326 the sum-of-square error function decreased below 0.001, or the

327overall R2 value of the observed vs. predicted correlations was over
3280.95. Nevertheless, none of the stopping criteria was reached
329within the applied maximum of the learning cycles. Since the
330improvement of the prediction accuracy followed a saturation
331curve with the increment of the number of hidden neurons and
332learning cycles, a certain improvement required too long time after
333a given level. Therefore, the number of neurons and the learning
334cycles were selected as optimal where the curve started to turn
335into steady state.
336Since the applied genetic algorithm decreased the speed of con-
337vergence and required longer learning time, the experiments were
338repeated with fixing the optimal neuron number. The other param-
339eters were the same as the ones used in the genetic algorithm.
340Under these conditions the convergence of the system was much
341faster; however, the chaotic working and oscillation of the predic-
342tion performance were increased with the default learning rates.
343To unfold these problems, a manual screening was performed to
344find the optimal value of the learning rates, according to a 32 level
345full factorial design. The default learning rates were selected as +1
346level, and the values were decreased in a logarithmic scale for 0
347and �1 levels. The results showed that the decrease of the learning
348rates unfolded the problem of the oscillating predictions and pro-
349vided a much smoother learning procedure with better overall pre-
350diction performance. Nevertheless, since the use of the learning
351rates in �1 level doubled the required learning time, and the
352improvement in predictive force was decreased between 0 and
353�1 compared to the decrease from +1 to 0, no further improvement
354was expected as a result of a further decrease.
355The optimal neuron numbers were 7, 5, 8, 9 and 14 for the 2
356level full factorial, 3 level fractional, Box–Behnken, Central Com-
357posite and 3 level full factorial design, respectively. According to
358the experimental results, the approximately optimal training
359length could be calculated using the following equation:
360

No: of learning cycles ¼ 90;000 � No: experimental data sets
=No: of neurons 362362

Fig. 2. Flow chart of the ANN optimization process.
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Fig. 3. Design spaces calculated from the results of different design of experiment layouts and modelling techniques. (a) 2 level full factorial RSM, (b) 2 level full factorial ANN,
(c) central composite RSM, (d) central composite ANN, (e) 3 level fractional RSM, (f) 3 level fractional ANN, (g) Box–Behnken design RSM, (h) Box–Behnken design ANN, (i) 3
level full factorial RSM, (j) 3 level full factorial ANN, (extrusion speed is 70 rpm (green area), 95 rpm (yellow area) and 120 rpm (red area)). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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363 The convergence in linear estimation required shorter time
364 compared to the different level nonlinear estimations. For the fur-
365 ther improvement of the learning efficacy, the integration of the
366 backpropagation algorithm with a conjugate gradient algorithm
367 was also tested. However, it did not result in any considerable
368 improvement.
369 The prediction capability of the different models was tested
370 based on leave-p-out cross validating in multiple rounds, using
371 20% of the existing data as test set in the training phase. The final
372 testing of the predictive force and model building capability of the
373 ANN and the comparison with the same values obtained from DoE
374 was based on the testing of the correlation of the observed and pre-
375 dicted data of all applied data points.
376 The results confirmed the preliminary expectations that the
377 ANN provides better predictions. The observed vs. predicted corre-
378 lation was better with one order of magnitude in most of the tested
379 cases. Nevertheless, the ANN based models exhibited similar sensi-
380 tivity to the lack of extremes in the data set as the RSM. However,
381 the effect of the applied number of data sets was in contradiction
382 with the RSM results, since the prediction efficacy considerably
383 improved with the increment of the number of data used for
384 training.
385 By comparing the RSM and ANNmodels it can be seen that there
386 were extreme differences in the PDSs calculated according to the
387 different DoE layouts and to the evaluation method (Fig. 3). The
388 nonlinear models were usually strongly narrowing the PDS and
389 the above mentioned fitting issues and underestimations may lead
390 to the misinterpretation of the results due to the cumulative effect
391 of the estimation errors in the calculation of the different CQAs. The
392 effect of model based estimation errors may be decreased by the
393 matching of PDSs calculated with RSM and ANN and applying the
394 common region as PDS. The application of ANN models also has
395 the advantage that the results of the routine production can be used
396 for the improvement of the model accuracy since it was found that
397 the increasing number of data points in the training data set contin-
398 uously improves the predictive force of the model.

399 4. Conclusions

400 Determination of the PDS is still a key issue of the Quality by
401 Design principles. The reliability of the calculated PDS highly
402 depends on the applied experimental data set. In the present study
403 the effect of the number and organization of the experimental data
404 points was tested on the result of an optimization process based on
405 RSM or ANN based modelling. The results revealed that the incre-
406 ment of the number of data points does not necessarily improve
407 the predictive force of the model. This can be due to the use of sec-
408 ond order polynomials to describe the response surface, which
409 may lead to over/underestimation of the real trends. It was con-
410 firmed that the predictive force of ANN based models is superior
411 over RSM and provides better robustness for PDS determination.
412 Furthermore, the ANN predictability may be significantly improved
413 with the increment of training data points.
414 Nevertheless, it is notable that both RSM and ANN exhibited
415 considerable sensitivity to the organization of the experimental
416 data set, especially if it contained a similar number of data points.
417 In comparison with the various experimental layouts it can be sta-
418 ted that those models in which a higher number of extreme factors
419 are involved give considerably better predictions.
420 The uncertainties in the estimation of the acceptance regions of
421 CQAs due to the model fitting issues will be present in a cumula-
422 tive way in the estimation of PDS. Based on our findings, the use
423 of central composite design is highly recommended to build the
424 mathematical model of PDS. Nevertheless, the matching of RSM
425 with ANN based results is also highly recommended to decrease

426the uncertainties and the risks of data misinterpretation. The re-
427train of ANNs with data of commercial production may improve
428PDS reliability during the lifecycle of the product, but the enlarge-
429ment of the training data set may require the modification of the
430network texture.
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