
Characterization of Source Code Defects by
Data Mining Conducted on GitHub

Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Rudolf Ferenc

Department of Software Engineering, University of Szeged, Hungary
Gyimesi.Peter@stud.u-szeged.hu, Gyimesi.Gabor@stud.u-szeged.hu,

zizo@inf.u-szeged.hu, ferenc@inf.u-szeged.hu

Abstract. In software systems the coding errors are unavoidable due
to the frequent source changes, the tight deadlines and the inaccurate
specifications. Therefore, it is important to have tools that help us in
finding these errors. One way of supporting bug prediction is to analyze
the characteristics of the previous errors and identify the unknown ones
based on these characteristics. This paper aims to characterize the known
coding errors.
Nowadays, the popularity of the source code hosting services like GitHub
are increasing rapidly. They provide a variety of services, among which
the most important ones are the version and bug tracking systems. Ver-
sion control systems store all versions of the source code, and bug track-
ing systems provide a unified interface for reporting errors. Bug reports
can be used to identify the wrong and the previously fixed source code
parts, thus the bugs can be characterized by static source code metrics
or by other quantitatively measured properties using the gathered data.
We chose GitHub for the base of data collection and we selected 13 Java
projects for analysis. As a result, a database was constructed, which
characterizes the bugs of the examined projects, thus can be used, inter
alia, to improve the automatic detection of software defects.

Keywords: Bug Database, GitHub, Data Mining

1 Introduction

The characterization of source code defects is a popular research area these
days. Programmers tend to make mistakes despite the assistance provided by
the development environments, and also errors may occur due to the frequent
changes and not appropriate specifications, therefore, it is important to get more
tools to help the automatic detection of errors. For automatic recognition of
defects, it is required to characterize the known ones.

One possible way of characterization is to try retrieving useful information
from defective code parts. This requires the knowledge whether a given source
code contains bugs or not. Defective sections of code can be characterized in
different aspects after locating them.

During the software development cycle, programmers use a wide variety of
tools, including bug tracking, task management, and version control systems.



There are numerous commercial and open source software systems available
for these purposes. Furthermore, different web services are built to meet these
needs. The most popular ones like SourceForge, Bitbucket, Google Code and
GitHub fulfill the above mentioned functionalities. They usually provide more
services, such as source code hosting and user management. Different APIs make
it possible to retrieve various data properties, thus can be used as data sources.
For example, they can be used to examine the behavior or the co-operation of
users or even to analyze the source code itself. Since most of these services include
bug tracking, it raises the idea to use this information in the characterization of
source code defects [16]. To do this, the bug reports managed by these source code
hosting providers must be connected to the appropriate source code parts [14].
A common practice in version control systems is to describe the changes in a
comment belonging to a commit and often provide an ID for the associated bug
report which the commit is supposed to fix [10]. This can be used to identify
the faulty versions of the source code. Processing diff files can help us to obtain
the code sections affected by the bug [15]. We can use textual similarity between
faulty code parts [2], if we have such a database. We can also use static source
code metrics [5], for which we only need one tool that is able to produce them.
For the sake of completeness, other information extracted from the services can
be involved in a database, such as user statistics.

To build a database containing useful bug characterization information, we
have chosen GitHub since it has several regularly maintained projects and also
a well defined API that makes it possible to integrate an automatic data re-
trieval mechanism in our own project. We selected 13 Java projects, which are
suitable for such examination and serve as a base for creating a bug database
with different characterizations. We have taken into consideration all reported
bugs stored in the bug tracking system. With attached diff files we located the
affected source parts. For the characterization we used static source code metrics
and some other ones we defined based on the set of data retrieved from GitHub.
The set of these metrics describe the projects from many aspects that can be a
good starting point to execute different bug prediction techniques (e.g building
models for prediction).

2 Related Work

Many approaches have been presented dealing with bug characterization and
localization. Zhou et al. published a study describing BugLocator [16], a tool
that detects the relevant source code files that need to be changed in order to fix
a bug. BugLocator uses textual similarities (between initial bug report and the
source code) in order to rank potential fault-prone files. Prior information about
former bug reports is stored in a bug database. Ranking is based on the idea
that descriptions with high similarity assume that the related files are highly
similar too. A similar ranking is done by Rebug-Detector [12] a tool made by
Wang et al. for detecting related bugs from source code using bug information.
The tool focuses on overridden and overloaded method similarities.



ReLink[14] is developed to explore missing links between changes committed
in version control systems and fixed bugs. This tool could be helpful for soft-
ware engineering research that are based on the linkage data, such as software
defect prediction. ReLink mines and analyzes information like bug reporter, de-
scription, comments, date from bug database and then try to pair the bug with
the appropriate source code files based on the set of source code information
extracted from a version control system.

The history of version control systems shows us the concerned files and their
changed lines only, but software engineers are also interested in which source
code elements (e.g. classes or methods) are affected by a change or a bug [13].
Tóth et al. presented a method for tracking low level source code elements’
(class, method) positions in files by processing version control system log infor-
mation [15]. This method helps to keep source code positions up-to-date.

Kalliamvakou et al. mined GitHub repositories to investigate their character-
istics and their qualities [10]. They presented a detailed study discussing different
project characteristics, such as (in)activity. Further research questions were in-
volved – whether a project is standalone or a part of a more massive system.
Results have shown that the extracted data set can serve as a good input for
various investigations, however one must use them with mistrust and always
verify the usefulness and reliability of the mined data. It is a good practice to
choose projects with many developers and commits, moreover should keep in
mind that the most important point is to choose projects that fit well for your
own purpose. In our case we have tried to create a database that is reliable
(some manual validation is performed) and general enough for testing different
bug prediction techniques.

Bird et al. presented a study on distributed version control systems, thus the
paper focuses mainly on Git [3]. They examined the usage of version control sys-
tems and the available set of data (such as whether the commits are removable,
modifiable, movable) gathered by the use of them (with respect of differenti-
ate central and distributed systems). The main purpose of this paper was to
draw attention on pitfalls and help researchers to avoid such pitfalls during the
processing and analysis of mined Git information set.

Many research papers have shown that using a bug tracking system improves
the quality of the developed software system. Bangcharoensap et al. introduced
a method to locate the buggy files in a software system very quickly using the
bug reports managed by the bug tracking system [2]. The presented method
contains three different approaches to rank the fault-prone files, namely:

– Text mining: ranks files based on the textual similarity between a bug report
and the source code itself.

– Code mining: ranks files based on prediction of the potential buggy module
using source code product metrics.

– Change history: ranks files based on prediction of the fault-prone module
using change process metrics.

They used the gathered project data collected on Eclipse platform to inves-
tigate the efficiency of the proposed approaches. Finally, they showed that these



three ways are suitable to locate buggy files. Furthermore, bug reports with short
description and many specific words greatly increase the effectiveness of finding
the weak points (the files) of the system.

Not only the above presented method can be used to predict the occurrence
of a new bug, but a significant change in source code metrics can be also a clue
that the relevant source code files contain a potential bug or bugs [9]. Couto
et al. presented a paper that shows the possible relationship between changed
source metrics (used as predictors) and bugs [5]. They described an experiment
to discover more robust evidences towards causality between software metrics
and the occurrence of bugs.

Previously mentioned approaches use a self-made database for their own pur-
pose as we could seen this advice in the work of Kalliamvakou et al. too [10].
Bug prediction techniques and approaches can be presented and compared in
different ways; however, there are some basic points that can serve as common
components. One common element can be a database used for evaluation of
the various approaches. PROMISE [11] is a database that contains many bugs
gathered from open source and also from industrial software systems. The main
purpose of PROMISE is to support prediction methods and summarize a bunch
of bugs and their characterization extracted from various projects. A similar
database for bug prediction was presented, and commonly known as Bug predic-
tion dataset [8]. The reason for creating this data set was mainly inspired by the
idea of measuring the performance of the different prediction models and also
comparing them to each other. This database handles the bugs and the relevant
source code parts at class level, in other words the bugs are assigned to classes
located in the source code.

At last but not least, the iBUGS database is presented [7] that contains a
large amount of information describing projects from the aspect of testing dif-
ferent automatic defect localization methods. Bug describing information comes
from version control systems and from bug tracking systems too. iBUGS used
the following open source projects to extract the bugs from (in parentheses the
number of extracted bugs are shown):

– AspectJ – an extension for the Java programming language to support aspect
oriented programming (223).

– Rhino – a JavaSript interpreter written in Java (32).
– Joda-Time – provides a quality replacement (extension) for the Java date

and time classes.

An attempt was performed on generating the iBUGS database in an automatic
way and the generated set was compared with the manually validated set of
bugs [6]. iBUGS is a very promising database since the set of validated bugs is
considerable (263), although three projects only cannot guarantee the generality
sufficiently. Our database includes several various projects from GitHub which
are available from a public API. The given dataset extends the previously shown
databases by including more metrics and storing more entries. The shown works
successfully made use of their narrowed datasets, thus an extended database can
serve as a base for further investigations. Besides 52 static source code metrics,



our dataset contains additional metrics extracted from version control and user
management systems. We used the diff files from the version control system to
automatically identify the faulty source elements (classes).

3 Approach

In this section we will introduce some prerequisites and the process of creating a
database containing bug characterization. At first, we will show some collected
information dealing with GiHub, then define different metrics to characterize
the reported bugs. Later in this section we will present the data mining process
including data collection, processing raw data, analysis of source code versions,
and extracting the characteristics of reported bugs.

3.1 GitHub

GitHub is one of today’s most popular source code hosting services. It is used
by several major open source projects for managing their project, among oth-
ers Node.js, Ruby on Rails, Spring Framework, Zend Framework, and Jenkins.
GitHub offers public and private Git repositories for its users, with some col-
laborative services, for example built-in bug and issue tracking systems. Since
this set of abilities are supported by GitHub, we decided to use this source code
hosting service (the well-defined API supports extracting these characteristics).
This system can be used for bug reporting, since any GitHub user can add an
issue. Issues can be labeled by the collaborators. The system provide some basic
labels, such as “bug”, “duplicate” and “enhancement”, but anybody can cus-
tomize these tags if required. In an optimal case, the collaborators review these
reports and label them with the proper labels, for instance, the bug reports with
“bug” label. For us, the most important feature of bug tracking is that we can
refer to an issue from the comment of the commit, thereby we can identify a
connection between the source code and the reported bug. GitHub has an API1

that can be used for managing repositories from other systems, or query infor-
mation about them. This information include events, feeds, notifications, gists,
issues, commits, statistics, and user data.

With the GitHub Archive2 project that also uses this API, we can get up-to-
date statistics about the public repositories. For instance, Table 1 presents the
number of created repositories in 2014 using the top 10 languages.

As can be seen, this is a large amount of information, and since this is public,
it can be useful for mining different properties of the projects stored in GitHub.
It means we can obtain the list of commits related to bug reports.

3.2 Metrics

The characterization of developed software systems by certain aspects is a dif-
ficult task, because a lot of subjective factors also play roles in them. With

1 https://developer.github.com/v3/
2 http://www.githubarchive.org/



Table 1: The number of created repositories in 2014 by the top 10 languages

Language Number of repositories

JavaScript 792 613

Java 562 142

Ruby 480 181

CSS 354 845

PHP 347 113

Python 317 525

C 290 113

C++ 164 936

C# 123 707

Objective-C 119 454

metrics we can measure the properties of a project objectively. These properties
can describe the whole system itself from various points of view. Metrics can be
obtained from the source code, from the project management data or from the
execution traces of the source code. There are several different ways to measure
them. From software metrics we can deduce higher-level metrics, such as the
quality of source code or the distribution of defects, but they can be used to
build a cost estimation model, apply performance optimization or to improve
activities supporting software quality. In our case, the static source code metrics
and the metrics obtained from GitHub are taken into consideration. These can
be used to characterize the defective code sections on file level or even on source
code element (class) level.

Source Code Metrics The area of object-oriented source code metrics has
been researched for many years [4], so no wonder that several tools have been
developed for measuring them. These tools are suitable for detailed examination
of systems written in various programming languages.

The static object-oriented source code metrics can be divided into several
types or groups: size, inheritance, coupling, cohesion and complexity. Calculated
product and process metrics can be used for different quality assurance methods
as well. One such example can be a development of a quality rating model [1]
or another application can be the determination of the correlation between the
distribution of the bugs and the calculated metrics [9]. For such purposes a
database containing readily extracted software metrics and located bugs provides
a great opportunity. The list of used software metrics in the characterization is
shown in Table 2.



Table 2: Used metrics for characterization
Abbreviation Full name

LCOM5 Lack of Cohesion in Methods 5

NOA Number of Ancestors

NOC Number of Children

NOD Number of Descendants

NOP Number of Parents

NOI Number of Outgoing Invocations

NOS Number of Statements

CBOI Coupling Between Object classes Inverse

NPA Number of Public Attributes

TCLOC Total Comment Lines of Code

TNLM Total Number of Local Methods

TNLG Total Number of Local Getters

TNLA Total Number of Local Attributes

NPM Number of Public Methods

CLOC Comment Lines of Code

NLPM Number of Local Public Methods

AD API Documentation

TNLS Total Number of Local Setters

NLPA Number of Local Public Attributes

TNPM Total Number of Public Methods

TNPA Total Number of Public Attributes

NLG Number of Local Getters

NLM Number of Local Methods

DIT Depth of Inheritance Tree

NLA Number of Local Attributes

NLE Nesting Level Else-If

TNOS Total Number of Statements

CD Comment Density

NLS Number of Local Setters

LOC Lines of Code

LLOC Logical Lines of Code

TCD Total Comment Density

RFC Response set For Class

NG Number of Getters

NL Nesting Level

NM Number of Methods

NA Number of Attributes

NS Number of Setters

TNLPM Total Number of Local Public Methods

DLOC Documentation Lines of Code

TNLPA Total Number of Local Public Attributes

NII Number of Incoming Invocations

WMC Weighted Methods per Class

TNG Total Number of Getters

TLLOC Total Logical Lines of Code

TNA Total Number of Attributes

PUA Public Undocumented API

TLOC Total Lines of Code

TNS Total Number of Setters

TNM Total Number of Methods

PDA Public Documented API

CBO Coupling Between Object classes

Metrics Extracted from Version Control System In addition to the static
source code metrics we gathered also other metrics from the available data. From
the version control system the number of modifications and fixes on a file can be



easily determined; moreover, committer identity can be mapped to the changed
files. Furthermore, GitHub provides statistics about the users, that includes the
number of commits per user on a project. From these data we determined to
create the following metrics on file level:

– Number of modifications
– Number of fixes
– Number of opened issues
– Number of modifications the committer performed on the project

3.3 Data Mining

Fig. 1: The components of the process

We carried out the data processing in multiple steps. First we collected the
data from GitHub by our IssueCollector program. Then we processed the raw
data and created statistics, for which we have developed a program component
called IssueMiner. For the next step we applied the SourceAnalyzer component,
which downloads the necessary source code versions from GitHub and analyzes
them. After this, we connected the results of the analysis with the data down-
loaded from GitHub, and located the defective sections of code and characterized
them with the calculated metrics. For this purpose, the DataCollector tool was
developed. The process and components are illustrated in Figure 1.

The Criteria for Choosing Projects We considered a number of criteria
when searching for appropriate projects on GitHub. First of all, we searched for
Java language projects, especially larger ones, because these are more suitable
for this kind of analysis. It was also important to have an adequate number of
commits which use bug labels in reports to separate them clearly from other
reports, moreover to refer to the appropriate bug report from the description of



the commits. In addition, we preferred the currently active projects. We found
many projects during the search, which would have fulfilled most aspects but
in many cases developers used an external bug tracker system, so it would have
been difficult to process them.

The List of Selected Projects We have selected 13 projects based on the
previously described aspects. Some properties of the projects will be presented,
but first we introduce the set of selected software systems. The following projects
were considered adequate for selection:

– JUnit3: A Java framework for writing unit tests.
– Mission Control Technologies4: Originally developed by NASA for the

space flight operations. It is a real-time monitoring and visualization plat-
form that can be used for monitoring any other data as well.

– OrientDB5: A popular document-based NoSQL graph database. Mainly
famous for its speed and scalability.

– Neo4j6: The world’s leading graph database with high performance.
– MapDB7: A versatile, fast and easy to use database engine in Java.
– mcMMO8: An RPG game based on Minecraft.
– Titan9: A high-performance, highly scalable graph database.
– Oryx10: It is an open source software with machine learning algorithms that

allows the processing of huge data sets.
– jHispter11: A versatile software for generating Java Web applications.
– Universal Image Loader12: An Android library that assists the loading

of images.
– Netty13: It is an asynchronous event-driven networking framework.
– ANTLR v414: A popular software in the field of language processing. It is

a powerful parser generator for reading, processing, executing, or translating
structured text or binary files.

– Elasticsearch15: A popular RESTful search engine.

Table 3 provides a more accurate picture of the projects. This table shows
the number of bug reports and commits of the projects. Explanation of used
abbreviations are described in the following:

3 https://github.com/junit-team/junit
4 https://github.com/nasa/mct
5 https://github.com/orientechnologies/orientdb
6 https://github.com/neo4j/neo4j
7 https://github.com/jankotek/MapDB
8 https://github.com/mcMMO-Dev/mcMMO
9 https://github.com/thinkaurelius/titan

10 https://github.com/cloudera/oryx
11 https://github.com/jhipster/generator-jhipster
12 https://github.com/nostra13/Android-Universal-Image-Loader
13 https://github.com/netty/netty
14 https://github.com/antlr/antlr4
15 https://github.com/elasticsearch/elasticsearch



Table 3: Statistics about the selected projects

NC NCBR NBR NOBR NCLBR ANCBR

Android Universal I. L. 914 52 80 5 75 0,69

ANTLR v4 2 941 109 146 16 130 0,84

Elasticsearch 9 764 979 1 331 91 1 240 0,79

jHipster 1 436 52 68 0 68 0,76

jUnit 1 942 66 75 4 71 0,93

MapDB 1 052 80 109 18 91 0,88

mcMMO 4 476 251 635 11 624 0,40

Mission Control T. 975 15 37 9 28 0,54

Neo4j 29 208 76 268 112 156 0,49

Netty 6 254 567 747 28 719 0,79

OrientDB 8 404 362 710 212 498 0,73

Oryx 295 29 27 0 27 1,07

Titan 1 690 50 88 6 82 0,61

NC Number of Commits
NCBR Number of Commits per Bug Reports
NBR Number of Bug Reports
NOBR Number of Open Bug Reports
NCLBR Number of CLosed Bug Reports
ANCBR Average Number of Commits per Bug Reports

Figure 2 shows the number of commits for closed bug reports. This shows
that there is a relatively large number of cases without a single commit. There
are possible causes, for example, bug report is not referred from the commit
description, the error has already been fixed, or a commit was not made with
the purpose to fix the problem.

Figure 3 shows the ratio of the number of commits per projects, illustrating
the activity and the size of the projects. Neo4J is dominant if we only consider
the number of commits, however bug report related activities are slight.

3.4 Data Collection

At the beginning we saved the data for the selected projects via the GitHub API.
It was necessary, because the data is continuously changing on GitHub due to
the activity of the projects and we need a consistent data source for the analysis.

The saved data set includes the users assigned to the repository (Contrib-
utors), the open and the closed bug reports (Issues), and all of the commits.
About users we stored the user id and the number of commits on the reposi-
tory they formerly have applied to. From open issues we only stored the date of
their creation. For closed issues we stored the creation date, closing date and the
commit identifiers with their creation dates. The data we stored for the com-
mits includes the id of the contributor, the id of the development branch, the
parent(s) of the commit and the affected files with the diff files.



Fig. 2: The number of bug reports with the corresponding number of commits

Fig. 3: The number of commits per projects



3.5 Processing of Raw Data

Data saved from GitHub is only a raw data set that includes all commits. We
only need the ones that are relevant to the bug reports. These are the commits
with a reference to a bug issue (fix) and the commits applied after the submission
of the report but before the commit referenced the issue. Between these commits
some further ones can occur that need to be removed because they are no longer
available through Git (deleted, merged). During data processing, we performed
such filtering and we made some more statistics about the projects including
the number of issues closed from commits. Figure 4 shows that not all of the
projects use this feature. In other words, we must deal with both options.

Fig. 4: Number of bug reports closed from commit compared with closed from web
interface

3.6 Analysis of Source Code Versions

We downloaded the proper versions of the source code based on the previous
step. In this step we filtered out the ones that cannot be downloaded because
they have been deleted or are created by merging branches. In such cases, there
is an alternative commit with the same content, and it can be downloaded. At
this point we had the source code versions which we want to analyze. For code
analysis purposes we used our SourceAnalyzer component. It wraps the results
of the SourceMeter16 tool that computes the static source code metrics and
determines the source code positions of the code elements. We got the results in

16 https://www.sourcemeter.com/



the form of graphs which contains the packages and classes with the computed
data.

3.7 Extracting the Characteristics of Bugs

The next step is to link the two data sets – the graphs of analysis and the data
gathered from GitHub – and extract the characteristics of the bugs. In this step
we determine the followings:

– the source code elements affected by the commits
– the static source code metrics of the affected source code elements
– the number of modifications and fixes of the files in each commit
– the last user modified a file in relevant commits
– the number of open bug reports in relevant commits

This was carried out by our DataCollector program. To determine the affected
source code parts, we used diff files. These files contain the differences between
two source code versions in a unified diff format. In the following, a unified diff
file snippet is shown.

--- /path/to/original ’’timestamp’’

+++ /path/to/new ’’timestamp’’

@@ -1,4 +1,4 @@

+Added line

-Deleted line

This part of the

document has stayed the

same

Each difference contains a header information specifying the starting line number
and the number of affected lines. Using this prior information, we can get the
range of the modification. To obtain a more accurate result, we subtracted the
unmodified code lines from this range. The diff files generated by GitHub contain
additional information about which method is affected. For us, it does not carry
any extra information because the difference can affect multiple source code
elements. Thus, there is no further task to do but to examine the source code
elements in every modified file and identify which ones of them are affected by
the changes (method uses the source code element positions). We identified the
source code elements by their fully qualified names. With this algorithm we got
the affected source elements as a result set.

Now we have enough information to calculate some additional metrics. The
program calculates the number of open bug reports for each commit. This is
done by counting the issues whose creation date is earlier than the creation of
the commit, and the closing time is later. Furthermore, it calculates the number
of modifications of each file. At first, it arranges the commits by the order of
creation time. Starting with the earliest one, it increases the counter on a file if
it is affected by a commit. During this process it is also counting the number



of fixes. A modification is considered as a fix if it is in the last commit for a
closed issue. Lastly, it determines the user for each file who most recently has
modified it. It is used to connect the user statistics with the modifications. The
user statistics means the number of modifications on a project applied by the
user. The number of modifications is collected at the time of downloading the
data from GitHub and not at the time the commit was made.

Fig. 5: The relationship between the bug reports and commits

Next, our program determines the commits that were performed after the
creation time of an issue and before the first commit for fixing that issue. These
are essential because these versions presumably contained the buggy source code
parts. The relation between the bug report and the commits is shown in Figure 5.
To mark the code sections affected by the bug in these commits, the program
accumulates the modifications on issue level. It is done by collecting the fully
qualified name of these elements. Then these metrics are exported into a CSV
document. This is done for each bug report due to resource saving purposes
because the graphs can be very large in size. The metrics for files and classes are
exported to different files. One file specifies whether a source code was buggy or
not, the other one contains assignment of source code elements and the number
of bugs related to them. Thus, four types of output is generated in this manner.
Finally, it concatenates these files resulting in a large set of data. The first line
of this CSV file contains the header with the metric names.

Once our dataset is created it can serve as an input for building a model for
fault prediction that one can use to forecast fault-prone spots in any developed
software system. The database can be easily updated since only a filtered analysis
should be performed (from a given date) that can extend the previous version
of the dataset.



4 Conclusion and Future Work

In this study, we developed a method and performed its implementation, which
generates a bug related database mined from GitHub project hosting service us-
ing static source code metrics of the relevant code parts. It identifies the faulty
source code elements from the past automatically by using diff files from the
version control system. This way it allows the simultaneous processing of several
publicly available projects located on GitHub, thereby resulting in the produc-
tion of a large database. Previous studies have dealed with only few larger data
sets created under strict management, as opposed to our way. Additionally, our
dataset contains new static source metrics compared to the other databases, al-
lowing the examination of the relationship between these metrics and software
bugs. Furthermore, in result of examining the projects on GitHub, we selected
13 suitable Java projects, which we used to build the database.

We are planning to expand the database with additional projects and addi-
tional data sources, such as SourceForge and Bitbucket. We also plan to refine
the metrics and define new features. The calculated file level metrics – with fur-
ther analysis – can be determined for lower level source elements, i.e. for classes
and methods, and data gathered from GitHub also can be used do define more
metrics. Our ultimate goal is to use the data to examine the correlation between
the bugs and the source code metrics, and to apply the results to facilitate the
automatic recognition of source code defects.

Acknowledgment

The publication is partially supported by the European Union FP7 project
“REPARA – Reengineering and Enabling Performance And poweR of Appli-
cations”, project number: 609666.

We also thank Zsuzsanna Fehér and László Szoboszlai for their valuable as-
sistance.

References

1. T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A proba-
bilistic software quality model. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 243 –252, sept. 2011.

2. P. Bangcharoensap, A. Ihara, Y. Kamei, and K. Matsumoto. Locating source code
to be fixed based on initial bug reports - a case study on the eclipse project. In
Empirical Software Engineering in Practice (IWESEP), 2012 Fourth International
Workshop on, pages 10–15, Oct 2012.

3. C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. German, and P. Devanbu.
The promises and perils of mining git. In Mining Software Repositories, 2009.
MSR ’09. 6th IEEE International Working Conference on, pages 1–10, May 2009.

4. Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476–493, 1994.



5. C. Couto, C. Silva, M.T. Valente, R. Bigonha, and N. Anquetil. Uncovering causal
relationships between software metrics and bugs. In Software Maintenance and
Reengineering (CSMR), 2012 16th European Conference on, pages 223–232, March
2012.

6. Valentin Dallmeier and Thomas Zimmermann. Automatic extraction of bug local-
ization benchmarks from history. Technical report, Universitat des Saarlandes and
Saarbrücken and Germany, 2007.

7. Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization
benchmarks from history. In Proceedings of the twenty-second IEEE/ACM in-
ternational conference on Automated software engineering, pages 433–436. ACM,
2007.

8. Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive compari-
son of bug prediction approaches. Proceedings of MSR 2010 (7th IEEE Working
Conference on Mining Software Repositories), pages 31 – 41, 2010.

9. Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. Software Engineering,
IEEE Transactions on, 31(10):897–910, 2005.

10. Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Ger-
man, and Daniela Damian. The promises and perils of mining github. MSR
2014 Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, pages 92–101, 2014.

11. Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fayola Pe-
ters, and Burak Turhan. The promise repository of empirical software engineering
data, June 2012.

12. Deqing Wang, Mengxiang Lin, Hui Zhang, and Hongping Hu. Detect related bugs
from source code using bug information. Computer Software and Applications
Conference (COMPSAC), 2010.

13. Chadd C Williams and Jeffrey K Hollingsworth. Automatic mining of source
code repositories to improve bug finding techniques. Software Engineering, IEEE
Transactions on, 31(6):466–480, 2005.

14. Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink: recov-
ering links between bugs and changes. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineer-
ing, pages 15–25. ACM, 2011.

15. Toth Z., Novak G., Ferenc R., and Siket I. Using version control history to follow
the changes of source code elements. Software Maintenance and Reengineering
(CSMR), 2013.

16. Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug reports. Soft-
ware Engineering (ICSE), 2012 34th International Conference on, 2012.


