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Abstract

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder the pathomechanism

of which is not yet fully known. As regards the molecular mechanism of development of the 

disease, oxidative stress/mitochondrial impairment, glutamate excitotoxicity and 

neuroinflammation are certainly involved. Alterations in the kynurenine pathway, the main 

pathway of the tryptophan metabolism, can contribute to the complex pathomechanism. There are 

several possibilities for therapeutic intervention involving targeting of this altered metabolic route.

The development of synthetic molecules that would shift the altered balance towards the 

achievement of neuroprotective effects would be of great promise for future clinical studies on PD.

Keywords: Parkinson’s disease, excitotoxicity, oxidative stress, 

neuroinflammation, kynurenines, neuroprotection, therapy
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1. Introduction

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder 

originally described by James Parkinson in 1817 (Parkinson, 1817), but the 4 

cardinal symptoms were delineated over 120 years before in a Hungarian medical 

text by Ferenc Pápai Páriz (Papai Pariz, 1690; Bereczki, 2010). The disease 

affects approximately 0.2% of the population on average, but the prevalence rises 

steeply with increasing age, reaching more than 4% at 85 years of age (de Rijk et 

al., 2000). Most of the cases are considered to be sporadic with uncertain 

aetiology, and attention is drawn to the possible role of environmental risk factors;

and the underlying genetic mutation could recently be determined in only some 

10% of the cases (reviewed by de Lau and Breteler, 2006). The deteriorated 

functioning of several genes and gene products has been identified (reviewed by 

Bekris et al., 2010), e.g. that of α-synuclein (PARK1/PARK4; Polymeropoulos et 

al., 1996, Farrer et al., 1999), parkin (PARK2; Matsumine et al., 1997), 

phosphatase and tensin homologue [PTEN]-induced putative kinase 1 [PINK1] 

(PARK6; Valente et al., 2001), DJ-1 (PARK7; van Duijn et al., 2001), leucine-

rich repeat kinase 2 [LRRK2] (PARK8; Funayama et al., 2002), high-temperature

requirement protein A2 [HtrA2]/Omi (PARK13; Strauss et al., 2005) and human 

leukocyte antigen [HLA]-DRA (PARK18; Hamza et al., 2010). Clinically, PD 

can mainly be characterized by motor symptoms, such as resting tremor, rigidity, 

brady- and hypokinesia and postural instability, but cognitive, psychiatric, 

autonomic and sleep disturbances also develop (reviewed by Rodriguez-Oroz et 

al., 2009). The main pathological hallmark of PD is a loss of brain stem 

catecholaminergic, and especially mesencephalic dopaminergic (DA-ergic) 

neurons in the substantia nigra pars compacta (SNpc), and the presence of Lewy 

bodies (intracytoplasmic inclusions, the main component of which is α-synuclein) 

and Lewy neurites in the vulnerable population of neurons (Braak et al., 2003). 

The consequential decrease in DA content, mainly in the striatum, has the result 

that the brain is no longer capable of adequate control of the motor functions 

(reviewed by Rodriguez-Oroz et al., 2009).
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2. Some of the main aspects of the pathogenesis in 

Parkinson’s disease 

2.1. Oxidative stress and mitochondrial dysfunction

The development of animal models of toxin-induced parkinsonism drew attention 

to the roles of oxidative stress and a mitochondrial dysfunction in PD and to the 

pathogenetic potency of environmental risk factors (reviewed by Beal, 2001; 

Bove et al., 2005). The neurotoxic effects of 6-hydroxy-DA (6-OHDA) on central

nervous system (CNS) catecholaminergic neurons were described in 1968 

(Ungerstedt, 1968). As 6-OHDA crosses the blood-brain barrier (BBB) only 

poorly, specific damage to the nigrostriatal DA-ergic pathway is achieved by 

stereotaxic injection of the toxin into the SN, the medial forebrain bundle or the 

striatum (Javoy et al., 1976). It destroys catecholaminergic structures through the 

combined action of reactive oxygen intermediates (ROI) and quinones (Cohen, 

1984). Shortly after the observation in humans of the parkinsonism-inducing 

effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a product of 

meperidine analogue synthesis (Langston et al., 1983; Langston and Ballard, 

1983), it became the most widely used animal model of PD (Hallman et al., 

1984). As this compound readily penetrates the BBB, its systemic administration 

is most common. It exerts its toxic effects through its metabolite, 1-methyl-4-

phenylpyridinium ion (MPP+; Chiba et al., 1984; Langston et al., 1984), which 

has been shown to be capable of the selective inhibition of complex I of the 

mitochondrial electron transport chain (ETC; Nicklas et al., 1985; Mizuno et al., 

1987). After freely penetrating cellular membranes, the natural cytotoxic 

compound rotenone, widely used as a commercial pesticide and insecticide, can 

accumulate in the mitochondria; like MPP+, it also inhibits complex I of the ETC 

(Betarbet et al., 2000; Schuler and Casida, 2001). In contrast with the previously 

described two models, proteinaceous inclusions, immunoreactive for α-synuclein, 

can be detected in the remaining SNpc neurons in rotenone-infused rats (Betarbet 

et al., 2000). The potent herbicide paraquat, which is structurally somewhat 

similar to MPP+, can also be used in animal modelling of PD, due to its ROI-

producing action (Brooks et al., 1999; McCormack et al., 2002). These findings 

are consistent with the observation that a decrease in complex I activity has been 
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described in the SN and platelets of PD patients (Reichmann and Riederer, 1989; 

Schapira et al., 1989). However, there are some inconsistencies in the currently 

available experimental data (reviewed by Banerjee et al., 2009). As concerns the 

role of underlying genetic PD mutations in oxidative stress, some of them have a 

proved effect on the mitochondrial function under normal or pathological 

conditions. The mitochondrial accumulation of α-synuclein in human DA-ergic 

neurons can result in increased ROI generation (Devi et al., 2008), while a parkin 

dysfunction can lead to a decreased mitochondrial antioxidant capacity (Yang et 

al., 2007). PINK1 can inhibit oxidative stress-induced apoptosis by reducing 

cytochrome release from the mitochondria (Kim et al., 2008). Regulation of the 

proteolytic activity of HtrA2/Omi (e.g. due to phosphorylation by PINK1) may 

result in resistance to mitochondrial stress (Plun-Favreau et al., 2007). The 

dysfunction of DJ-1, which exhibits atypical peroxiredoxin-like peroxidase 

activity, may result in impaired mitochondrial ROI scavenging (Andres-Mateos et

al., 2007). It has also been demonstrated that the LRRK2(G2019S) mutation, 

which is the most common identifiable cause of PD,  results in decreases in both 

mitochondrial membrane potential and total intracellular adenosine-triphosphate 

level in mutation carriers (Mortiboys et al., 2010).

2.2. Glutamate excitotoxicity

DA-ergic neurons in the SNpc possess glutamate receptors and they receive 

extensive glutamatergic innervation from the subthalamic nucleus (the main 

input), cerebral cortex, amygdala and pedunculopontine and laterodorsal 

tegmental nuclei (reviewed by Misgeld, 2004). Although oxidative stress and 

mitochondrial impairment seem to be the predominant causative factors in the 

development of PD, glutamate excitotoxicity also has an important role in the 

pathogenesis of the disease. There are synergistic interactions between 

mitochondrial defects, oxidative stress and glutamatergic stimulation (reviewed 

by Blandini, 2010). The latter may be secondary to the former, because evidence 

has recently been provided that chronic MPTP treatment results in the 

dysregulation of glutamate homeostasis (Meredith et al., 2009; commented on by 

Caudle and Zhang, 2009). The striatal hypo-DA-ergic status due to the metabolic 

compromise leads to overactivation of the subthalamic nucleus. This may result in

increased glutamate release onto the compromised DA-ergic neurons in the SNpc 
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(Rodriguez et al., 1998), setting up an excitotoxic cascade that further worsens the

neurodegenerative process. One of the main events during glutamate 

excitotoxicity is a cytosolic calcium overload, which results in calmodulin 

activation and nitric oxide (NO·) production through neuronal NO· synthase 

(nNOS; reviewed by Bredt, 1999). When produced in excess, NO· is capable of 

inhibiting the ETC in a concentration-dependent manner (reviewed by Brown, 

2010). There is a mitochondrial isoform of NOS (i-mtNOS) in the SNpc, which 

can be rapidly induced during the inflammation accompanying the pathologic 

cascade events (Escames et al., 2003).

2.3. Neuroinflammation

The observation that reactive microglia expressing HLA-DR and cluster of 

differentiation (CD) 11b are present in PD patients (McGeer et al., 1988) drew 

attention to the possible role of neuroinflammation in the development of the 

disease (reviewed by Chung et al., 2010; Glass et al., 2010). Furthermore, 

increased levels of cytokines have been observed in the nigrostriatal region of 

post-mortem brains and/or cerebrospinal fluid of patients with sporadic PD and in 

both 6-OHDA and MPTP models of PD (Mogi et al., 1994; Mogi et al., 1996; 

reviewed by Nagatsu and Sawada, 2005). Aggregated, nitrated and oxidized forms

of α-synuclein have been found to accentuate microglial activation, and the α-

synuclein leaving the cells is phagocytosed by microglia and leads to the release 

of proinflammatory cytokines (Zhang et al., 2005; Reynolds et al., 2008). Thus, 

there are strong connections between oxidative stress and glutamate 

excitotoxicity, and between oxidative stress and neuroinflammation (Fig. 1). It has

been observed, for instance, that the internalization of α-synuclein is followed by 

ROI production (Zhang et al., 2005). As regards the possible role of other 

immune cells in the development of the disease, it was recently reported that 

CD4+ and CD8+ T lymphocytes are present in post-mortem PD brains (Brochard 

et al., 2009). Indeed, CD4+-deficient mice were resistant to MPTP toxicity.
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3. The possible contribution of alterations in the 

kynurenine pathway to the development of 

Parkinson’s disease

3.1. Background

The kynurenine pathway is the main pathway of the tryptophan (TRP) 

metabolism, serving as a route to nicotinamide adenine dinucleotide (NAD+) 

production (reviewed by Schwarcz, 1993; Stone, 1993; Vecsei, 2005). More than 

95% of the TRP is metabolized through this pathway (Wolf, 1974). The central 

intermediate of the pathway is L-kynurenine (L-KYN), which can be metabolized 

to neuroactive compounds such as kynurenic acid (KYNA) and 3-hydroxy-L-

kynurenine (3-OH-L-KYN), and in further steps to quinolinic acid (QUIN). In the 

CNS, 40% of the L-KYN is formed locally, while 60% is taken up from the 

periphery (Gal and Sherman, 1978), as it can readily cross the BBB (Fukui et al., 

1991). KYNA is formed by the irreversible action of four subtypes of kynurenine 

aminotransferases (KATs; Okuno et al., 1991; Yu et al., 2006; Guidetti et al., 

2007; reviewed by Han et al., 2010). The main KYNA-producing enzyme in the 

rat and human brains is KAT-II, while in the mouse brain it is the mitochondrial 

aspartate aminotransferase (mitAAT, also called KAT-IV; Guidetti et al., 2007). 

The KATs are mainly expressed in the astrocytes (Guillemin et al., 2001); in fact, 

the expression of KAT-II is entirely confined to this cell type, while the neurons 

display only weak granular staining (Roberts et al., 1992). The neuronal 

expression of KAT-I appears to have effects on developmental processes, such as 

programmed cell death (Csillik et al., 2002). 3-OH-L-KYN is produced through 

the action of kynurenine 3-hydroxylase (Battie and Verity, 1981), while the 

formation of QUIN is mediated by 3-hydroxyanthranilate 3,4-dioxygenase (Foster

et al., 1986). The branch responsible for the production of the above metabolites 

is mainly localized in the microglia and macrophages (Espey et al., 1997). Of 

these two enzymes, the astrocytes express only 3-hydroxyanthranilate 3,4-

dioxygenase (Guillemin et al., 2001). As regards the action of neuroactive 

kynurenines, KYNA has been demonstrated to be a glutamate antagonist (Perkins 

and Stone, 1982). In micromolar concentrations it acts as an antagonist at the 

strychnine-insensitive glycine-binding site of the N-methyl-D-aspartate (NMDA) 
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receptor (Kessler et al., 1989), and it also seems to be capable of facilitating α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 

responses (Prescott et al., 2006; Rozsa et al., 2008). In contrast with this finding, 

it was earlier demonstrated that KYNA can exert weak antagonistic effects on the 

AMPA and kainate receptors (Birch et al., 1988). It can also exert non-

competitive blockade on the α7-nicotinic acetylcholine receptors (Hilmas et al., 

2001), presynaptic activation of which can accentuate glutamate release (Marchi 

et al., 2002). It was also described that KYNA can activate G protein-coupled 

receptor GPR35, inducing the production of inositol triphosphate and Ca2+ 

mobilization, however the expression of GPR35 in the brain is very low, so its 

role in CNS processes is questionable (Wang et al., 2006). Furthermore, it was 

also demonstrated that KYNA additionally reduces inflammatory responses at the 

periphery (Varga et al., 2010) or in human leukocytes (Tiszlavicz et al., 2011). As

concerns the toxic effects of QUIN, besides its direct activation on NMDA 

receptors (Stone and Perkins, 1981), or the release and uptake inhibition of 

glutamate (Connick and Stone, 1988; Tavares et al., 2002), it has neurotoxic 

effects through lipid peroxidation (Rios and Santamaria, 1991) or ROI production 

(Behan et al., 1999). The toxic effects of 3-OH-L-KYN are solely mediated 

through free radical production (Eastman and Guilarte, 1990; Okuda et al., 1998).

3.2. Alterations in the kynurenine system in Parkinson’s disease

Alterations in the kynurenine metabolism may be involved in the development of 

PD (Fig. 1; reviewed by Nemeth et al., 2006; Zadori et al., 2009). KYNA levels 

have been demonstrated to be decreased in the frontal cortex, putamen and SNpc 

of patients with PD (Ogawa et al., 1992) and, accordingly, both MPTP (Knyihar-

Csillik et al., 2004) and 6-OHDA treatments (Knyihar-Csillik et al., 2006) 

resulted in diminished KAT-I immunoreactivity in the SNpc of mice. 

Furthermore, MPP+ treatment decreased the KAT-II activity considerably in rat 

cerebral cortical slices, with a resulting decrease in KYNA concentration 

(Luchowski et al., 2002). In contrast, 3-OH-L-KYN levels have been found to be 

elevated in human post-mortem brain samples, probably contributing to the 

oxidative damage (Ogawa et al., 1992). A disturbance of the kynurenine 

metabolism in the periphery has also been demonstrated in PD (Hartai et al., 

2005).
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4. Possibility of therapeutic intervention by 

modulation of the kynurenine system

There are several possibilities for restoration of the altered kynurenine metabolism

in neurological disorders, including PD (reviewed by Stone and Darlington, 2002;

Kincses and Vecsei, 2010; Zadori et al., 2011b). One therapeutic strategy would 

be to increase the level of endogenous KYNA. Pretreatment with KYNA 

attenuated MPP+-induced neuronal cell death in vitro in a human dopaminergic 

neuroblastoma cell line (Lee do et al., 2008). In in vivo experiments, the co-

infusion of exogenous KYNA with either NMDA or QUIN into the SNpc 

preserved the activity of striatal tyrosine hydroxylase (probably the most 

important and rate-limiting enzyme in DA production) (Miranda et al., 1997). The

direct injection of KYNA into the globus pallidus internus also resulted in 

beneficial effects against the toxic effects of MPTP (Graham et al., 1990; Butler 

et al., 1997). However, the systemic administration of KYNA cannot be selected 

for therapeutic purposes, as it crosses the BBB poorly (Fukui et al., 1991). 

Furthermore, it undergoes rapid clearance from the brain and the body, mediated 

by organic anion transporters (Bahn et al., 2005). Through use of the natural 

BBB-penetrable prodrug L-KYN, the former limiting factor might be overcome. 

However, the KYNA produced can easily be cleared from the brain. Accordingly, 

L-KYN did not afford any protection in the MPTP model of PD in our 

experiments (unpublished data). However, when combined with probenecid, an 

inhibitor of organic acid transport, L-KYN was able to exert protective effects in 

the 6-OHDA model of PD (Silva-Adaya et al., 2011). Furthermore, when the 

administration of L-KYN and probenecid was supplemented with 

nicotinylalanine, an agent that inhibits the activity of both kynurenine 3-

hydroxylase and kynureninase (thereby decreasing the formation of toxic 

metabolites), beneficial effects could also be seen against the NMDA and QUIN-

induced excitotoxicity in the SNpc, through elevated KYNA levels (Miranda et 

al., 1997). Numerous synthetic derivatives of both L-KYN and KYNA have been 

designed to achieve improved pharmacological properties (reviewed by Stone, 

2000; Schwarcz, 2004; Fulop et al., 2009). Synthetic kynurenines capable of 

reducing glutamate release, NMDA activation and NOS activity (Leon et al., 

1998a; Leon et al., 1998b; Leon et al., 2000; Camacho et al., 2002) exhibited 
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beneficial effects in the MPTP model of PD (Acuna-Castroviejo et al., 2011). 

Another promising L-KYN derivative is 4-Cl-L-KYN, the BBB-penetrable 

prodrug of a 7-Cl-KYNA, a more selective glycine/NMDA inhibitor than KYNA 

(Reggiani et al., 1989). Somewhat surprisingly, however KYNA, but not 7-Cl-

KYNA, afforded protection against the toxic effects of MPP+ in the rat striatum 

(Merino et al., 1999). This might be explained in that KYNA perhaps exerts 

broader anti-excitotoxic action than 7-Cl-KYNA. However, in addition to 7-Cl-

KYNA formation, 4-Cl-L-KYN can also be metabolized to 4-Cl-

hydroxyanthranilate, a powerful inhibitor of QUIN synthesis (Parli et al., 1980), 

extending the modes of neuroprotective action, with resultant prevention of 

QUIN-induced neurotoxicity in the rat hippocampus (Wu et al., 2000) and rat 

striatum (Guidetti et al., 2000). Nevertheless, it should be mentioned that the 

inhibition of kynurenine 3-hydroxylase would rather selected, as the blockade of 

3-hydroxyanthranilate 3,4-dioxygenase activity may result in the accumulation of 

3-hydroxyanthranilate, which has neurotoxic properties (Fornstedt-Wallin et al., 

1999). Accordingly, several small-molecule enzyme inhibitors have been 

designed (reviewed by Schwarcz and Pellicciari, 2002; Kiss and Vecsei, 2009). In

MPTP-treated non-human primates, the kynurenine 3-hydroxylase inhibitor 3,4-

dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulfonamide (Ro 61-8048) 

increased the serum L-KYN and KYNA levels and decreased the incidence of L-

DOPA-induced dyskinesias, but did not affect the antiparkinsonian effect of L-

DOPA (Gregoire et al., 2008; Ouattara et al., 2009). Various KYNA derivatives 

have also been designed to achieve neuroprotection. One group of these 

compounds comprises the KYNA amides (reviewed by Fulop et al., 2009). Some 

KYNA amides are capable of the selective inhibition of the NR2B subunit-

containing NMDA receptors (Borza et al., 2007), which play an important role in 

glutamate excitotoxicity (Liu et al., 2007). One KYNA amide, N-(2-N,N-

dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride, has 

considerable in vivo stability (Zadori et al., 2011a). When its effects were 

compared those of KYNA in an in vitro electrophysiological study, it proved to 

behave similarly to KYNA (Marosi et al., 2010), while in experimental models of 

inflammation it displayed greater anti-inflammatory effects than those of KYNA 

(Varga et al., 2010; Tiszlavicz et al., 2011). It appears to be a promising candidate

for drug development in neurodegenerative disorders, and it has already been 
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found protective in a transgenic animal model of Huntington’s disease (Zadori et 

al., 2011c).

5. Conclusions

The underlying pathomechanism in PD is currently undergoing thorough 

investigation. Although the exact genetic basis can be identified in only a small 

proportion of the cases, there are a number of environmental risk factors which 

are presumed to contribute to the development of PD. Recent research advances 

relating to pathogenetic factors in PD have confirmed close interactions between 

oxidative stress/mitochondrial dysfunction, glutamate excitotoxicity and 

neuroinflammation. Alterations in the kynurenine metabolism are surely involved 

in this complex pathogenetic circuitry. Drug development targeting this altered 

metabolic route may therefore deserve special attention. The recently available 

preclinical results are reasonably promising, and the time appears to be 

approaching for consideration of the design of well-planned clinical studies.
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 Figure captions
Fig.1 The connection between the main aspects of PD pathogenesis. Neuroactive metabolites of 

the kynurenine pathway may have influence on all of these aspects. (3-OH-L-KYN: 3-hydroxy-L-

kynurenine, ATP: adenosine triphosphate, KYNA: kynurenic acid, NO·: nitric oxide, QUIN: 

quinolinic acid, ROI: reactive oxygen intermediates; solid lines: activation, dashed lines: 

inhibition)
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