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Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder 

associated with dementia as a main feature. Despite decades of thorough 

research in the field of AD, the pathomechanism is still not fully 

understood. The development of novel experimental models can help us 

in the discovery of both genetic and non-genetic components of disease 

pathogenesis. As currently available therapies in AD can provide merely 

moderate or only temporary symptomatic relief, there is a great demand 

for the development of new drugs with higher therapeutic potential. 

Some of the candidates would be those of targeting the kynurenine 

pathway, the neuroactive metabolites of which are surely involved in 

both neurodegeneration and neuroprotection, mainly in relation with 

glutamate excitotoxicity and oxidative stress. Both analogs of the 

neuroprotective kynurenic acid and small molecule enzyme inhibitors 

preventing the formation of neurotoxic compounds may have potential 

therapeutic significance. However, there is a great need for new 

strategies via which to improve the efficacy, the transport across the 

blood-brain barrier and bioavailability, naturally with simultaneous 

minimization of the adverse side-effects.

Key words: Alzheimer’s disease, kynurenine pathway, animal models, 

therapy
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Alzheimer’s disease

Alzheimer’s disease (AD) is the most common age-related, progressive 

neurodegenerative disorder. It usually starts with a memory loss and 

leads to a cognitive deficit and dementia. There are many behavioral 

symptoms, e.g. aggression, agitation and psychosis, which are 

responsible for the distressing aspect of AD and pose a great emotional, 

physical and economic challenge [1-2]. AD selectively affects numerous 

neuronal populations involving glutamatergic neurons in the 

hippocampus and cortex, basal forebrain cholinergic neurons and 

brainstem monoaminergic neurons [3-5] and cortical synapses [6-7]. The 

disease is characterized by neuropathological changes such as amyloid-

beta (Aβ) plaques and neurofibrillary tangles, in the regions responsible 

for memory formation consisting of glutamatergic circuits. A severe 

reduction in mitochondrial complex IV activity suggests that an energy 

deficit plays a key role in the development of AD [8]. Most AD cases are

sporadic and numerous heritable mutations in the amyloid-β precursor 

protein (AβPP), which belongs to the type 1 transmembrane family of 

glycoproteins, have been linked to the disease. The AβPP has a Swedish 

mutation, in which Lys-595 and Met-596 are replaced by Asp and Lys, 

respectively. This enhances the early onset and propagation of AD, and 

leads to the cognitive impairments associated with AD [9]. The 
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expression of the Swedish mutation alters the overall gene expression, 

including AD-related kinases, phosphatases, presenilin-2, and glycogen 

synthase kinase-3β [10]. The cleavage of AβPP by β- and γ-secretases 

leads to the formation of Aβ peptides, which assemble into extracellular 

amyloid plaques [11]. Close correlations were reported in earlier studies 

between the severity of the different diseases and the degree of amyloid 

accumulation. It has recently become rather uncertain whether amyloid 

aggregates really are the basic toxic species amongst conformational 

forms. These may rather represent a protective mechanism by 

segregation of toxic intermediates in the amyloid assembly pathway [12].

Presenilin-1 is the most common gene in AD and 177 mutations have so 

far been identified in this gene. One of the up-to-date mutations in 

presenilin-1, I202F, occurs in exon 7 of the presenilin-1 gene and the 

fourth transmembrane domain of presenilin-1 protein. This new mutation

fits the pattern, in accordance with previously defined presenilin-1 

mutations, lining up along the helical transmembrane domains of 

presenilin-1 [13-14].

Insoluble fibrillar tau-protein deposits are typically observed within the 

cell bodies and dendrites of the neurons [15]. These neurofibrillary 

tangles are the other major pathogenic marker of AD. R406W is the 

unique tau mutation causing AD-like dementia and tauopathy in humans 
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and it has the special ability to reduce tau phosphorylation in cultured 

cells [16-18] or in vitro by recombinant glycogen synthase kinase-3β 

[19].

Some in vivo models of Alzheimer’s disease

The most important task at present is to develop new disease-modifying 

modes of treatment. Before making effort to stop or at least slow 

neurodegenerative processes, a better understanding of the 

pathophysiology of diseases is needed, which demands on better animal 

models. With the aid of such animal models, new disease-modifying 

therapies can be tested and improved. The ideal animal model should 

meet many requirements. However, it must be borne in mind that animal 

models can never be perfect. Certain biochemical and physical 

differences have been demonstrated in the amyloid plaques in AD 

patients and in AD animal models. In one of the transgenic mouse 

models of AD, the ATP-gated P2X7 purinergic receptor cation channel is

upregulated around amyloid peptide plaques and co-localizes to 

microglia and astrocytes. After ischemia in the cerebral cortex of rats and

also following spinal cord injury, upregulation of the P2X7 receptor 

subtype on the microglia occurs, while the P2X7 receptor-like 

immunoreactivity is enhanced in the activated microglial cells of the MS 
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and ALS spinal cord [20]. As an in vitro model for neuroinflammation 

involving the application of neuron/microglia co-cultures, P2X7 receptor 

activation on microglia appears necessary for the microglial cell-

mediated injury of neurons.

In recent years, a novel triple mutant mouse model of AD (3xTgAD 

mice) has been generated, in which the mice exhibit age-dependent Aβ 

deposition and tau-pathology in the hippocampus and cerebral cortex 

[21-22]. These mice express familial AD AβPP and presenilin-1 

mutations, together with a tau mutation [21].

Non-mammalian organisms can also provide suitable information about 

the disease. In a nematode, a Caenorhabditis elegans screening mutation 

revealed a relationship between presenilins and the Notch signaling 

pathway [23]. In consequence of human Aβ expression in 

Caenorhabditis elegans [24] and Drosophila melanogaster [25], amyloid

deposits in muscle and neurodegeneration can also be observed. With the

help of yeast, Aβ toxicity can be studied well [26]. As a brief evasive as 

regards the use of yeast in modelling neurodegenerative disorders, it is 

important to mention here that Giorgini et al performed a genomic screen

in yeast to identify gene deletions that suppress the toxicity of a mutant 

Htt fragment (Htt103Q). This study suggests that a conserved mechanism

of polyQ toxicity might be observed in yeast and Huntington’s disease 
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(HD) patients involving upregulation of the kynurenine pathway 

metabolites. The mitochondrial kynurenine 3-monooxygenase is 

activated in HD patients and also in animal model of HD. 

Pharmacological inhibition of this may revise mutant Htt-mediated 

toxicity [27]. Later they published that a histone deacetylase (HDAC) 

inhibitor entirely blocks increases in kynurenine pathway metabolites in 

microglia of HD mice. This suggests that transcription of the kynurenine 

pathway is regulated by HDAC activity in mammalian cells [28]. So the 

yeast genom screening might serve as a rapid testing tool to explore the 

involvement of kynurenine pathway alterations in the development of 

AD. Use of these organisms has provided a possibility for the screening 

of drug libraries with the aim of the discovery of new compounds that 

block Aβ toxicity [29]. Paquet et al. have created the transgenic 

expression of the human tau-P301L protein in zebrafish neurons, in a 

design involving a Gal4-upstream activating sequence-based vector 

system [30]. The pathology of the disease, the specific 

hyperphosphorylation and the conformational changes in tau, can be 

better monitored than earlier. This is the first demonstration of in vivo 

cell death imaging. Additionally, neurons can be observed in their natural

environment, together with astroglia, oligodendrocytes and microglia 

[31]. Because of the rapid appearance of pathologic phenotypes, 

7



transgenic zebrafish larvae can be utilized not only to monitor and 

understand processes of diseases in vivo, but also to test and validate 

drugs on a large scale [30] (Table 1).

Mitochondrial impairment and neurodegeneration

The key cytoplasmic organelles, the mitochondria, are vital for the 

function and survival of neurons. These are the energy powerhouse of the

cells, because they provide energy from the aerobic metabolism.

Mitochondria are both important sources and targets of reactive oxygen 

species (ROS). Damaged mitochondria demonstrate an increased level of

generation of reactive oxidants, e.g. ROS. Healthy aging is associated 

with a decreased neuronal mitochondrial metabolism and recent studies 

suggested an altered glial mitochondrial metabolism [32]. High levels of 

ROS can induce mitochondria-impairing mechanisms, such as a 

mitochondrial permeability transition, and uncouple oxidative 

phosphorylation, leading eventually to cell death via apoptosis or 

necrosis. The mitochondrial damage can comprise a respiratory chain 

enzyme or mitochondrial DNA (mtDNA) impairment. Oxidative stress 

and damaged mtDNA in aging impair the ion homeostasis and 

mitochondrial energy metabolism in the neurons, thereby making them 

vulnerable to degeneration [33]. Dysfunctions of the mitochondrial 
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energy metabolism contribute to the generation of ROS, disturbed Ca2+ 

buffering and a reduced ATP metabolism [34].

In the AD brain, the significantly enhanced oxidative damage may cause 

a mitochondrial dysfunction and abnormal dynamics, leading to an 

energy deficit in AD neurons [35]. The oligomeric Aβ peptide plays a 

crucial role in the formation of the mitochondrial permeability transition 

pore [36], thereby contributing to the mitochondrial dysfunction in the 

AD brain [37], including impaired ATP production and increased levels 

of oxidative stress. Impaired axonal transport with the proximal 

accumulation of mitochondria can lead to the loss of distal synapses [38].

Altered calcium homeostasis has also been reported in AD, related to Aβ 

production, presenilin mutations and tau phosphorylation [39-40].

The role of excitotoxins in neurodegeneration

One of the major causes of the development of neurodegenerative 

processes is excitotoxicity, first described by Olney in 1969 [41]. During 

this pathological phenomenon, neurons are damaged or killed by the 

overactivation of receptors of excitatory neurotransmitters, such as N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)/kainate receptors. Classical 

excitotoxicity involves three connected steps of a cascade mechanism 
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that occur in parallel: a Na+ influx, a Ca2+ influx and the exocytosis of 

glutamic acid, leading to persistent depolarization of the neurons. 

Glutamate is the major excitatory neurotransmitter in the mammalian 

CNS, and the principal example of an excitotoxin in the brain [42]. The 

abnormal function of glutamate receptors may result in an enhanced 

release of glutamate. The changes in glutamate uptake may elevate the 

extracellular concentration of glutamate accompanying the excitotoxic 

process [43]. Excitotoxicity can occur in consequence of endogenous 

excitotoxins. These substances, which can act on the receptors of cerebral

excitatory amino acids, may also play important roles in the pathogenesis

of certain brain disorders, e.g. AD, Parkinson’s disease, HD, amyotrophic

lateral sclerosis, stroke, multiple sclerosis (MS), epilepsy and migraine 

[44-45]. The activation of excitatory amino acid receptors results in the 

selective neuronal death characteristic of these diseases [46-48]. In the 

pathogenesis of AD, glutamate excitotoxicity plays a key role. Neurons 

exposed to Aβ demonstrate increased vulnerability to this phenomenon. 

Overstimulation of ion-channel glutamate receptors may result in 

oxidative events and these receptors are up-regulated following Aβ 

exposure. The glutamatergic tone and Aβ may act synergistically [49]. 

Some studies suggest that in specific brain areas glutamatergic signaling 

is compromised by Aβ-induced modulation of synaptic glutamate 
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receptors, resulting in an early cognitive deficit [50]. A Ca2+ overload can

raise the level of kinase activation, with the formation of neurofibrillary 

tangles [51].

Drugs that block NMDA or other glutamate receptors, and also 

compounds that decrease glutamate release, attenuate some of the 

pathological symptoms in experimental models of acute and chronic 

neurodegenerative diseases [52]. As NMDA receptor antagonists, the 

glycine and polyamine site agents, NR2B subunit specific antagonists 

and ion channel blockers may come into consideration as they have 

acceptable side-effects [53]. Thus, the glycine site agent kynurenic acid 

(KYNA) might appear to be a good candidate, but from a 

pharmacological aspect, it has several disadvantages, mainly as regards 

the route of its administration, its elimination half-life and its penetration 

through the blood-brain barrier. In recent years, therefore, several new 

KYNA analogs or prodrugs have been designed in attempts to get round 

these disadvantages [54]. One of the most important groups of these 

compounds comprises the KYNA amides [55], which may selectively 

inhibit the NR2B subunit of NMDA receptors [56].
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Summary of currently available therapies in Alzheimer’s disease

Cholinesterase inhibitors can moderate AD. Through impeding of the 

action of acetylcholinesterase (AChE) with AChE inhibitors (AChEIs), 

the action of ACh and its interaction with cholinergic receptors and K+ 

channels can be prolonged. AChEIs such as donepezil, rivastigmine and 

galantamine have moderate beneficial effects on memory and cognition 

[57]. In vitro studies have revealed that donepezil possesses a 

neuroprotective effect through decreasing glutamate excitotoxicity, 

reducing Aβ toxicity and increasing the survival of cells. In contrast, 

donepezil and rivastigmine offer only a symptomatic effect without 

neuroprotection [58-59]. 

An AChEI of natural origin, galantamine, provides protection for neurons

and reduces cell death. Galantamine can increase dopaminergic 

neurotransmission in the hippocampus of mice [60]. In the human brain, 

galantamine either prevents or improves the decline of cognition and 

daily activities [61].

As compared with donepezil and galantamine, rivastigmine is more 

effective because it can inhibit both AChE and butyrylcholinesterase. It 

can reduce the cortical atrophy and slow the rate of decline for as long as 

5 years [62-63].
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Memantine is an NMDA receptor antagonist [64] which inhibits the 

influx of Ca2+, thereby reducing cell damage and resulting in moderate 

improvements in behavior and cognition [65]. This is the only well-

tolerated and safe drug in clinical use for AD that targets the 

glutamatergic system. There are reports that memantine can inhibit the 

abnormal phosphorylation of tau [66-67]. A comparative study has 

indicated that neither donepezil nor memantine furnishes a significant 

improvement in mild AD [68].

The kynurenine pathway and its alterations in Alzheimer’s disease

L-Kynurenine (L-KYN) is one of the major intermediates of the 

tryptophan metabolism, in which L-tryptophan is transformed into 

nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine 

dinucleotide phosphate, these two co-enzymes being essential for cellular

mechanisms [54; 69-70] (Figure 1). L-KYN, the central compound of the

kynurenine pathway, can be metabolized in two distinct pathways, to 

KYNA or to 3-hydroxy-L-kynurenine (3-OH-L-KYN) and quinolinic 

acid (QUIN). Under both physiological and pathological conditions, 

these neuroactive kynurenines play pivotal roles [71] (Table 2).

60% of the mammalian brain L-KYN content is taken up from the blood 

by a neutral amino acid carrier, and the remaining 40% is produced 
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locally in the brain [72]. The rate of cerebral L-KYN production has been

reported to be 0.29 nmol/g/h [73]. Its key role is to serve as a precursor of

neuroprotective KYNA and the neurotoxic 3-OH-L-KYN (Figure 2). The

level of L-KYN in the cerebrospinal fluid (CSF) does not change in AD. 

L-KYN is transformed to KYNA by irreversible transamination on the 

action of kynurenine aminotransferases (KATs). In high, 

nonphysiological concentrations, KYNA has proved to be a broad-

spectrum endogenous antagonist of ionotropic excitatory amino acid 

receptors [74]. It exhibits a high affinity for the glycine-binding site of 

the NMDA receptor, blocking its activity in low micromolar 

concentrations [75] and it is additionally a weak antagonist of the 

AMPA/kainate receptors [76]. It has recently been demonstrated that 

KYNA in nanomolar concentrations displays a neuromodulatory effect, 

whereas in micromolar concentrations, above the physiological range, it 

inhibits the neuronal activity [77-78]. Moreover, KYNA 

noncompetitively blocks the α7-nicotinic acetylcholine (α7-nACh) 

receptors and can increase the expression of non-α7-nACh receptors [79-

80]. It has been concluded that cross-talk occurs between KYNA and the 

cholinergic system, a situation which has been presumed to play a role in 

the pathogenesis of numerous brain impairments [81]. In view of its 

pharmacological activity, it seems to possess a neuroprotective potential, 
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but in very high concentrations it can exert adverse effects, as 

exemplified by the intracerebroventricular injection of KYNA into rats, 

which results in reduced exploratory activity, ataxia, stereotypy, sleeping 

and respiratory depression [82]. Under physiological conditions, 

elevation in KYNA concentration can result in cognitive impairment [83-

84]. However, under pathological conditions, the situation can be 

different. Due to glutamate excitotoxicity, a receptor overactivation 

occurs, where anti-glutamatergic agents can help in setting up again the 

basal level of activation, promoting a memory regain in cognitive 

impairment.

QUIN participates in the kynurenine pathway, leading to the synthesis of 

the essential co-enzyme NAD+. It is present in nanomolar concentrations 

in the brain and exerts pronounced effects on the NMDA-sensitive 

subpopulation of glutamate receptors [85]. It is a weak, but specific 

competitive agonist of the NR2A and NR2B NMDA receptor subtypes 

[86-87]. When the level of QUIN in the brain becomes elevated, it 

exhibits an excitatory effect at the NMDA receptors. It can provoke lipid 

peroxidation [88], produce toxic free radicals [89] and induce astrocytes 

to generate various chemokines, such as IFN-γ, IL-1β and TNF-α [90-

92]. Interesting results are manifested by AD patients as concerns the 

immunoreactivity of QUIN and one of the first tryptophan metabolism 
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enzymes, indoleamine-2,3-dioxygenase-1 (IDO-1). High expressions of 

QUIN and IDO-1 have been observed in the human hippocampus and 

neocortex and in senile plaques [93]. In the hippocampus of the AD 

brain, which is one of the most vulnerable regions in AD, both IDO-1 

expression and QUIN accumulation have been detected in the cortical 

microglia, astrocytes and neurons [93]. IDO is induced in various types 

of inflammation, and complex and multiple inflammation occurs in AD 

progression [94]. The observed up-regulation of IDO and the 

accumulation of QUIN are thus considered to be feasible. It has been 

shown that a soluble oligomer of Aβ peptide activates the microglia in 

vitro, while inducing QUIN production and IDO expression in the cells 

[95]. Stone et al. reported that free radicals may be involved in the 

neurotoxic effects of QUIN and considered the possibility that QUIN 

may play a role in AD [96].

3-OH-L-KYN may also cause neuronal death because it generates ROS 

[97]. Bonda et al. used immunocytochemical methods to demonstrate the 

roles of some intermediates of the kynurenine pathway in the 

pathogenesis of AD. They observed that 3-OH-L-KYN and its cleaved 

product 3-hydroxyanthranilic acid (3-HAA) significantly damage the 

neuronal tissues and presumably participate in neurodegeneration 

through glial activation, consequent Aβ activation and upregulation of 
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the kynurenine pathway. Elevated levels of 3-OH-L-KYN and the rate-

limiting enzyme IDO-1 were observed; this latter was shown to be 

specifically localized in conjunction with neurofibrillary tangles, and the 

association of IDO-1 with senile plaques was confirmed [98].

Pharmacological manipulation of the kynurenine pathway with a 

view to the treatment of Alzheimer’s disease

Abnormalities of the kynurenine pathway clearly play a crucial role in 

the neurodegeneration involved in various neurological and psychiatric 

disorders [71]. Subsequent to the availability of novel pharmacological 

agents, a number of interesting features of L-KYN biology have recently 

been discovered [54]. In another animal model, L-KYN combined with 

probenecid rescued the Schaffer collateral-CA1 synapses from impaired 

long-term potentiation induction after transient global ischemia [99].

One of the most important treatment possibilities is the modulation of 

kynurenergic compounds because this can furnish one of the greatest 

biochemical armaments [100]. Effective inhibitors of mammalian 

kynurenine 3-hydroxylase, 4-chloro-3-hydroxyanthranilic acid (4-Cl-3-

HAA) oxygenase and IDO have been available for years. The targeting 

of other pathway enzymes has lagged behind. Most of the original 

enzyme inhibitors were simple derivatives or structural analogs of the 
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naturally occurring substrates, e.g. for 3-HANA oxygenase and 1-

methyltryptophan (for IDO).

With regard to the pharmacological features of the kynurenines, an 

elevated level of KYNA in the CNS seems to be a potential therapeutic 

possibility. Fortunately, KYNA behaves as an endogenous 

neuroprotective agent and can prevent neuronal loss following 

excitotoxic, infectious or ischemia-induced neuronal injuries [101-103].

5,7-Dichlorokynurenic acid and 7-chlorokynurenic acid (7-Cl-KYNA) 

are well-known KYNA analog NMDA glycine site antagonists [104]. 

5,7-Dichlorokynurenic acid did not reverse the phosphatase inhibitor 

okaidic acid-induced AD-type abnormal hyperphosphorylation of tau in 

hippocampal organotypic cultures [105]. The in situ production of 7-Cl-

KYNA can be achieved through use of the blood-brain penetrable pro-

drug 4-chlorokynurenine (4-Cl-KYN), which is preferentially 

metabolized in brain areas where neurodegeneration takes place, 

allowing administration of a lower dosage of the drug [106]. The 

systemic administration of 4-Cl-KYN did prevent quinolinate-induced 

neurotoxicity in the hippocampus of the rat [107]. Further, 4-Cl-KYN 

can be transformed into 4-Cl-3-HAA, a potent, selective inhibitor of 3-

HAA oxygenase [108], and thus it can inhibit QUIN synthesis too, 

besides blocking the NMDA receptors. Hence, modification of the 
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kynurenine pathway through pharmacological inhibition of the enzymes 

of QUIN synthesis is a rational approach via which to divert the 

kynurenine metabolism toward the neuroprotective KYNA [109].

Novel chemical structures have been identified by further rational design 

or by screening chemical libraries (e.g. the discovery of N-(4-

phenylthiazol-2-yl)benzenesulfonamides as potent kynurenine 3-

hydroxylase inhibitors) [110]. Potent and specific kynureninase blockers 

which preferentially inhibit the mammalian enzyme were recently 

synthesized [111-112]. These enzyme inhibitors have so far not been 

examined in vivo, but can be expected to play a crucial part in the 

dynamics of the kynurenine pathway metabolism [54].

Conclusion

The search for effective treatments for neurodegenerative disorders 

[113], especially for AD, is currently one of the most important topics of 

research relating to healthcare. Drug screening can be carried out through

the use of different animal models and new biochemical targets. 

Following reassuring preclinical results, the design of clinical studies 

might be considered. The pharmacological manipulation of the 

kynurenine pathway, either using analogs of the pathway compounds or 

small molecule enzyme inhibitors would serve as promiseful therapeutic 
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approaches. However, the synthetic compounds should match several 

criteria. For example, prolonged absorption into the circulation, increased

plasma half-life, better penetration through the blood-brain barrier and 

rather selective pharmacodynamic actions should be aimed at. 

Furthermore, the designed compounds should have as few side-effects as 

possible at the protective dose. In relation to AD, none of the drugs, 

targeting the kynurenine pathway, has ever been tested in clinical trials. 

Although there are numerous reassuring preclinical experiments, it is 

hard to set up well-designed clinical trials for several reasons. Firstly, it 

would be hard to carry out the testing of kynurenine pathway targeting 

compounds, especially the KYNA analogues, in normal subjects, because

under normal conditions, these may induce cognitive dysfunction. 

Secondly, it would be to risky to test these compounds alone in patients 

with AD, lacking the currently used therapeutic agents. However, the set 

up of well-designed treatment regimes, using promising kynurenine 

pathway targeting compounds as a part of combination therapies with 

currently available therapeutic agents in AD may exert additional 

beneficial effects in that devastating disease. Hopefully, drugs targeting 

the kynurenine pathway would serve as an alternate choice amongst anti-

glutamatergic agents in addition to the currently available memantine in 

the future treatment of AD.
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Figure 1.

A schematic outline of the kynurenine pathway  

The kynurenine pathway is involved in the metabolism of tryptophan, in 

which L-tryptophan is transformed into NAD+ and neuroactive 

intermediates, such as KYNA and QUIN.

Figure 2.

The role of kynurenine pathway in the neuronal function 

L-TRP: L-tryptophan; L-KYN: L-kynurenine; 3-OH-L-KYN: 3- 

hydroxy-L-kynurenine; KYNA: kynurenic acid; 3-HAA: 3-

hydroxyanthranilic acid; QUIN, quinolinic acid; NMDA-R: NMDA 

receptor; α7-nACh-R, α7 nicotinic acetylcholine receptor
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Disease  Model  Results  References

Alzheimer's disease

 transgenic AD mice, rats  
P2X7 receptor antagonist improves

recovery after spinal cord injury
 [20]

3xTgAD mice preserved learning and memory [21-22]

human presenilin-1 mutant C.
elegans

relationship between presenilins and
Notch signalling

[23]   

human Aβ expression in tg C.
elegans

in vivo investigation of factors that
modulate amyloid formation

[24]   

Drosophila model of AD reduction of Aβ aggregation [25]   

Aβ in yeast fibrillar Aβ has low toxicity [26]   

 
human tau-P301L protein in

zebrafish 
 

hyperphosphorylation can be
monitored well

 [30]   

Table 1. Some in vivo models of Alzheimer’s disease

AD: Alzheimer’s disease; Aβ: amyloid-beta; C. elegans: Caenorhabditis elegans
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Metabolite Level Function Dysfunction Reference

L-KYN Normal precursor of 
KYNA and 3-OH-
L-KYN

[73-74]

KYNA High

Low

it has proved to be 
a broad spectrum 
endogenous 
antagonist of 
ionotropic EAARs

it has 
neuromodulatory 
effect;
non-competitively 
blocks the α7-
nACh receptors 
and increases the 
expression of it

it inhibits 
physiological 
neuronal activity

[74]
[77-78]

[77]
[79-81]

QUIN Normal

high

It is a specific 
agonist of NMDA 
receptor subtypes

it can provoke 
lipid peroxidation, 
produce toxic free 
radicals and induce
astrocytes to 

[86-87]

[88-92]
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generate 
chemokines

3-OH-L-KYN Normal

high

causes neuronal 
death

damages neuronal 
tissues, 
participates in 
neurodegeneration 
through glial 
activation and Aβ 
activation

[97]

[98]

Table 2.
Biochemical implications of kynurenine metabolites in neuronal function
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