
BARCODE DETECTION WITH MORPHOLOGICAL
OPERATIONS AND CLUSTERING

Péter Bodnár
Department of Image Processing

and Computer Graphics
University of Szeged

Árpád tér 2., Szeged, H-6720 Hungary
email: bodnaar@inf.u-szeged.hu

László G. Nyúl
Department of Image Processing

and Computer Graphics
University of Szeged

Árpád tér 2., Szeged, H-6720 Hungary
email: nyul@inf.u-szeged.hu

Codabar Code 11 Code 128 Code 39

Plessey EAN-13 UPC UPC-A

Figure 1: Barcode patterns

ABSTRACT
Barcode detection has many applications and detec-
tion methods. Each application has its own require-
ments for speed and detection accuracy. Fine-tuning,
upgrading or combining existing methods gives fast
and robust solutions for detection. Modern computer
vision techniques help the whole process to be fully
automated. Different detection approaches are exam-
ined in this paper, and new methods are introduced.

KEY WORDS
barcode detection, computer vision, clustering, feature
extraction

1 Introduction

Barcodes are 1D codes that consist of a well-defined
group of parallel lines aiming easy automatic identifi-
cation of carried data with endpoint devices such as
PoS terminals, smartphones, or computers. Barcode
decoding is fast and most barcode standards provide
redundant information for error correction purposes.
2D codes are also referred to as barcodes, but in this
paper we restrict ourselves only to codes like those
showed in Fig. 1.

Barcode detection methods have two main objec-
tives, speed and accuracy. On smartphones, fast de-
tection of barcodes is desireable, but accuracy is not so
critical since the user can easily reposition the camera
and repeat the “scan”. Accuracy, however, is critical

for industrial applications (e.g. postal services), where
false negatives cause loss of profit. Speed is also a sec-
ondary desired property in these applications.

The basic approach for barcode detection is scan-
ning only one, or just a couple of lines of the whole im-
age. This method is common at hand-held PoS laser
scanners or smartphone applications. Scanned lines
form an 1D intensity profile, and barcode-detector al-
gorithms [1, 2] work on these profiles to find an ideal
binary function that represents the original encoded
data. The advantage of this technique is time effi-
ciency and low hardware requirements. In most cases,
only a subset of image pixels are read, and a small
buffer capable of storing a few image lines is sufficient.
However, that approach often requires multiple scans
of the same scenario due to the lower accuracy.

Another approach is to extract texture-like prop-
erties and detect properties that refer to barcode-like
appearance. These methods use clustering and mor-
phological operations [3]. In this paper we experi-
ment with the latter class of techniques with differ-
ent parameters and also in combination with other
approaches.

2 The proposed barcode detection
methods

In this section we introduce two new methods, both
approaches are based on texture analysis, one globally
while the other both locally and globally. They are
compared with standard feature detection.

2.1 Preprocessing

The digital image acquired from the camera often
needs preprocessing because of device flaws or envi-
ronmental difficulties. On images having low contrast,
intensity levels should be normalized. We also use un-
sharp masking, which is the weighted addition of the
original image pixel intensities to the negated pixel val-
ues of the gaussian-blurred version of the image. The
blurring gaussian filter is adjusted to not to destroy

the narrowest line of the barcode. Since one of the
proposed methods works on binary images, threshold-
ing is necessary. A simple threshold is sufficient on
images with even lighting, otherwise adaptive thresh-
olding [4] is required.

Image resolution does not have to be high. Bar-
codes having the narrowest line of two pixels is suffi-
cient and 3×3 px median filters can be applied to elim-
inate salt-and-pepper noise. Higher resolution pro-
duces better results, but also increases computation
time. The least time-consuming solution for downsam-
pling such images is the nearest neighbour interpola-
tion, which is also a good choice because it preserves
hard edges, that constitute a desired pattern of a bar-
code. Since the test suite contains synthetic images
with barcodes having 2 pixels as the narrowest line,
downsampling was not necessary. In our real-life ex-
amples, every code has at least 2 px to 4 px minimum
line width. Images with larger barcode resolution were
downsampled before rendering them to abstract back-
ground images.

2.2 The Canny + Hough method

This method is not considered as a specific barcode de-
tection method, it is presented here as a generic refer-
ence. It only applies general image processing methods
like Canny [5] edge detection and Probabilistic Hough
transform [6], as barcodes consist of roughly equally
long, parallel lines in a small area. It gives a proba-
bilistic estimation for detecting straight lines with the
help of a subset of the edge points of the original image,
outperforming the standard Hough [7] transform. For
preprocessing, we use a blur filter since smooth images
are desired for Canny edge detector. Since all barcodes
in the test suite have at least 64 px bar height, we set
the minimum line length to 50 in the Hough transfor-
mation.

After we obtain a list of lines with their center
point, length, and orientation, we can cluster them
to decide wheather they constitue a barcode or not.
We define the minimum number of lines, the prox-
imity needed for the lines to be in the same cluster,
and the tolerance for length and orientation from the
means inside the cluster. Since our barcodes consist
of at least 25 parallel lines, we defined the minimum
number of lines as 20. In the final step, cluster cen-
ters are returned, and the image can be cropped for
decoding with known barcode decoding implementa-
tions (Fig. 2).

2.3 MIN–MAX operations

This method treats the image as a whole, and there-
fore requires a fair amount of RAM and computa-
tion time. Supposed that intensity levels have been
normalized before, no other preprocessing operations

(a) original image (b) feature image (c) overlay

Figure 2: Canny edge detector with Probabilistic
Hough transform. In (b), detected lines that are part
of a barcode-like cluster are shown in red while the
other detected lines are shown in blue

are required since this method manages well noisy,
blurry or distorted images. Knowing the maximum
bar width of a barcode, we apply the morphologic gra-
dient (dilate()−erode()) operator on the image with
a box kernel of size 2 × bmax barwidth/2c + 1. The
next step is removing ghost elements (see Fig. 3b)
from the feature image with a binary threshold. A
good threshold can be at 75 % of the full intensity
scale (e.g. 192 for 8-bit grayscale images), since bar-
codes produce areas close to the maximum intensity.
After that, we apply morphologic opening operation
(dilate(erode())) on the feature image, with the
previously defined kernel for closing the small gaps
caused by scratches, reflections or other flaws of the
original image.

At this stage we already have a feature image
showing the barcode-like areas with white, the last
thing we have to do is to compute the exact area
of these areas, and their momentum. Experiments
showed that setting the minimum area to be classi-
fied as barcode to w× h× 0.75 or lower is satisfactory
(where w and h are barcode width and height respec-
tively).

2.4 Local clustering

This method came from examining the behaviour of
textures. Texture parts have similar local statistics in
their neighbourhood, so dividing the image to square
tiles and examining each tile locally and also globally
makes the base of the algorithm. We obtained the
appropriate size for tiles by experimenting. The local
statistics of each tile is examined and then every tile
makes one value of a global feature matrix that shows
us possible barcode areas.

The main idea of Local clustering is that an im-
age region that contains a barcode segment has many
similar stretched pixel clusters (Fig. 4). The mini-
mum count of expected clusters can be derived from
the widest bar of the barcode. Degree of stretch can
be measured with the diameter of the cluster (defined
as twice the distance of the furthest cluster point from
the cluster center). With exactly horizontal or verti-

(a) original image (b) morph. gradient (c) binary threshold (d) opening (e) contour detection (f) overlay

Figure 3: Stages of MIN–MAX method

cal lines, the largest cluster diameter is the tile size, in
oblique situations, the largest cluster diameter is ex-
pected to be longer than that. Furthermore, stretched
separate clusters need to be aligned approximately
identically, otherwise one cluster would touch another,
decreasing the number of separate clusters in a tile be-
low our threshold. For preprocessing, we use median
filter first that eliminates salt-and-pepper noise. On
real-life images having low contrast at barcode areas,
adaptive thresholding is necessary.

Figure 4: The idea of Local clustering. Here d is the
maximum distance from the cluster center, i.e. the
half of the cluster diameter

Another important property is the minimum clus-
ter size in pixels. This can be easily computed from
min barwidth× tile size.

After evaluating all tiles locally, we look for clus-
ters in the feature matrix. This matrix has compact
areas with high values where barcodes can be found
in the image (Fig. 5). In our algorithm we applied
a threshold for values to classify whether or not an
area contains barcode segment. Tests showed that a
choice of 0.5 or above for this parameter is satisfactory.
Defining the threshold above this value decreases de-
tection accuracy, while setting below 0.5 increases false
positive rate significantly.

This binarized feature matrix can be clustered via
connected component labeling [8]. Finally, small com-
ponents are dropped, and momentums of the remain-
ing clusters are returned. Clusters are considered small
when they contain less than N tiles (Eq. (1)), where s
is the tile size (which is 1/3 of the code height in our
examples). Bounding boxes in our examples are not
enclosing the whole barcode in every case. This is be-
cause we only calculated the lower and upper bounds

Figure 6: Detection accuracy with respect to the tile
size. X-axis: proportion of tile size and barcode height;
Y-axis: detection accuracy (both expressed in per-
cent).

for the clusters in the feature matrix, and barcode cor-
ner pieces are too weak for the feature. The bounding
boxes can be simply improved by finding aligned rect-
angles instead.

N = max

(
2,
|h− s| × |w − s|

s2

)
(1)

Since the smallest barcode in our set has a 60 px
height, 30×30 px or greater tile sizes have poor recog-
nition capability. However, very small tile sizes also
lead to greater error for computing the center of the
codes, because of the characters appearing below the
code with code pieces nearby also have a barcode-like
property (plain text is not affected). Also, choosing
the tile size below two times the width of the widest
barcode line leads to poor accuracy, since only two
clusters can be detected on the tile, and that does not
characterize a barcode part well. The best tiling size
appears to be about 1/3 of the barcode height (Fig. 6).
Since all examined codes consist of the same pattern
(parallel lines), we looked for the optimal tile size for
all types of codes together.

Running the method on the same scenario with
different offsets yield different detection accuracy
(Fig. 8c), which shows that this approach is sensitive
to the choice of tiling. Further investigations are un-
derway as to how select the best tiling offset, as well as
possible setups with overlapping tiles (which obviously
increases computational requirements). This 2-phase
approach works as follows. In the 1st phase, Local
clustering is performed with zero-offset tiling, and in a
2nd phase the same is done using an offset of half the

(a) original image (b) feature matrix visualized as gray values.
Red squares are above threshold.

(c) code center and bounding box

Figure 5: Stages of Local clustering

tile size in both directions. The code centers detected
by the 2 phases are pooled together with an extra fil-
tering wherein those code centers that are detected in
both phases and are close to each other are merged
into one (the larger cluster is kept), because they are
likely to correspond to the same code.

3 Evaluation

The discussed methods were tested on a fair amount
of images of different types of barcodes (Fig. 1), both
synthetic and real.

3.1 Test Suite

We generated barcodes digitally with the types shown
in Fig. 1. Pixel dimensions on Table 1, are measured
without the numeric representation of encoded data.
Every barcode has a minimum bar width of 2 px. Only
one base image has been chosen for each code type, and
it was sufficient because the chosen encoded data (as
many numeric and alphanumeric characters as possi-
ble) represented well the various bar configurations.

We generated every combination on the base im-
age set of the following properties: rotation in every
15◦ from 0◦ to 180◦, Gaussian blur filter with 5 × 5
kernel with 5 different σ (and without smoothing), ad-
ditive noise from 0% to 50% with a step of 5%. Test
set contained 8 different barcodes with 12 orientations,
6 different blur filters and 11 different rates of additive
noise, with a total of 6336 images.

For more realistic examples, we googled up im-
ages of barcodes that had no distortion, good con-
trast and minor or no reflections. We also googled up
abstract wallpapers and made 500 randomly cropped
grayscale images from them. We embedded the
cropped barcodes within the background images us-

ing randomly selected rotations from the 0–30◦ angu-
lar range around X, Y and Z axes, allowing for affine
distortions.

Another 100 images containing barcodes were col-
lected from real-life examples without any modifica-
tions to the images. Minor reflections, blur, scratches
and distortions were present in these images. This set
serves qualitative purposes only, and due to having low
amount of images compared to the synthetic set, we
do not manage it separately for test results.

3.2 Implementation and test environment

We implemented the method in C++, with the help
of the OpenCV library. C++ provides convenient OOP
approach and fast code execution, while OpenCV has
all the functions needed for image preprocessing and
manipulation. Most operations were made by built-in
functions, like finding the contours of a point set, mea-
suring the area of a polygon and each morphological
operations. Evaluation is performed on a computer
with Intel(R) Core(TM)2 Duo 3.00GHz CPU.

3.3 Accuracy and detection speed

The Canny + Hough method is slow and resource-
demanding, and only used here as a reference for com-
parison with other faster, more barcode-oriented de-
tection methods. However, despite the slow speed, it
is highly effective for finding barcode lines.

The MIN–MAX method is very tolerant to blur
and noise. Stronger blur can be compensated with
adding noise (Fig. 7a), as MIN–MAX produces more
compact feature areas. This method is accurate, but
convolutions are more time-consuming than simpler
methods, like scanline analysis, and also requires more
memory. For fine-tuning the parameters, we ran ex-
periments with different kernel sizes for morphologic

operations and different thresholds for area of accepted
clusters (Fig. 7b).

Regarding efficiency, the MIN–MAX method
takes approximately 420 ms per test image
(512×512 px), while the Local clustering approach
analyzes one image under 40 ms, and an additional
15-20 ms is required for unsharp masking. 2-phase
local clustering takes about 100 ms, including unsharp
masking.

Local clustering needs to read every pixel of an
image, and calculate cluster centers and distances,
which takes a fair amount of computation time, but is
still considered a good compromise between runtime
and efficiency. Local clustering is far more sensitive
to noise and blur than MIN–MAX (Fig. 8a), because
clusters on local tiles are easily separated by noise, or
unified by heavy blur. Applying unsharp masking in-
creases detection accuracy significantly (Fig. 8b). Fur-
thermore, repeating the procedure with a tiling using
a different origin, can change the accuracy, because
flaws on image are less interfering at the edge than
the center of a tile (Fig. 8c), thus careful choice of the
tile size as well as the tiling origin is required for a
robust setup.

Both MIN–MAX and Local clustering are toler-
ant to distorsions, like twist and ripples. MIN–MAX
examines the image globally for texture-like behaviour
ignoring distorsions, and Local clustering also per-
forms well because local features bearly change this
way. Both methods are tolerant to flaws on the bar-
code like text, as long as font weight is comparable to
line width of the barcode. Greater amount of damage
on the barcodes (e.g. wide brush strokes) breaks the
Local clustering method first (Fig. 9) while the MIN–
MAX method seems to give reasonable detection even
under such distortion.

At 2-phase approach, selecting the best tiling ori-
gin for each particular image via exhaustive search
would extremely slow down the method. However, by
just two runs, on the expense of roughly doubling com-
putation time, approximatly 10% accuracy improve-
ment can be reached (Fig. 8c).

Test results (Table 1) show that detection statis-
tics varies for different code types. These accuracy
bounds depend on width-to-height ratio of the codes,
besides the amount of noise and blur. For accuracy
formula, Jaccard index can be used on the pixels of
the original and detected bounding boxes (Eq. 2)

Ts(O,D) =

∑
x,y(O(x, y) ∧ (D(x, y))∑
x,y(O(x, y) ∨ (D(x, y))

(2)

where O and D are binary functions giving 1 on the
inside of the original and detected bounding boxes re-
spectively.

4 Concluding remarks

We have presented two novel approaches for detect-
ing barcode regions using texture analysis, and stud-
ied their behavior on a set of images showing various
barcodes. These methods are highly efficient and for
certain types of codes also show high accuracy. We are
also studying efficient barcode detectors using scanline
analysis, as well as machine learning techniques. We
expect that an ensemble of detectors specially deviced
for certain code types can significantly improve the
overall accuracy. In industrial setups parallel execu-
tion may be possible and then the ensemble efficiency
remains comparable to that of a single detector.

References

[1] Timothy R. Tuinstra. Reading Barcodes from Dig-
ital Imagery. PhD thesis, Cedarville University,
2006.

[2] Eugene Joseph and Theo Pavlidis. Bar code wave-
form recognition using peak locations. Pattern
Analysis and Machine Intelligence, IEEE Trans-
actions on, 16(6):630–640, jun 1994.

[3] Daw-Tung Lin, Min-Chueh Lin, and Kai-Yung
Huang. Real-time automatic recognition of om-
nidirectional multiple barcodes and dsp implemen-
tation. Machine Vision and Applications, 22:409–
419, 2011. 10.1007/s00138-010-0299-3.

[4] Sue Wu and Adnan Amin. Automatic thresholding
of gray-level using multistage approach. In Docu-
ment Analysis and Recognition, 2003. Proceedings.
Seventh International Conference on, pages 493–
497 vol.1, aug. 2003.

[5] John Canny. A computational approach to edge
detection. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, PAMI-8(6):679–698,
nov. 1986.

[6] Nahum Kiryati, Yuval Eldar, and Alfred M. Bruck-
stein. A probabilistic hough transform. Pattern
Recognition, 24(4):303–316, 1991.

[7] Sherin M. Youssef and Rana M. Salem. Automated
barcode recognition for smart identification and in-
spection automation. Expert Systems with Appli-
cations, 33(4):968–977, 2007.

[8] Michael B. Dillencourt, Hannan Samet, and
Markku Tamminen. A general approach to
connected-component labeling for arbitrary image
representations. J. ACM, 39:253–280, April 1992.

 0
 1

 2
 3

 4
 5 0

 10

 20

 30

 40

 50

 88

 90

 92

 94

 96

 98

 100

blur

noise

 88

 90

 92

 94

 96

 98

 100

(a) accuracy with respect to noise and blur

 0
 2

 4
 6

 8
 10

 12

 20
 30

 40
 50

 60
 70

 80
 90

 0

 20

 40

 60

 80

 100

kernel size
area

 0

 20

 40

 60

 80

 100

(b) accuracy with respect to kernel size and
area threshold

Figure 7: Detection accuracy of MIN–MAX

 0

 1

 2

 3

 4

 5

 0
 10

 20
 30

 40
 50

 0

 20

 40

 60

 80

 100

blur

noise

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(a) without preprocessing

 0

 1

 2

 3

 4

 5

 0
 10

 20
 30

 40
 50

 0

 20

 40

 60

 80

 100

blur

noise

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) with unsharp masking

 0

 1

 2

 3

 4

 5

 0
 10

 20
 30

 40
 50

 0

 20

 40

 60

 80

 100

blur

noise

 50

 60

 70

 80

 90

 100

(c) 2-phase local clustering

Figure 8: Detection accuracy of Local clustering

Table 1: Accuracy of MIN–MAX and Local clustering without and with unsharp masking (mean ± sd, expressed in
percent)

Type Size
Canny +

MIN–MAX
Local clustering

Hough without with 2-phase +
transform. u. masking u. masking u. masking

Codabar 188 × 100 96.7 ± 17.1 95.6 ± 19.7 29.7 ± 45.7 65.2 ± 47.7 72.0 ± 45.0
Code 11 176 × 64 98.7 ± 11.7 100.0 ± 0.0 69.4 ± 46.1 97.6 ± 15.3 99.6 ± 6.1
Code 128 180 × 150 97.2 ± 16.4 100.0 ± 0.0 44.6 ± 49.7 96.0 ± 19.7 99.7 ± 5.0
Code 39 332 × 100 60.7 ± 48.8 100.0 ± 0.0 29.0 ± 45.4 63.4 ± 48.2 78.8 ± 40.9
EAN-13 190 × 138 98.5 ± 12.2 100.0 ± 0.0 36.7 ± 48.2 69.7 ± 46.0 93.3 ± 25.0
Plessey 402 × 80 76.1 ± 42.2 94.7 ± 22.4 25.0 ± 43.3 58.8 ± 49.2 66.2 ± 47.3
UPC 187 × 96 99.7 ± 5.0 100.0 ± 0.0 56.0 ± 49.7 84.2 ± 36.5 92.6 ± 26.2
UPC-A 190 × 120 98.7 ± 11.1 100.0 ± 0.0 41.0 ± 49.2 75.5 ± 43.0 92.3 ± 26.7
All together 90.8 ± 20.6 98.8 ± 2.8 41.4 ± 49.3 76.3 ± 42.5 86.8 ± 33.9

Figure 9: Test examples for MIN–MAX and Local clustering. Each row corresponds to different distortions applied
to the original image. From top to bottom: twist, ripples, overlaid text, brush strokes. Images from left to right: test
image, contour from the MIN–MAX feature image, test image overlaid with the MIN–MAX contour, feature matrix
of Local clustering, test image with barcode center and bounding box detected by Local clustering. In the last row:
Local clustering was unable to find any barcodes, even with using smaller tiles (corner image).

