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ABSTRACT
We describe a new approach for the uncertainty problem
arising in the field of discrete tomography, when the low
number of projections does not hold enough information
for an accurate, and reliable reconstruction. In this case the
lack of information results in uncertain parts on the recon-
structed image which are not determined by the projections
and cannot be reliably reconstructed without additional in-
formation. We provide a method that can approximate this
local uncertainty of reconstructions, and show how each
pixel of the reconstructed image is determined by a set of
given projections. We also give experimental results for
validating our approach.
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1 Introduction

Transmission tomography[1, 2] is the reconstruction of ob-
jects from their projections. This is usually done by ex-
posing one side of the objects to some electromagnetic or
particle radiation, and measuring the loss of energy at the
other side. With this information one can derive the integ-
rals of the densities of the object on the paths of the beams
and gain information of the inner structure of object with-
out making severe damage.

In discrete tomography[3, 4] one also assumes that
the object to be reconstructed contains only few (say, 2-6)
types of materials, and in the special case calledbinary to-
mographywe only want to detect the presence or absence
of one single material at different parts. With this prior in-
formation, algorithms were constructed capable of recon-
structing objects from very few projections.

On the other hand, the reconstructions are usually af-
fected by several types of errors, which can degrade the ac-
curacy of the results. Such errors commonly come from a
stochastic noise in the measured data caused by the nature
of the projection acquisition processes, or the simplifica-
tions in the formulation of the reconstruction problem.

Also, in some applications of transmission tomogra-
phy it might be necessary to reduce the number of pro-
jections, because they can damage the objects of study, or

have a high cost. This lack of information can bring us to
the problem, where the reconstruction is not unique, and
several solutions are possible, some of which can be quite
dissimilar to the desired image of the object of interest.

Finally, if we have an adequate projection set, we can
still find ourselves against computational limitations, since
even in the binary case, the discrete reconstruction problem
is in general NP-hard if the number of projections is more
than two [5]. Efficient algorithms only exist for some spe-
cial classes of images (see, e.g., [6, 7]). This means that we
usually cannot hope to gain perfect reconstructions in rea-
sonable time, and most reconstruction algorithms are only
well-constructed heuristics, which approximate the solu-
tion.

Despite the problems mentioned above, our aim is to
get reconstructions as accurate as possible, and develop ro-
bust algorithms which can handle computational problems,
and the possible defects of the measured data sets.

In this paper, we give an approach for describing the
uncertainty of the reconstructions in discrete tomography,
and provide a method that can measure the information
content of the projections in the binary case. Our approach
is capable of approximating (on a grid based representa-
tion) the uncertainty of each pixel of the reconstructed im-
age separately. It measures how each part of the recon-
struction of the object is determined by the given projection
data, and provides a local reliability measure for the parts
of the reconstruction.

This measurement is unique in the literature, as to the
best of our knowledge related contributions only exist for
measuring the overall reliability of reconstructions. Forex-
ample, in [8] the authors gave an upper bound on the dif-
ference between the possible binary reconstructions of an
object, which provided a measure of the variability of re-
constructions from a given projection set. Our approach
takes one step further by approximating the reliability of
each part of the reconstruction, separately.

Such methods can be useful, e.g., in the non-
destructive testing of objects to sort out false results. For
example, if one uses discrete tomography for detecting
small fractures in industrial parts, small errors in the re-
construction can lead to false conclusions. In this case our
algorithm can be used together with the reconstructed im-
age, to check the reliability at specific parts of the recon-



struction.
The structure of the paper is the following. In Sec-

tion 2 we give a brief explanation of the reconstruction
problem, and its algebraic based formulation. In Section 3,
we explain in more detail the uncertainty problem arising
in the field of discrete tomography. In Section 4 we pro-
vide an algorithm, that – with the right parameter setting –
is capable of measuring uncertainty of the projection data.
In Section 5 we outline a test frame set that was used for
validating our method, and provide some results. Finally,
Section 6 is for the conclusion.

2 Algebraic Formulation of Discrete Tomog-
raphy

We present our results for the two-dimensional case of dis-
crete tomography, but the described methods can be ex-
tended to higher dimensions in a straightforward way.

In this paper, we will use the algebraic formulation of
discrete tomography, and assume that the object to be re-
constructed is represented on a two dimensional image of
sizen by n. Also, we will assume a parallel beam pro-
jection geometry with each projection value given by the
integral of the image on a straight line.

With these assumptions the discrete reconstruction
problem can be written in a form of a linear equation

Ax = b , x ∈ Ln2

, (1)

where

• x is the vector of alln2 unknown image pixels,

• m is the total number of projection lines used,

• b is the vector of allm measured projection values,

• A is a projection coefficient matrix, that describes the
projection geometry by allaij elements giving the
length of the line segment of thei-th projection line
through thej-th pixel,

• andL = {l0, l1, . . . , lc} is the set of the possible in-
tensities (assuming thatl0 < l1 < . . . < lc). In the
binary caseL = {0, 1}.

An illustration of the parallel beam geometry is given in
Figure 1.

With the above formulation, one can acquire a solu-
tion of the reconstruction problem by solving (1).

3 The Uncertainty Problem

In a mathematical sense, the algebraic formulation of dis-
crete tomography means that we have a search space with
n2 dimensions (as many dimensions as the number of pix-
els on the image to be reconstructed). In this search space
the equation systemAx = b determines anH hyperplane,
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Figure 1. Representation of the parallel beam geometry on
a discrete image.

which has
(

n2 −Rank(A)
)

dimensions. Also, the knowl-
edge, that we are looking for discrete solutions gives us a
finite set of possible discrete points ofD = Ln2

.

In the ideal case, the feasible reconstructions belong
to theH∩D intersection. These are the images that satisfy
the projections, and the discreteness criteria.

In many practical applications the situation is more
complicated. First of all, the models used for describing
the reconstruction problem and the projection acquisition
methods are not perfect yielding changes of the position of
theH hyperplane. In this case theH hyperplane of solu-
tion shift from its ideal position, and we can only get an
approximation of the ideal plane of real solutions. In ex-
treme cases, we can get an inconsistent equation system,
that has no solutions at all.

Taking many projections, on the other hand, as de-
scribed above, might also conflict with limitations, since
the projection acquisition can have a high cost, or unwanted
effects on the object of study. This will yield a really ex-
tensiveH hyperplane of solutions.

Nevertheless, in practical applications, there is an ac-
tual object of study we want to reconstruct, and all other re-
sults would be considered incorrect. This can leave us with
a problem, where we want to find a reconstruction from an
incomplete, and incorrect data set.

In this case it would be more fortunate to view the re-
construction problem in a probabilistic context, where each
discrete valued solutionsx ∈ Ln2

has a

P (x |A,b) (2)

probability of being the correct one. Naturally the closer an
x solution is to the hyperplane determined byAx = b (or
if the system of equations is inconsistent, then the more the
solution satisfy the projections), the higher its probability
should be.

With this, we can calculate for eachi-th pixel, the
probability of that pixel taking a specificv value in the cor-
rect solution. This is given by

P (xi = v |A,b) =
∑

y∈Ln2

yi=v

P (y |A,b) v ∈ L . (3)



Furthermore, we can compute the entropy of each pixel as

Hi(xi) =
c

∑

k=0

(−P (xi = lk |A,b) · log2(P (xi = lk |A,b))) .

(4)

This way we can measure the uncertainty of each pixel.
We should note that this value is based only on the param-
eters of the projections, and the information content of the
measured projection data. Pixels with high entropy values
are ambiguous, and one cannot hope to get a reliable re-
construction of them without additional information. The
projections simply do not hold enough data, to determine
these pixels.

For all the pixels, the values of (3) can be arranged
into coefficient probability maps that show the likelihood of
each pixel to belong to a specific intensity. Also, the values
of (4) together give anuncertainty map, that describes the
uncertainty of the areas of the reconstruction based on the
projection data. Thus we can get a picture of the informa-
tion reliability of the projection set and the reconstructions.

Unfortunately, even if we can describe the probabili-
ties belonging to the projection data, the exponential num-
ber of possible discrete solutions makes it hard to compute
this type of uncertainty measurement. In the next section
we describe a method for approximating this value in the
binary case, and with the aid of that to measure the infor-
mation content of the projection data.

4 Approximating Local Uncertainty in Bi-
nary Reconstructions

In [9], the authors proposed an algorithm for discrete to-
mography, that is capable of reconstructing images by min-
imizing an energy function. Here, we give a modified ver-
sion of that algorithm, that can approximate the pixel un-
certainties of binary reconstructions, by producing a ”least
binary” result.

4.1 Algorithm for Approximating Pixel Uncertainty

The algorithm is based on minimizing an energy function
of the form

E(x) =
1

2
‖Ax− b‖22 + µ · g(x) , (5)

whereA, b andx are as defined in Section 2,g(x) is a
function holding information of the discreteness of the re-
construction, andµ is the weight of the discreteness prior.

The first‖Ax−b‖22 term is responsible for the projec-
tion correctness. It takes its minimal values where the so-
lution best satisfies the projections. In the ideal case, these
solutions would be the points ofH defined in Section 3, but
in case of an inconsistent equation system, reconstructions
best fitting to the projections will give minimal‖Ax−b‖22
values.

In some similar energy minimization based recon-
struction methods [9, 10], theg(x) is a discretizing term
taking its minimal values in discrete points, thus propa-
gates discrete solutions. Here, we would rather call this
term a discreteness prior and emphasize, that it is not nec-
essary to propagate discrete solutions with it. In fact, with
the different choice ofg(x) one can reach different effects
on the result, and gain different kinds of information on the
reconstructions.

Algorithm 1 Energy-Minimization Algorithm for Discrete
Tomography
Input: A projection matrix;b expected projection values;
x0 initial solution; µ, σ ≥ 0 predefined constants;l0, lc
minimal, and maximal bounds on the possible pixel values.

1: λ ← an upper bound for the largest eigenvalue of the
(ATA) matrix.

2: k ← 0
3: repeat
4: v← AT (Axk − b).
5: for eachi ∈ {1, 2, . . . , n2} do

6: yk+1
i ← xk

i −
vi+µ·G0,σ(vi)·

∂g

∂xk
i

g(xk)

λ+µ

7: xk+1
i ←







l0, if yk+1
i < l0,

yk+1
i , if l0 ≤ yk+1

i ≤ lc,

lc, if lc < yk+1
i .

8: end for
9: k ← k + 1

10: until a stopping criterion is met.

The formal description of the optimization process is
given in Algorithm 1. The basic idea of the optimization
process is to distinguish between the priorities in the en-
ergy function. The core of the whole optimization process
is a simple gradient method with an automatic weighting
between the two terms. The algorithm starts from an arbi-
trarily defined starting point. Then, in each iteration step,
we set the weight of the discreteness term according to the
projection correctness.

Note, that in each iteration step the gradient of the
1
2‖Ax − b‖22 projection correctness term gives for each
pixel a measurement of how much that specific pixel should
be modified to get a correct reconstruction. These values
can also be understood as the backprojected error of the
projections of the current solution. If, for a pixel, this value
is close to0, then that specific pixel does not really take a
part in distorting the projections. On the other hand, if the
gradient on a pixel is big in absolute value, then the pixel
probably needs further adjustment to reach an acceptable
solution.

In Algorithm 1 this is used to steer the optimization
process. We apply aG0,θ(z) = exp( z

2

θ2 ) unnormalized
Gaussian function to the per-pixels backprojected errors,
and use the resulting values to weight the discretizing term
on each pixel. With this, if the a pixel value is considered to



be settled, then the discreteness prior gets a higher weight,
and thus it starts to steer the result to a desired point.

We should also note that the original reconstruction
algorithm described in [9] contained an additional smooth-
ness prior, that can be useful in the reconstruction of ob-
jects. In this case, we do not need the smoothness prior,
since we are trying to measure the information content of
the projections themselves. Measuring the combined infor-
mation of the projection data, and some extra prior knowl-
edge can be subject of further studies.

4.2 Approximating Pixel Uncertainty in Binary To-
mography

Based on the argument of Section 3 and the algorithm given
above, we defined a way for the simple approximation of
the pixel uncertainty in case of binary tomographic recon-
structions.

The basic idea of our concept is to find the reconstruc-
tion that satisfies the acquired projection data, but contains
the least discrete pixel values, i.e., in which the pixel in-
tensities are the farthest away from the the binary values.
In that way we can measure the relation between the pro-
jection data, and the fact that we are looking for binary so-
lutions, and approximate how easy it is to move each pixel
value away from the binary domain. This can give informa-
tion about the uncertainty of a projection set itself, even if
the original image and the entire search space are unknown.

With Algorithm 1 this can be done by setting a dis-
creteness prior that discourages binary, or close to binary
pixel values. One such prior can be given by

g(x) =
1

2
·

∥

∥

∥

∥

x−
1

2
· e

∥

∥

∥

∥

2

2

, (6)

wheree stands for a vector with alln2 positions having a
value of 1. Note, the ”upside-down” version of this dis-
creteness prior have been used in previous works for find-
ing binary solutions of the reconstruction problem.

Also note, that – although the projection correctness
term has a higher priority in the algorithm than the discrete-
ness prior – the algorithm uses a weighting between the two
terms of the energy function, and in the end the acquired
solution is not guaranteed to strictly satisfy the projections,
only approximates them.

When the result is computed, taking the entropy

Hi(xi) = −(xi · log2(xi)+ (1− xi) · log2(1− xi)) , (7)

for each pixel value, should give an approximation of the
pixel uncertainty given in (4).

Finally, it would be possible to use different types
of algorithms for approximating the coefficient probability,
and uncertainty maps. Such algorithms should be aiming
to find solutions, which satisfy theAx = b equation sys-

tem, and are as close to the
(

1
2 ,

1
2 , . . . ,

1
2

)T
vector as pos-

sible (i.e., solutions being closest to the least binary image
possible). Investigating such algorithms is a subject to our
further studies.

5 Validation and Results

For the validation of the measurement we performed soft-
ware tests on some phantom images. We took a set of bi-
nary images, produced their projections and tried to mea-
sure the uncertainty of the pixels with our approach.

We also needed another method, that can produce the
local uncertainties of the reconstructions, to compare our
proposed algorithm with. Unfortunately, to the best of our
knowledge, the literature does not contain such algorithms.
Therefore, we have decided to sample the space of recon-
structions in order to approximate the probabilities of (2).

5.1 A Stochastic Approximation of Pixel Uncertainties

For the random sampling of the search space we performed
several reconstructions from the same projection data with
a randomized reconstruction algorithm. With this, we
could get random elements of the space of feasible recon-
structions and gain statistics on the pixel intensities. We
have chosen to use the Simulated Annealing based recon-
struction method described in [11]. The slightly modified
code of this algorithm is given in Algorithm 2.

Algorithm 2 Reconstruction algorithm based on simulated
annealing
Input: A projection matrix;b expected projection val-
ues; Tstart, Tmin starting and minimum temperatures;
Tfactor multiplicative constant for reducing temperature;
Robjective bound for stopping criteria based on the ratio of
the starting and current energy function value.

1: x← (0, . . . , 0)T

2: T ← Tstart

3: Cstart ← Cold ← ‖Ax− b‖22
4: repeat
5: for i = 0 to n do
6: choose a random positionj in the vectorx
7: x̃← x

8: x̃j ← 1− xj

9: Cnew ← ‖Ax− b‖22
10: z ← random()
11: ∇C ← Cnew − Cold

12: if ∇C < 0 or exp(−∇C/T ) > z then
13: x← x̃

14: Cold = Cnew

15: end if
16: end for
17: k ← k + 1
18: T ← T · Tfactor

19: until T > Tmin orCold/Cstart > Robjective

With the proper parameter settings, and an unlim-
ited iteration count, Simulated Annealing based methods
should converge to an optimal binary solution. Practically,
such a process would be impossible to carry out, and Al-
gorithm 2 is a heuristic method for approximating a correct
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Figure 2. Some of the software phantoms used for testing.

solution.
Because of the stochastic nature of this process, with

each run of Algorithm 2 we get a random element of the
search space. Reconstructions better satisfying the projec-
tions will have a higher probability to be found, and these
probabilities should correspond to the probabilities given
in Section 3. Therefore, by running this algorithm several
times we can get a faithful sampling of the search space,
and averaging the pixel values would provide the required
probabilities.

Note, that the original energy function of this algo-
rithm also contained a smoothness regularization, but in
this case we omitted this term to get reconstructions which
only rely on the projections themselves.

5.2 Test Frame Set

In the evaluation of the method we took a set of phantom
images, produced their projection sets with different num-
bers of projections, and computed the pixel uncertainties
from the given data with the two methods described above.
Unfortunately, the validation method given in Section 5 had
an enormous time requirement, and we could only test our
methods for 3 images, which were chosen carefully based
on our previous experiences. These phantoms can be seen
in Figure 2. Further validation is among our future plans.

For performing the computation, the parameters of
Algorithm 1 were set empirically. We used the initialx0 =
(0.5, . . . , 0.5)T vector in the beginning of the optimization
process, and chosen the valuesµ = 1 andσ = 0.25. The
iteration was stopped when the difference between the so-
lutions of thek-th and(k + 1)-th iteration steps computed
as‖xk+1 − xk‖2 became less then0.001 or the number of
iterations reached a limit of5000.

As for the parameters of the simulated annealing
based method, we used the parameter settings as described
in [11], except, that we did not apply a smoothness regu-
larization term in the process. More exactly, the parameter
values wereTstart = 4.0, Tmin = 10−14, Tfactor = 0.97,
Robjective = 10−5. Moreover, for each given projection
set we averaged 100 runs of the optimization process to ap-
proximate the probability maps given in Section 3.

The implementation of Algorithm 1 was coded in
C++ with GPU acceleration with the Nvidia CUDA sdk.
Algorithm 2 on the other hand was not suited for parallel
implementation and GPU acceleration, and it was coded in

MATLAB.

After producing the uncertainty maps from the results
of Algorithm 1 and Algorithm 2 with the projection sets,
we compared the results given by the two methods visually,
and calculating the average pixel difference

R(x,y) =
1

n2

n2

∑

i=1

|xi − yi| . (8)

This measure takes values between 0 and 1. For any pair of
x andy images, if there is a correspondence between the
pixel pairs ofx andy, then the difference between the pix-
els at the same positions should be small and theR(x,y)
will take a value close to 0. If the correspondence is weaker,
then this average difference will lean towards 1.

5.3 Results

At the different steps of the algorithms, we got different
types of results. First, at the end of the optimization process
of Algorithm 1 – and after averaging 100 results of Algo-
rithm 2 – we got continuous reconstructions approximating
probability maps of Section 3. Second, when applying (7)
to the pixels of the approximate probability maps, we got
uncertainty maps of the reconstructions, showing for each
pixel its vagueness with the given projection data. Some of
the results can be seen in Figure 3.

We also compared the data contained by the two types
of images by the calculating the average pixel difference
given in (8). Some of the resulted data can be seen in Ta-
ble 1.

In the images of Figure 3 we can see that there is no
significant difference between the coefficient probability-
and uncertainty- maps computed by the two compared
methods. This is in accordance with the calculated average
differences in Table 1, where the values close to0 indicate a
strict correspondence between the two types of uncertainty
measures.

The time requirement of our proposed algorithm was
about 10-20 seconds for measuring each uncertainty maps
on a PC with an Intel Q9500 CPU and an Nvidia GTX250
GPU. On the other hand, running the simulated annealing
based algorithm 100 times (with the same CPU, but without
GPU acceleration) for measuring probabilities took about 2
days for each image and projection number.

As a conclusion we can say that the two approaches
for measuring the local uncertainties provide the same in-
formation, and are capable of approximating the local re-
liabilities of the reconstruction. However, the high time
requirement of the Simulated Annealing based approach
makes it impractical for applications. Fortunately, the Sim-
ulated Annealing-based method was only used for valida-
tion purposes, and our energy minimization based proposed
algorithm can give results in reasonable time.
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Figure 3. Coefficient probability-, and uncertainty-maps produced by Algorithm 1 and Algorithm 2. On the coefficient prob-
ability maps: white areas should with high probability takethe intensity value 1, and black areas are with high probability
0. Intensity values belonging to gray areas are not determined by the projections. On the uncertainty maps: Dark areas are
determined by the projections, while white areas are not, and hold uncertainty.



Table 1. Average pixel differences between the probability
and uncertainty maps given by the two uncertainty mea-
surement methods, according to test images and projection
numbers.

Difference between the probability maps
# projs. Figure 2a Figure 2b Figure 2c

2 0.021 0.033 0.034
3 0.020 0.038 0.040
4 0.016 0.022 0.032
5 0.018 0.026 0.035
6 0.014 0.019 0.033
9 0.007 0.013 0.033
12 0.005 0.008 0.025
15 0.004 0.006 0.027
18 0.003 0.005 0.021

Difference between the uncertainty maps
# projs. Figure 2a Figure 2b Figure 2c

2 0.038 0.088 0.069
3 0.053 0.095 0.084
4 0.046 0.065 0.073
5 0.049 0.078 0.076
6 0.046 0.066 0.082
9 0.030 0.051 0.088
12 0.022 0.040 0.080
15 0.016 0.030 0.088
18 0.013 0.021 0.076

6 Conclusion

We gave a practical description of the data uncertainty
problem arising from the field of discrete tomography, pro-
viding a measure for the binary case, that can approximate
the local uncertainties of the reconstructed image.

Given the projections of a homogeneous object, we
provided a way to approximate how likely will each pixel
of the reconstructed image take a 0 or 1 value on a correct
reconstruction. With this, one can approximate the uncer-
tainty of each pixel, get a picture of the information con-
tent of a projection set provided for a reconstruction, and
measure how each part of the reconstructed image is de-
termined by the given projections. This information can be
useful in practical applications to measure the accuracy and
reliability of the reconstructed results.

In our future work we plan to perform further valida-
tion of our local uncertainty measure, to extend the results
to the non-binary case of discrete tomography (i.e., when
there are more than two possible intensities in the recon-
structed images), and to try our reconstruction in practical
applications. Also, we are making efforts to summarize the
local uncertainties to one global measurement, that can de-
scribe the overall information content of a projection set,
and reveal connections to the method described in [8].
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