On the angle sum of lines

F. Fodor, V. Vígh, and T. Zarnócz

Abstract. What is the maximum of the sum of the pairwise (non-obtuse) angles formed by \(n \) lines in the Euclidean 3-space? This question was posed by Fejes Tóth in (Acta Math Acad Sci Hung 10:13–19, 1959). Fejes Tóth solved the problem for \(n \leq 6 \), and proved the asymptotic upper bound \(n^2 \pi/5 \) as \(n \to \infty \). He conjectured that the maximum is asymptotically equal to \(n^2 \pi/6 \) as \(n \to \infty \). The main result of this paper is an upper bound on the sum of the angles of \(n \) lines in the Euclidean 3-space that is asymptotically equal to \(3n^2 \pi/16 \) as \(n \to \infty \).

Mathematics Subject Classification. 52C35.

Keywords. Angle sum of lines, Upper bound.

1. Introduction. Consider \(n \) lines in the \(d \)-dimensional Euclidean space \(\mathbb{R}^d \) which all pass through the origin \(o \). What is the maximum \(S(n, d) \) of the sum of the pairwise (non-obtuse) angles formed by the lines? This question was raised by Fejes Tóth in [3] for \(d = 3 \). For general \(d \), the problem is formulated, for example, in [5].

The conjectured maximum of the angle sum is attained by the following configuration: Let \(n = k \cdot d + m \) (\(0 \leq m < d \)), and denote by \(x_1, \ldots, x_d \) the axes of a Cartesian coordinate system in \(\mathbb{R}^d \). Take \(k + 1 \) copies of each one of the axes \(x_1, \ldots, x_m \), and take \(k \) copies of each one of the axes \(x_{m+1}, \ldots, x_d \). The sum of the pairwise angles in this configuration is

\[
\frac{d(d-1)k^2}{2} + mk(d-1) + \frac{m(m-1)}{2} \pi.
\]

Fejes Tóth stated this conjecture only for \(d = 3 \), however, it is quite natural to extend it to any \(d \) (see [5]). To the best of our knowledge, this problem is unsolved for \(d \geq 3 \).

In the case \(d = 3 \), Fejes Tóth [3] proved the conjecture for \(n \leq 6 \). He determined \(S(n, 3) \) for \(n \leq 5 \) by direct calculation, and he obtained \(S(6, 3) \).