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Abstract

Mild Cognitive Impairment (MCI), sometimes regarded as a

prodromal stage of Alzheimer’s disease, is a mental disorder

that is difficult to diagnose. However, recent studies reported

that MCI causes slight changes in the speech of the patient. Our

starting point here is a study that found acoustic correlates of

MCI, but extracted the proposed features manually. Here, we

automate the extraction of the features by applying automatic

speech recognition (ASR). Unlike earlier authors, we use ASR

to extract only a phonetic level segmentation and annotation.

While the phonetic output allows the calculation of features like

the speech rate, it avoids the problems caused by the agrammat-

ical speech frequently produced by the targeted patient group.

Furthermore, as hesitation is the most important indicator of

MCI, we take special care when handling filled pauses, which

usually correspond to hesitation. Using the ASR-based features,

we employ machine learning methods to separate the subjects

with MCI from the control group. The classification results ob-

tained with ASR-based feature extraction are just slightly worse

that those got with the manual method. The F1 value achieved

(85.3) is very promising regarding the creation of an automated

MCI screening application.

Index Terms: mild cognitive impairment, machine learning,

temporal parameters of speech

1. Introduction

Alzheimer’s disease (AD) is a very distinct neurodegenerative

disorder that develops for years before clinical manifestation.

Although it has been extensively researched, uncertainty regard-

ing its prodromal stages still exists. However, the symptoms of

mild cognitive impairment (MCI) might be detected years be-

fore the actual diagnosis [1]. This tells us that the clinical ap-

pearance of AD is preceded by a prolonged, preclinical phase.

Hence, precocious diagnosis and timely treatment are very im-

portant, as the progression can be decelerated and occurrence of

new symptoms can be delayed [2].

MCI is a heterogenous syndrome that has clinical impor-

tance in the early detection of both AD [3] and the prodromal
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Ildikó Hoffmann was supported by the Bolyai János Research Schol-
arship.

state of dementia. MCI often remains undiagnosed, as recog-

nizing cognitive impairment is challenging for clinicians at any

stage of the disease: up to 50% of even later stage dementia

fails to be recognized [4]. Widely-used screening tests such as

the Mini-Mental State Examination (MMSE) are not sensitive

enough to reliably detect subtle impairments present in patients

with early MCI. Linguistic memory tests like word list and nar-

rative recall are more effective in the detection of MCI, but they

tend to produce undesired false positive diagnosis [5].

Although language impairment has been reported to occur

precociously in the disease process [6], only cursory attention

has been paid to a formal language evaluation when diagnosing

AD [7]. Since language impairment has been reported even in

the mild stage of AD, we recently developed a sensitive neu-

ropsychological screening method that is based on a memory

task, triggered by spontaneous speech [8]. In the future, this

approach might permit the screening of MCI through a comput-

erized, interactive test using a software package [9].

MCI is known to influence the (spontaneous) speech of the

patient via three main aspects [10]. Firstly, the verbal fluency

of the patient deteriorates, which results in distinctive acoustic

changes – most importantly, in longer hesitations and a lower

speech rate [5, 8, 11, 12]. Secondly, as the patient has trou-

ble finding the right word, the lexical frequency of words and

part-of-speech tags may also change significantly [13, 14, 15].

Thirdly, the emotional responsiveness of the patient was also

observed to change in many cases. There are attempts to detect

these changes based on the prosodic and paralinguistic features

of the patient’s speech [16].

The MCI screening method we developed earlier focuses

on the acoustic features [8]. We have shown experimentally

that the proposed acoustic biomarkers indeed carry significant

information for the separation of MCI patients from the control

group. However, in this early study the transcription and anno-

tation of speech signals was performed manually (with the help

of the Praat software tool [17]). In this paper, we present our

results in automatizing the biomarker extraction process using

automatic speech recognition (ASR). In all the experiments, the

manually extracted features of Hoffmann et al. [8] will serve as

the baseline.

Other authors have also studied the acoustic correlates of

MCI, and some also came up with automatic extraction meth-

ods. De Ipiña et al. applied the Praat tool to segment the ut-

terance into voiced and voiceless sections [16]. Satt et al. also

used Praat to discern voice/silent and periodic/aperiodic seg-



ments [11]. While these simple signal processing-based ap-

proaches can efficiently find silent pauses, the main problem

with them is that they cannot detect filled pauses. Meanwhile,

we found that about 10% of the hesitations in our database ap-

pear as filled pauses. Misclassifying these segments as speech

can lead to an incorrect estimate of the amount of hesitation in

the patient’s speech.

Lehr et al. used ASR to obtain the transcript of the signal,

but they did not analyze acoustic features [18]. Fraser et al.

also extracted acoustic features, but they used Nuance’s Dragon

system instead of a dedicated ASR tool [19]. However, these

out-of-box solutions do not help in finding and analyzing filled

pauses. Roark et al. took care to annotate filled pauses, but they

applied ASR only to force-align the manual annotation [5]. The

study most similar to ours is that by Jarrold et al. [12]. They ex-

tracted both lexical transcripts and acoustic features using ASR.

However, they used a standard word language model and did not

appear to take special care with filled pauses.

Our targeted patient group tend to produce more grammat-

ical errors and incorrectly inflected word forms. These errors

would significantly increase the error rate of a standard ASR

tool. However, we do not need precise word-level transcripts

for the extraction of acoustic features like the speech rate and

duration of pauses. Hence, we decided to train our ASR sys-

tem to produce only phonetic-level transcripts. Moreover, we

trained the system on a corpus of spontaneous speech where the

filled pauses were explicitly annotated. The phone-level output

of the recognizer allows us to extract features such as speech

rate, while also allowing the collection of statistics about the

duration of silent and filled pauses.

Based on the actual values of the acoustic indicators de-

scribed above, in a second step a machine learning model is

constructed, which seeks to decide whether a subject is likely to

have MCI. We would like to add that we do not wish to diagnose

the subjects, as this is the task of medically trained staff. Our

goal here is to create an application that allows to perform a pre-

filtering of the possible patients, which could then be followed

by a diagnosis by a medical expert.

2. Indicators of MCI in Spontaneous
Speech

Analyzing of the time course of speech has been shown to be

an especially sensitive neuropsychological method for investi-

gating cognitive processes such as speech production and plan-

ning [8]. Investigating the temporal parameters of spontaneous

speech is vital because it can provide sensitive measures of a

subject’s speech and language skills [20, 21].

In a study for Hungarian, the following parameters of

speech were measured for AD patients and a normal control

group: articulation rate, speech tempo, hesitation ratio, and

rate of grammatical errors. The results showed that these pa-

rameters of speech may have a diagnostic value for mild-stage

AD and therefore could be a useful aid in medical practice [8].

Other scientific studies have also confirmed that speech analy-

sis could be a useful method in examining, or even diagnosing

mild AD [5, 11, 12, 21, 1, 22]. In addition, lexical decision re-

action time studies showed a longer overall latency in AD and

MCI patients than in normal controls [23, 24, 25]. These results

also confirm that speech analysis can contribute to the effective

diagnosis of MCI.

In our earlier study on spontaneous speech in MCI the ex-

perimental setup for recording the utterances was as follows [8].

(1) Articulation rate was calculated as the number of

phones per second during speech (excluding hesi-

tations).

(2) The speech tempo (phones per second) was calcu-

lated as the number of phones per second divided

by the total duration of the utterance.

(3) The length of utterance, given in milliseconds.

(4-5) The duration of silent and filled pauses was calcu-

lated as the total duration of filled and silent pauses.

(6-7) The number of silent and filled pauses reflects the

absolute occurrence of silent and filled pauses, re-

spectively.

(8) The hesitation rate reflects the ratio of pauses and

speech, which was calculated by dividing the length

of the utterance by the total duration of pauses (both

silent and filled).

Table 1: A description of the eight acoustic biomarkers found to

correlate with MCI by Hoffmann et al. [8].

After the presentation of a specially designed one-minute-long

animated film, the subjects were asked to talk about the events

seen on the film (immediate recall). After the presentation of a

second film, the subjects were asked to talk about their previous

day (spontaneous speech). As the last task, the subjects were

asked to talk about the second film (delayed recall).

We measured the following acoustic parameters: articula-

tion rate (1), speech tempo (2), length of utterance (3), duration

of silent and filled pauses (hesitation) (4-5), number of silent

and filled pauses (6-7) and hesitation rate (8). Hesitation was

defined as the absence of speech for more than 30ms [26]. We

should add that the absence of speech does not necessarily mean

silence, but includes the filled pauses as well. Table 1 summa-

rizes the eight acoustic indicators and how they were calculated.

3. Automatic Indicator Extraction using
ASR

Calculating the above acoustic biomarkers manually (as was

done in [8]) is quite expensive and requires skilled labor. Here

we present our efforts towards the automatic extraction of the

features of Table 1. One way of automation is to use signal pro-

cessing methods. For example, Satt et al. employed the Praat

software to segment the utterance into voice/silent and peri-

odic/aperiodic parts [11]. However, these simple techniques

cannot extract all the features of Table 1; for example, they can-

not distinguish filled pauses from speech. The second option is

to apply ASR. However, an off-the-shelf ASR tool (like the one

used by Fraser et al. [19]) may be suboptimal. This is because

standard speech recognizers are trained to minimize the tran-

scription errors at the word level, while here we seek to extract

non-verbal acoustic features like the rate of speech or the du-

ration of silent and filled pauses. Note, for example, that none

of the features in Table 1 require us to identify the phones; we

need only to count them. Furthermore, while the filled pauses

do not explicitly appear in the output of a standard ASR sys-

tem, our feature set requires them to be found. And lastly, by

examining the speech of dementia patients it was observed that

the amount of agrammatical sentences and incorrect word in-
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Figure 1: The steps of MCI detection using manual (lower path) or ASR-based (upper path) acoustic biomarker extraction.

flections increases [14]. It is practically impossible to prepare

a standard ASR system to handle these errors. For these rea-

sons we decided to use a speech recognizer that provides only

a phone sequence as output (including filled pause as a special

‘phone’). Of course, recognizing the spontaneous speech of el-

derly people is known to be difficult [27]. Doing this without

a vocabulary, only at the phonetic level clearly increases the

number of errors. However, as we pointed out, not all types of

phone recognition errors harm the extraction of our acoustic in-

dicators. So the main question in the experiments was whether

the acoustic indicators (and the subsequent classification step

described in the next section) can tolerate the inaccuracies in-

troduced by switching from manual to automatic extraction.

4. Classifying MCI

The overall goal of our project is to develop an application that

would allow the user to self-test herself for MCI. Depending on

the test results, the software would recommend that the subject

visit a neurologist for a more thorough examination. We au-

tomated this decision making procedure using machine learn-

ing. In the experiments the values of the acoustic features were

passed to the Weka toolkit [28], which classified the patient as

either having MCI or not. The manually extracted feature val-

ues used by Hoffmann et al. in [8] were available for all the test

files, and the classification results produced by Weka on this

feature set served as our baseline. The feature extraction step

was repeated using ASR, and then the resulting Weka scores

were compared with the baseline. Fig.1 compares the process-

ing steps when using manual (lower path) or ASR-based (upper

path) acoustic biomarker extraction.

5. Experimental Setup

5.1. ASR-based Biomarker Extraction

The speech recognizer was trained on the BEA Hungarian Spo-

ken Language Database [29]. This database contains sponta-

neous speech, like the recordings collected from our MCI pa-

tients. We used roughly seven hours of speech data from the

BEA corpus, mainly recordings from elderly persons, in order

to match the age group of the targeted MCI audience. Although

the BEA dataset contains spontaneous speech, its annotation did

not quite suit our needs. It contained the word-level transcrip-

tion of the utterances, but the filled pauses and other non-verbal

audio segments (coughs, laughters, breath intakes, sighs etc.)

were improperly marked. Hence we tailored the annotation of

the recordings to our needs. This mainly consisted of adding

filled pauses, breath intakes and exhales, laughter, coughs and

gasps to the transcriptions in a consistent manner.

The ASR system was trained to recognize the phones in

the utterances, where the phone set included the special non-

verbal labels listed above. For acoustic modeling we applied

a special convolutional deep neural network-based technology.

With this approach we managed to achieve one of the lowest

phone recognition error rates on the TIMIT database [30]. As

a language model we employed a simple phone bigram (again,

including all the above-mentioned non-verbal audio tags).

The output of the ASR system is the phonetic segmentation

and labeling of the input signal, which includes filled pauses.

Based on this output, the acoustic biomarkers listed in Table 1

can be easily extracted using simple calculations.

5.2. MCI Classification

Our database of MCI patients is continuously growing; at the

time of writing we had recordings taken from more than 100

persons. For various reasons (poor sound quality, controversial

diagnosis, etc.) we had to filter out some patients, so in the

experiments presented here we worked with the recordings of

51 subjects. From these 32 had MCI and 19 were control sub-

jects, resulting in a 2-class classification task. For each subject

we had three recordings for the three different tasks (for details

on the tasks, see [8]). Using the eight biomarkers shown in

Table 1, we got 24 features per patient. From a machine learn-

ing perspective, this is an extremely small dataset. However,

the number of diagnosed MCI patients is limited, and collecting

recordings of their speech is tedious. All the similar studies we

found involved fewer than 100 patients [11, 12, 18, 5, 31].

Having so few examples, we did not create separate train-

ing and test sets, but applied the method of leave-one-out. That

is, we withheld one example (i.e. one subject), trained our clas-

sifier on the remaining ones, and evaluated it on this withheld

sample. We repeated this process for all the examples and then

aggregated the results into one final score.

We used the Weka tool [28], which is a free, open-source

collection of machine learning algorithms. Due to the small size

of the dataset we restricted ourselves to simpler methods like

linear SVM [32] and Random Forests [33]. Namely, we used

the SMO and RandomForest algorithms of Weka. We optimized

the parameter C of SVM as follows: we started from the default

value (1.0), and doubled/halved it until the F -measure score for

class MCI decreased twice in a row. We applied RandomForest

with the default number of trees (100).

The choice of evaluation metric is not a clear-cut issue for

this task. We can, of course, use standard Information Retrieval

metrics: precision measures how many of the MCI hypotheses

is for real occurrences, whereas recall tells us how many of the

real MCI occurrences were detected. As there is evidently a

trade-off between these two values, they are usually aggregated

together by the F-measure (or F1-score), which is the harmonic



mean of precision and recall. However, as here we have a close-

to-balanced class distribution, calculating the accuracy metric

(defined as the number of correctly classified examples over the

total number of examples) might make sense as well. Though

we optimized the F1 score of the MCI class, we list all four

metrics in the tables.

5.3. Extending the Feature Set

The study that served as our starting point examined only the

eight acoustic features shown in Table 1. The reason for this

was that calculating and evaluating the features manually re-

quired an expensive workload. Here, however, we used an au-

tomatic method to get the time-aligned phoneme sequence of

the utterances. Hence, we can readily extend the feature set

by further features that can be calculated using the phone la-

bels. Therefore, we looked for other features that we assumed

could support the machine learning method applied in the sec-

ond phase. This extended feature set was calculated as follows.

Firstly, we kept all the original features of Table 1. How-

ever, features (6) and (7) were altered slightly: instead of calcu-

lating the raw number of silent and filled pauses, we normalized

them by dividing them by the total number of phones in the ut-

terance. Furthermore, as we already have the length of each

occurrence of silent/filled pauses, it was easy to extend the fea-

ture set with the mean and standard deviation of the lengths for

these label occurrences. In addition, we observed that the ASR

system often confused filled pauses with certain phones. For

example, the most frequent sound uttered during hesitation is a

schwa, which is easily confused with the vowel [ø]. Another ex-

ample is substituting the hesitating word “hmm” with the phone

[m]. Thus, we conjectured that an increase in the number and

cumulative duration of these phones in the ASR output might

indicate the presence of mis-recognized filled pauses. Hence

we extended our feature set with features that describe the dis-

tribution of these phones in the utterance. More precisely, for

the phones [m], [n] and [ø] we added the following four features

to the feature set: cumulative duration (divided by the duration

of the utterance), the number of occurrences (divided by the

number of phonemes in the utterance), and the mean and stan-

dard deviation of the phone duration. With these extensions we

obtained a set of 81 features, which will be referred to as the

‘extended’ feature set in the experiments.

Risk factors for MCI differ in men and women and are also

known to vary with age [34]. These two attributes were also

available for our training set, so we added them to the feature

set, resulting in 26 and 83 features for the basic and extended

feature sets, respectively. Of course, in the planned application

we will not estimate these from the voice of the test subject, but

the subject will be asked to provide this data when starting the

test.

6. Results and Discussion

The results obtained can be seen in Table 2. Comparing the two

classification methods, we see that SVM outperformed Random

Forests with respect to all evaluation metrics except recall. As

regards the feature sets, SVM performed best with the manually

extracted feature set, achieving the highest values of F1 and ac-

curacy, while the precision and recall scores are also reasonably

high (note that we optimized for F1). By automatically extract-

ing the features we got worse results, presumably due to the

inaccuracies in the ASR output. However, with the extended

feature set we achieved scores that are quite close to those with

Method Feature set Prec. Recall F1 Acc.

Manual 82.4 87.5 86.2 82.4

SVM Automatic 83.9 81.3 82.5 78.4

Extended 80.6 90.6 85.3 80.4

Random

Forest

Manual 76.5 81.3 78.8 72.5

Automatic 81.8 84.4 83.1 78.4

Extended 76.3 90.6 82.9 76.5

Table 2: Results for the various classification methods and fea-

ture sets.

the manual feature set: the F1 score of 85.3 is only slightly

worse than the best manual value of 86.2. Notice also that the

precision and recall scores are quite unbalanced in the case of

the extended feature set. The gap could be decreased by adjust-

ing the decision threshold, which would supposedly result in a

higher F1 score as well. Here, however, we tuned only the C

parameter of SVM, mainly because only the later application

will decide on the preferred balance of precision and recall.

With the Random Forest classifier, the results are somewhat

mixed. For this classifier the extended feature set proved better

or no worse than the manual one with respect to all evaluation

metrics. Surprisingly, in this case the extended features per-

formed no better than the simpler ‘automatic’ set (but the dif-

ference between the corresponding F1 values of 82.9 and 83.1

is minimal). Although the recall value attained by Random For-

est is the same as that for SVM (90.6), considering that all other

scores are worse and that we optimized for F1, the scores over-

all clearly point in favor of using the SVM classifier.

Our results cannot be directly compared to those of oth-

ers, as the database used was different. However, the diagnostic

accuracies reported by other authors also fall in the 75%-90%

range [5, 11]. Later practice will show if this score is sufficient

for developing useful screening applications.

7. Conclusions

Mild cognitive impairment (MCI) is known to cause slight

changes in the spontaneous speech of the patient. Our starting

point was a study that found eight acoustic correlates of MCI,

but applied a manual method for the extraction of these fea-

tures from the sound files. In this study, we sought to automate

the feature extraction process by applying ASR. Unlike earlier

authors, we used ASR to extract only a phonetic level segmen-

tation and annotation. Furthermore, we took special care with

filled pauses, which correspond to hesitations in most cases. We

also extended the originally proposed features with further ones

we considered informative. In the second step, using these fea-

tures, we employed simple machine learning methods to sepa-

rate the subjects with MCI from the control subjects. Our results

showed that by switching from the manual to the ASR-based

feature extraction method the F1 score decreased only slightly.

The F1 value we got (85.3) is very promising regarding the cre-

ation of an automated MCI screening application.

While in this study we analyzed only acoustic features, it

is known that the linguistic content of the speech can also be

used to detect MCI or the early stage of Alzheimer’s disease [7].

Some authors have already made steps towards automating the

linguistic analysis part using ASR [14, 15, 18]. We also have

some preliminary results in this direction, and we plan to com-

bine the acoustic and linguistic analysis methods in the future.
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