
Available online at www.sciencedirect.com

m% * ScienceDirect
Discrete Applied Mathematics 155 (2007) 2546-2554

DISCRETE
APPLIED
MATHEMATICS

www.elsevier.com/locate/dam

Online scheduling with machine cost and rejection^
J. N a g y-G yö rgya, Cs. Imrehb

a Department of Mathematics, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
b Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary

Received 5 July 2005; received in revised form 13 June 2007; accepted 3 July 2007
Available online 27 August 2007

Abstract

In this paper we define and investigate a new scheduling model. In this new model the number of machines is not fixed; the
algorithm has to purchase the used machines, moreover the jobs can be rejected. We show that the simple combinations of the
algorithms used in the area of scheduling with rejections and the area of scheduling with machine cost are not constant competitive.
We present a 2.618-competitive algorithm called OPTCOPY.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Online algorithms; Scheduling; Competitive analysis

1. Introduction

In machine scheduling usually there is a fixed set of machines and a given set of jobs must be scheduled on the
machines. The scheduling algorithm is not allowed to change the number of machines and it is not allowed to reject
jobs. In the last few years some generalized models were investigated where it is allowed to change the set of machines,
and also some models where the jobs can be rejected.

The problem of scheduling with machine cost is defined in [9]. In this model the number of machines is not a given
parameter of the problem: the algorithm has to purchase the machines, and the goal is to minimize the cost spent
for purchasing the machines plus the makespan. In [9] the problem where each machine has cost 1 is investigated.
It can be supposed without loss of generality that the machines have cost 1, any constant cost can be reduced to this
problem by scaling the processing times. Two online models are defined. In the list model the jobs arrive one by one
and the decision maker has to decide in each step whether to buy new machines and then schedule the job on one of the
already purchased machines without any information about the further jobs. In this model a (1 + V5)/2-competitive
(~ 1.618) algorithm is presented for the solution of the problem and it is shown that no online algorithm can have
smaller competitive ratio than 4. The problem is also investigated in the Time model, where the jobs have release times
and they are not allowed to start before their release time. In the online version we do not even know the existence of a

job before its release time. In this model a (1 + yj 1 + 6/V2)/2-competitive (~ 1.645) algorithm is presented and it is
shown that no online algorithm can have smaller competitive ratio than (V33 + 9)/12^ 1.229. Later in [2] the problem

E-mail addresses: Nagy-Gyorgy@math.u-szeged.hu (J. Nagy-Gyorgy), cimreh@inf.u-szeged.hu (Cs. Imreh).
^ This research has been supported by the Hungarian National Foundation for Scientific Research, Grant F048587.

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.07.004

http://www.sciencedirect.com
http://www.elsevier.com/locate/dam
mailto:Nagy-Gyorgy@math.u-szeged.hu
mailto:cimreh@inf.u-szeged.hu

J. Nagy-Gyorgy, Cs. Imrek / Discrete Applied Mathematics 155 (2007) 2546-2554 2547

in the list model is further investigated and a 1.5798-competitive algorithm is presented. A semi-online version of the
list model is investigated in [7], and a lower bound for the possible competitive ratios of randomized algorithms is
given in [11]. The scheduling problem with machine cost where the preemption of the jobs is allowed is investigated
in [10]. A more general version where the cost of purchasing the machines is described by machine cost functions is
investigated in [8].

The problem of scheduling with rejection is defined in [1]. In this model, it is possible to reject the jobs. The jobs
are characterized by a processing time and a penalty. The goal is to minimize the makespan of the schedule for the
accepted jobs plus the sum of the penalties of the rejected jobs. In the offline case an FPTAS is presented for fixed
number of machines, and a PTAS in the case where the number of machines is part of the input. In the online case
a 2.618-competitive algorithm is given for arbitrary number of machines, and a 1.618-competitive algorithm in the
case of two machines. Matching lower bounds are also presented. The preemptive version of online scheduling with
rejection is studied in [12]. I n [12] a generalized version of the reject total penalty algorithm (see [1]) is analyzed, and it
is proven that this generalized algorithm is 2.387-competitive for arbitrary number of machines. A general lower bound
of 2.124, and a lower bound of 2.33 for the class of obliviously scheduling algorithms (the accepted jobs are scheduled
without knowledge of the rejection penalties) are also proven. In [4] the offline scheduling problem with rejection is
investigated in some more complex machine models, in [5] an FPTAS is given for scheduling with rejection on related
parallel machines.

In this paper we consider a more general model where the machines are not given to the algorithm in advance but
the algorithm must purchase them, and the jobs can be rejected. The goal is to minimize the makespan plus the cost
of purchasing the machines plus the sum of the penalties of the rejected jobs. We call the total cost of purchasing the
machines, machine purchasing cost.

It is easy to see that the offline problem is NP-complete. It is a generalization of an NP-complete problem (it is
reduced to the problem of scheduling with machine cost if each penalty is to). On the other hand the offline version
is not very interesting, we can check each value of m from 1 to n, and any offline a-approximation algorithm for the
scheduling problem with rejection on m -machines yields an offline a-approximation algorithm for the more general
version. A semi-online version of the problem, where the size of the jobs is bounded by 1 is investigated in [3]. In
[3] a 2-competitive algorithm is given for this special case. Furthermore the authors observe that the problem is a
generalization of the well-known ski rental problem, therefore it follows that no algorithm with smaller competitive
ratio than 2 exists for its solution.

We consider the online problem. The jobs arrive one by one, and after the arrival of a job the decision maker can
decide to purchase new machines and then it has to reject the job or schedule it on one of the already purchased
machines. The problem is online thus the decision maker has to make his decisions without any information on the
following jobs. For the problem we measure the performance of the algorithms by the competitive ratio. An online
algorithm is called c-competitive if for each input the cost of the schedule produced by the algorithm is at most c times
larger than the cost of the optimal schedule. The smallest c for which the algorithm is c-competitive is the competitive
ratio of the algorithm.

The paper is organized as follows. In the next section we introduce the basic notations and recall some results and
algorithms from the areas of scheduling with machine cost and scheduling with rejection which will be used later. In
Section 3 we present the developed online algorithms for the problem. First we consider some algorithms which are
the combinations of the algorithms used in the simpler models and we show that these algorithms are not constant
competitive. We present an improved algorithm which we call OPTCOPY, and we prove that it is (3+\/5)/2-competitive
(«2.618). We close the paper by summarizing the results and listing some related open questions.

2. Preliminaries

In the problem each job j has a processing time p j and a penalty which is the cost of rejecting it, denoted by w j . For
a set H c J we make use of the notations PH = J] j eH Pj and WH = J] j eH w j .As a shorthand we denote P[i, . . , i }
with simply writing Pi . Moreover, for every m we denote the set of jobs with penalty w j < p j /m by Bm .

For an arbitrary list J of jobs and an algorithm A, we denote by A (J) the cost of the schedule produced by algorithm
A on list J , the cost of the optimal schedule is denoted by OPT(J). Therefore we say that an algorithm is c-competitive
if A (J) < c ■ OPT(J) is valid for every J .

As subroutines we will use some known algorithms, we collect them and the related results below.

2548 J. Nagy-Gyorgy, Cs. Imrek / Discrete Applied Mathematics 155 (2007) 2546-2554

During the solution of the problem we have to schedule the accepted jobs on the already purchased machines. In the
scheduling part our goal is to minimize the makespan. Since the jobs have no release time we obtain that scheduling the
jobs without idle time on each machine, the maximal completion time is the total processing time of the jobs assigned
to the machine. Therefore the algorithms do not have to schedule the jobs, only to assign them to the machines. Several
algorithms are developed for the online scheduling problem on n identical machines (see the survey [13]), we will use
the classical, greedy online scheduling algorithm LIST [6]. This algorithm always schedules greedily the arriving job
on a least loaded machine.

Since in the problem the number of machines is not fixed, we need to give strategies for the problem of purchasing
machines. We suppose that each machine has cost 1. In [9] the following class of purchasing strategies is defined. For
an increasing sequence q = (0 = q^ q2, . . . , q{, . . .) we can define the following rule. When job j is revealed A q
purchases machines (if necessary) so that the current number of machines i satisfies q{ < Pi < q!+1. An algorithm A q
uses the above purchasing strategy and List scheduling for the schedule which means that it assigns job j to the least
loaded machine.

We also have to define some rules for the rejection of jobs. In [1] the following rule called RTP(a) (reject total
penalty) is presented. If a job j is contained in Bm we reject it. Otherwise we denote by Wj - 1 the total penalty paid for
the rejection of jobs rejected earlier which are not contained in Bm . If Wj - 1 + w j < ap j we reject the job, otherwise
we accept it.

3. Algorithms

In this section we develop and analyze some algorithms for the solution of the problem. Since we have rules for
purchasing the machines and for the rejection and scheduling of the jobs it is a straightforward idea to mix these rules
and build algorithms for the complex problem. In the first part we show that the simple combinations of these rules are
not constant competitive.

3.1. Mixed algorithms

In all of the following algorithms, a is a given constant, p = (0, p2, . . . , p i , . . .) is an increasing sequence, B i =
{ j \w j < Pj / i } , when i = 0 and B0 = Bi. In the j th step A j denotes the set of accepted jobs and R j the set of the
rejected ones. In all cases we start with 0 machines.

1st combined algorithm (CA1). j th step:

(i) When job j appears, we purchase machines (if necessary) so that the current number of machines i satisfies
p i < PA j-iU{j} < p i+1.

(ii) If j e B i , we reject job j .
(iii) If j e B i , and WRj-1\ Bi + w j < ap j , we also reject it.
(iv) Otherwise, we schedule it on a least loaded machine, according to the List algorithm.

Proposition 1. There is no suck C that algorithm CA1 is C-competitive.

Proof. Assume that CA1 is C -competitive for some C > 0. Let n >C , J = {1}, let p 1 = pn+1 and w1 = 1. For this job,
the optimal schedule rejects it and OPT(J) = 1 holds. Algorithm CA1 also rejects it, but it purchases n + 1 machines;
so its cost CA1 (J) = n + 2 > n > C ■ OPT(J), because of the constraint n > C . From this contradiction it follows that
CA1 is not C -competitive. □

We also investigate the following similar algorithm which can handle the counterexample given above.

2nd combined algorithm (CA2). j th step:

(i) When job j appears, we compute the number i such that pi < PA j- 1U{j} < p i+ 1 holds.
(ii) If j e B i , we reject job j .

J. Nagy-György, Cs. Imreh / Discrete Applied Mathematics 155 (2007) 2546-2554 2549

(iii) If j / B i , and WRj-1\ Bi + w j < ap j , we also reject it.
(iv) Otherwise if necessary, we purchase machines so that the current number of them reaches i ; after that, we schedule

it on a least loaded machine, according to the List algorithm.

Proposition 2. There is no such C that algorithm CA2 is C-competitive.

Proof. Assume that CA2 is C -competitive for some C > 0. Let n and k be two integers such that n > 2 C and
p2/2 < n /k < p2. Furthermore, let \ J | = kn, and for all j e J let p j = w j = n /k . If we purchase n machines
and schedule k jobs on each of them, the cost will be n + k (n /k) = 2n. From this we can conclude OPT(J) < 2n. Since
algorithm CA2 rejects all the jobs, the cost CA2(J) = kn (n /k) = n2. Because of the constraint n > 2C , n2 > 2Cn
holds, so CA2 is not C-competitive. □

3rd combined algorithm (CA3). j th step:

(i) Let i be the actual number of the machines. If j e B i , we reject job j .
(ii) If j e B i , and WRj-1\ Bi + w j < ap j , we also reject it.

(iii) Otherwise if necessary, we purchase machines so that the number of them i satisfies p i < PA j - 1u{j } < pi+1. After
that, we schedule it on a least loaded machine, according to the List algorithm.

Proposition 3. There is no such C that algorithm CA3 is C-competitive.

Proof of Proposition 2 can also be applied to this case.

3.2. Algorithm OPTCOPY

In this section we present a more sophisticated algorithm. The basic idea is that instead of the original problem we
consider a relaxed version, where we replace part of the cost of the schedule (purchasing cost of machines plus the
makespan) with a lower bound of it.

Suppose that we accepted a set A of jobs, m machines were purchased, and the current makespan is M . Then
Mm > PA, thus m > PA/M . So we obtain that for the cost of the schedule M + m > M + PA/M is valid. Let lA denote
the greatest processing time that belongs to a job in A. We define the following expression:

M a := max{*/PÄ , Ia } if Pa > 1,
1 otherwise.

Concerning the value of MA the following statement follows immediately by the definition.

Lemma 4. For two arbitrary sets Ai and A2 of jobs if Ai c A2 then MAl < MA2.

Now for an arbitrary set A of jobs let

M a + if A = 0,Ta := M a
0 if A = 0.

The geometrical meaning of Ta is the following: if we consider the jobs as rectangles with sides 1 and p i, then 2Ta
is the smallest possible perimeter of the rectangles which can be used to pack the rectangles assigned to the jobs. By
this interpretation we can prove easily the following statements.

Lemma 5. For two arbitrary sets A \ and A2 o f jobs, if A \ c A2 then TAl < TA2.

Lemma 6. Let A be an arbitrary nonempty set, furthermore let x > max{l, lA} be an arbitrary positive number, then
x + Pa / x > Ta .

2550 J. Nagy-Gyorgy, Cs. Imrek / Discrete Applied Mathematics 155 (2007) 2546-2554

Using Lemma 6 we immediately obtain the following statement for the case where rejection is not allowed which is
also proved in [9].

Lemma 7 (Imrek and Noga [9]). The cost of an optimal schedule with machine cost o f the jobs from set A when no
rejection is allowed is at least TA .

In [9] Theorem 2 proves that algorithm A q with the sequence q = (0, 4 , . . . , i2, . . .) is ^-competitive with p = (1 +
V 5)/2 in the model where the rejection of the jobs is not allowed. In the proof the authors show that for an arbitrary set
A of jobs Aq (A)/OPT(A) < (p. This is shown by case disjunction, and in each case the inequality A q (A)/T A < (p is
proven and by Lemma 7 this shows the required statement. Therefore the same proof proves the following statement:

Lemma 8 (Imreh and Noga [9]). For algorithm Aq with the sequence q = (0, 4 , . . . , i2, . . .) and an arbitrary input
set A of jobs when no rejection is allowed

Aq (A) < pTA ,

where p = (1 + V5)/2.

Now we can define the relaxed problem. Jobs arrive, each job has a processing time and a penalty. We have to find a
solution where the total penalty paid for the rejected jobs plus the value TA for the set A of accepted jobs is minimal.
We call this problem relaxed. For a set J of jobs the cost of the optimal solution of the relaxed problem is denoted by
ROPT(J). From Lemma 7 the following statement follows.

Corollary 9. For an arbitrary set J o f jobs R0PT(J) < 0PT(J).

Proof. Consider an optimal solution of the original problem on input J . Let A be the set of the accepted jobs, R be the
set of the rejected jobs. Then by Lemma 7 we obtain that 0PT(J) > H j eR

R and A in the case of the relaxed problem the value of the objective function is X) j eR w j + TA . Therefore we obtain
a feasible solution of the relaxed problem with not larger objective function value than 0PT(J), thus the statement of
the corollary follows. □

To develop algorithm OPTCOPY we have to examine the structure of the optimal solutions of the relaxed problem.
For an arbitrary list of jobs J denote Jk the set of the first k jobs of J . Then the following statement is valid.

Lemma 10. Suppose that A*k-1 is the set which belongs to an optimal solution of the relaxed problem on set Jk -1 .
Then the relaxed problem on set Jk has an optimal solution such that Ak-1 is a subset o f the set o f the accepted jobs.

Proof. Assume that there is no such optimal solution. Let A k be the set of the accepted jobs and Rk the set of rejected
jobs in an optimal solution of the relaxed problem on set Jk .As we assumed, A£-1 <^Ak . Therefore Ak-1 = 0. Wehave
to deal with the following two cases: (1) when k e Rk and (2) when k e A k .

Case 1: k e Rk .
If we use A k as the accepted jobs we receive a feasible solution of the relaxed problem on set Jk -1 , therefore we

obtain that

R0PT(Jk -1) < WRk \{k} + TA k .

If we substitute the definition of R0PT(Jk -1) and we increase both side by wk then we receive that

WRk-1 + wk + TAk-1 ^ WRk + TAk .

On the other hand the right side is R0PT(Jk) thus we obtained that

WR£-1U{k} + TA *k_1 ^ R0PT(Jk).

Let A*k := A*tc-l, that is an optimal solution and naturally satisfies property A£_x c Ak. This is a contradiction.

J. Nagy-Gyôrgy, Cs. Imreh / Discrete Applied Mathematics 155 (2007) 2546-2554 2551

Case 2: k e A k.
Case 2 has two subcases: (a) MA*_ > MAk and (b) M A*_ < M Ak.
(a) MAk-1 > MAk.
We obtain by Lemma 4 that MA* u{k} > MA*k l . Then using Lemma 6 with the values x = M A* and A = Ak_1 U {k}

(the conditions of the lemma are satisfied since MA*k i > M Ak > pk) we obtain that

TAl_ i U {k} < M aL i +
PAt_1U{k}
M = TA

At k-1 + Pk
m a* 'Ak_1

On the other hand if we use the sets Rk and Ak\{k} we have a feasible solution of the relaxed problem on set Jk-1,
thus

WR* + Ta* + —^ = ROPTJJk_ i) + —^ < WRk + TA,u k] + .Rt-i + Ak- i + m a* (k 1) + MA* k + Ak\{k} + Ma*Ak-1 Ak-1 Ak-1

Furthermore p k/M A*_ < pk/M Ak is valid and by Lemma 6 (with values x = MAk and A

TAk\{k} < MAk +

Ak_1

PAk\{k}
MAk

follows. Therefore we obtain that

p k
WRk + TAk\{k} + MAt < WRk + M Ak + + MPr = R0PT{Jk).k k MAk MAk

Ak\{k }):

Using the chain of inequalities proven above we obtain that

WRk-1 + TA*k_1U{k} < R0PT(Jk),

which is a contradiction, thus this case is not possible.
(b) MA'k_1 < MAk .
If we use the sets R t_1 U (Rk n Ak_1) and Ak n Ak_1 we have a feasible solution of the relaxed problem on set

Jk_ 1, thus

R 0pT(Jk_1) < WR'k_1 + WRknA'k_1 + T A k n A k _ 1 .
Then we apply Lemma 6 with the values x = MA*k i and A = Ak n Ak-1 (the conditions hold since MA*k i > MAk nA*k_ 1
by Lemma 4), and we obtain that

TAk nAt_1 < MAk + PAk nAt_1
MAt ’Ak_1

therefore

R 0pT(Jk_1) < WRt_1 + WRknA't_1 + MAt1 A k_1 + PAk nAt_1
MAtAk_1

(1)

If we use that ROPT(Jk-1) = WKj- + MAk-1 + Pa- /M a_x
(1) and by the constraint of the subcase it follows that

and PAk_1 = PAknAt_1 + PRknAt_1 then by inequality

PRknAk_1 < PRk nAt_1

MAk < MAk_1

< W RknAk_1 (2)

If we use Lemma 6 with the values x = M Ak and A = A k U Ak- 1 (the conditions of the lemma hold since MAk > lAk,
MAk > MA*k-\ ^ lA*k- \) then we obtain

WRk nRt_1 + TAk UAt_1 < WRknRt_1 + M Ak +
P A k U A k _ 1

Ma,
(3)

2552 J. Nagy-Gyôrgy, Cs. Imreh / Discrete Applied Mathematics 155 (2007) 2546-2554

From inequality (2) we get

WRk + M Ak +
P Ak l ia *.

MAk

= WRk nRk*_j + MAk +
PAk nA*k-1 + PAk nR|_j + PRk nA*k-1 + Pk

MAk
^ WRk nR*k-1 + WRk nA|_ + TAk — ROPT(Jk). (4)

Let A*k := Ak U A*k_ v Using inequalities (3) and (4) it follows that A*k provides an optimal solution and A^_1 c A*k,
what is again a contradiction. □

The relaxed problem can be solved in polynomial time. The algorithm which solves the problem is based on the
following structural property.

Lemma 11. For each job j we consider the problem REL(j) which is the restricted relaxed problem where it is given
that j is the largest accepted job. Order the set of jobs which are not larger than j by the value p i/w i into increasing
sequence. Then REL(j) has an optimal solution which is a prefix o f this sequence.

Proof. Consider the problem REL(j) for a job j and let A and R be the sets of the accepted and rejected jobs in an
optimal solution. Let i — j be the accepted job, where the value p i/w i is maximal. Since A and R are the optimal sets
we obtain that

Wr + Ta < Wr u {!'} + TA \{i}.

On the other hand MA > MA \{i} thus by Lemma 6 we obtain that MA + (PA _ p i)/M A > TA \{i}. Therefore,

Wr + Ta < Wr + wi + M a + Pa^ ~ Pl — Wr + Ta + wt _ P - .
M a M a

Thus we obtained that p i/w i < MA.
Now suppose that the solution does not satisfy the property stated in the lemma. Then there exists a job k = j with

the properties p k < p j and p k/w k < p i/w i which is rejected. Consider the feasible solution which also accepts k. Then
the value of the objective function is WR\{k} + TAU{k} and by Lemma 6 we obtain that

Pa + pk
WR\{k} + Ta u W < Wr _ wk + M a + .

M a

On the other hand pk/w k < p i/w i < M A thus p k/M A < wk which yields that WR\{k} + TAU{k} < Wr + Ta . Therefore
accepting job k the value of the objective function does not increase and this proves the statement of the lemma. □

By Lemma 11 we can find a polynomial time algorithm which solves the relaxed problem. (We consider the restricted
problem REL(j) for each j and we investigate the possible prefixes of the ordered sequences and choose the best
solution.) Furthermore by Lemma 10 it follows that we can find in each step such an optimal solution of the relaxed
problems for set Jk where the size of the maximal accepted job is increasing. Using such maximal jobs and the prefixes
of the ordered sequences in each step we have a polynomial time algorithm which gives such optimal solutions which
satisfy Lemma 10. We call this algorithm RELOPT. Denote the sets of the accepted jobs from Jk by Ak and the set of
rejected jobs by R |. Therefore A* c Ak if i < k. Then the following statement holds.

Lemma 12. For the above defined sets, the following inequality is valid:

n
J 2 w Rj_1r'A* < TAn.
j =1

J. Nagy-Gyorgy, Cs. Imrek / Discrete Applied Mathematics 155 (2007) 2546-2554 2553

Proof. We have R * \{ j} c R*_1 by A*_1 c A *. Therefore

ROPT{Jj _i) = WR*\{j} + WR *_inA * + ta*_1.

On the other hand using the sets R j \ { j } and A * \{ j} we get a feasible solution of the relaxed problem on set Jj _ 1
thus

ROpT(Jj _ i) < ^^Rj\{j} + TAj \{j},

so substituting the definition of ROPT(Jj_ 1) we obtain that

WRU ny < j } _ j .

Therefore,
n n

J 2 w r u nAj (Ty \ { j } _ Tj i).
j=i j=i

On the other hand by Lemma 5 we obtain TA* \ j } < TA*, thus

n n
WRj_inA) < (Tj _ j) = Ta; ,

j= i j= i

and this is what we have to prove. □

Now we are ready to define the class of algorithms OPTCOPYe. OPTCOPYe rejects all of the jobs rejected by
RELOPT, therefore it does not accept more jobs than the optimal solution of the relaxed problem. On the other hand it
may reject more jobs than an optimal solution, but we can prove some bounds on the amount of the rejected jobs.

Algorithm OPTCOPYg. At the arrival of a new job j perform the following steps.

(i) If j is rejected by RELOPT, reject it, otherwise go to step (ii).
(ii) Schedule the job by algorithm A g, where in the machine purchasing rule only the accepted jobs are taken into

account.

We have the following result.

Theorem 13. OPTCOPYg with the sequence g = (0, 4 , . . . , i2, . . .) is (3 + V5)/2-competitive.

Proof. Denote An the set ofjobs scheduled by OPTCOPY and A ; the set ofjobs accepted by RELOPT. Since An c a ;
and because of Lemma 8

OPTCOPYg(J) = Wr; + A g (A ;) < Wr; + (pTA*, (5)

furthermore, by the definition of the algorithms OPTCOPY and RELOPT we obtain that

n n_i n_i

Rn = U R j = U (R j \R j+ i) u Rn (R j n A j+i) u r ; ,
j= i j= i j= i

so applying Lemma i2

n_i
ŴRn = w r; + J 2 WR*j nAj+i < w r; + TA

j =i
(6)

2554 J. Nagy-György, Cs. Imrek / Discrete Applied Mathematics 155 (2007) 2546-2554

Finally applying inequalities (5) and (6), we get

OPTCOPY^ (J) < WR* + (1 + p)TA* < (1 + p)OPT(J),

and this is exactly what we have to prove. □

We note that we could not determine the competitive ratio of the algorithm, we just proved an upper bound on it. On
the other hand it is easy to see that the competitive ratio of the algorithm is at least (2 + 2p) / (p + 1/p)^2, 34. Consider
the following sequence of jobs: the first job is (pN, pN) , and then N 3 jobs of size (1/N, <x>) followed by one job of
size (pN, <x>) follows. (The second part of the example is the same which was used in [9].) Then OPTCOPY will reject
the first job and accept the others, it will schedule the first N 3 by purchasing N machines and putting N 2 jobs on each
machine. The final job will be placed on an arbitrary machine. Therefore, OPTCOPY’s cost will be N + N + 2 p N .
The optimal cost is no more than p N + \(N + 2 p) / p \ . So, the competitive ratio of OPTCOPY is at least

(2 + 2p)N n ——m 2 + 2p
p N + \ (N + 2p) / p \ p + 1 /p '

4. Conclusions and further questions

In this paper we introduced a new scheduling model called scheduling with machine cost and rejection which is
a common generalization of the well-known models of scheduling with machine cost and scheduling with rejection.
We have shown that the straightforward combinations of the known algorithms are not constant competitive, and we
presented algorithm OPTCOPY which is (3 + V5)/2-competitive.

Concerning our model many interesting questions arise. In the case of scheduling with machine cost some results are
proven for semi-online models, this can also be an interesting question in this case. In the simpler models the versions
where preemption is allowed are also investigated, we think so that this could be an interesting question in this more
general case.

Acknowledgements

The authors wish to thank the anonymous referees for their helpful and valuable advice and suggestions that helped
to improve significantly the first version of this paper.

References

[1] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, L. Stougie, Multiprocessor scheduling with rejection, SIAM J. Discrete Math. 13
(2000) 64-78.

[2] Gy. Dósa, Y. He, Better online algorithms for scheduling with machine cost, SIAM J. Comput. 33 (2004) 1035-1051.
[3] Gy. Dósa, Y. He, Scheduling with machine cost and rejection, J. Combin. Optim. 12 (4) (2006) 337-350.
[4] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, J. Wein, Techniques for scheduling with rejection, J. Algorithms 49

(2003) 175-191.
[5] L. Epstein, J. Sgall, Approximation schemes for scheduling on uniformly related and identical parallel machines, Algorithmica 39 (2004)

43-57.
[6] R.L. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech. J. 45 (1966) 1563-1581.
[7] Y. He, S.Y. Cai, Semi-online scheduling with machine cost, J. Comput. Sci. Tech. 17 (2002) 781-787.
[8] Cs. Imreh, On-line scheduling with general machine cost functions, Electron. Notes in Discrete Math. 27 (2006) 49-50.
[9] Cs. Imreh, J. Noga, Scheduling with Machine Cost, in: Proceedings of APPROX’99, Lecture Notes in Computer Science, vol. 1761, Springer,

Berlin, 1999, pp. 168-176.
[10] Y.W. Jiang, Z. He, Preemptive online algorithms for scheduling with machine cost, Acta Inform. 41 (2005) 315-340.
[11] S.S. Seiden, A guessing game and randomized online algorithms, in: Proceedings of STOC’00, SIGACT, ACM, Portland USA, Avon books,

NY, 2000, pp. 592-601.
[12] S.S. Seiden, Preemptive multiprocessor scheduling with rejection, Theoret. Comput. Sci. 262 (2001) 437-458.
[13] J. Sgall, On-line scheduling, in: A. Fiat, G.J. Woeginger (Eds.), Online algorithms: the state of the art, Lecture Notes in Computer Science,

vol. 1442, Springer, Berlin, 1998, pp. 196-231.

