
On-line scheduling with machine cost
and rejection∗

J. Nagy-György† Cs. Imreh ‡

Abstract

In this paper we define and investigate a new scheduling model. In this
new model the number of machines is not fixed; the algorithm has to
purchase the used machines, moreover the jobs can be rejected. We
show that the simple combinations of the algorithms used in the area
of scheduling with rejections and the area of scheduling with machine
cost are not constant - competitive. We present a 2.618-competitive
algorithm called OPTCOPY.

Keywords: Online algorithms, scheduling, competitive analysis

1 Introduction

In machine scheduling usually there is a fixed set of machines and a given
set of jobs must be scheduled on the machines. The scheduling algorithm is
not allowed to change the number of machines and it is not allowed to reject
jobs. In the last few years some generalized models were investigated where
it is allowed to change the set of machines, and also some models where the
jobs can be rejected.

∗doi:10.1016/j.dam.2007.07.004 This research has been supported by the Hungarian
National Foundation for Scientific Research, Grant F048587.
†Department of Mathematics, University of Szeged, Aradi vértanúk tere 1, H-6720

Szeged, Hungary, email: Nagy-Gyorgy@math.u-szeged.hu
‡Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hun-

gary, email: cimreh@inf.u-szeged.hu, Fax: +36 62 546397

1

http://www.sciencedirect.com/science/article/pii/S0166218X07002521

The problem of scheduling with machine cost is defined in [8]. In this
model the number of machines is not a given parameter of the problem: the
algorithm has to purchase the machines, and the goal is to minimize the cost
spent for purchasing the machines plus the makespan. In [8] the problem
where each machine has cost 1 is investigated. It can be supposed without
loss of generality that the machines have cost 1, any constant cost can be re-
duced to this problem by scaling the processing times. Two online models are
defined. In the List model the jobs arrive one by one and the decision maker
has to decide in each step whether to buy new machines and then schedule
the job on one of the already purchased machines without any information
about the further jobs. In this model a (1 +

√
5)/2-competitive (≈ 1.618) al-

gorithm is presented for the solution of the problem and it is shown that no
online algorithm can have smaller competitive ratio than 4/3. The problem
is also investigated in the Time model, where the jobs have release times and
they are not allowed to start before their release time. In the online version we
do not even know the existence of a job before its release time. In this model

a (1 +
√

1 + 6/
√

2)/2-competitive (≈ 1.645) algorithm is presented and it

is shown that no online algorithm can have smaller competitive ratio than
(
√

33 + 9)/12 ≈ 1.229. Later in [2] the problem in the list model is further
investigated and a 1.5798-competitive algorithm is presented. A semi-online
version of the list model is investigated in [7], and a lower bound for the
possible competitive ratios of randomized algorithms is given in [10]. The
scheduling problem with machine cost where the preemption of the jobs is
allowed is investigated in [13]. A more general version where the cost of pur-
chasing the machines is described by machine cost functions is investigated
in [9].

The problem of scheduling with rejection is defined in [1]. In this model, it
is possible to reject the jobs. The jobs are characterized by a processing time
and a penalty. The goal is to minimize the makespan of the schedule for the
accepted jobs plus the sum of the penalties of the rejected jobs. In the offline
case an FPTAS is presented for fixed number of machines, and a PTAS in the
case where the number of machines is part of the input. In the online case a
2.618-competitive algorithm is given for arbitrary number of machines, and
an 1.618-competitive algorithm in the case of 2 machines. Matching lower
bounds are also presented. The preemptive version of online scheduling with
rejection is studied in [11]. In [11] a generalized version of the reject total
penalty algorithm (see [1]) is analyzed, and it is proven that this generalized

2

algorithm is 2.387-competitive for arbitrary number of machines. A general
lower bound of 2.124, and a lower bound of 2.33 for the class of obliviously
scheduling algorithms (the accepted jobs are scheduled without knowledge of
the rejection penalties) are also proven. In [4] the offline scheduling problem
with rejection is investigated in some more complex machine models, in [5]
an FPTAS is given for scheduling with rejection on related parallel machines.

In this paper we consider a more general model where the machines are
not given to the algorithm in advance but the algorithm must purchase them,
and the jobs can be rejected. The goal is to minimize the makespan plus the
cost of purchasing the machines plus the sum of the penalties of the rejected
jobs. We call the total cost of purchasing the machines, machine purchasing
cost.

It is easy to see that the offline problem is NP-complete. It is a generaliza-
tion of an NP-complete problem (it is reduced to the problem of scheduling
with machine cost if each penalty is∞). On the other hand the offline version
is not very interesting, we can check each value of m from 1 to n, and any of-
fline α-approximation algorithm for the scheduling problem with rejection on
m-machines yields an offline α-approximation algorithm for the more general
version. A semi-online version of the problem, where the size of the jobs is
bounded by 1 is investigated in [3]. In [3] a 2-competitive algorithm is given
for this special case. Furthermore the authors observe that the problem is a
generalization of the well-known ski rental problem, therefore it follows that
no algorithm with smaller competitive ratio than 2 exists for its solution.

We consider the online problem. The jobs arrive one by one, and after the
arrival of a job the decision maker can decide to purchase new machines and
then it has to reject the job or schedule it on one of the already purchased
machines. The problem is online thus the decision maker has to make his
decisions without any information on the following jobs. For the problem we
measure the performance of the algorithms by the competitive ratio. An on-
line algorithm is called c-competitive if for each input the cost of the schedule
produced by the algorithm is at most c times larger than the cost of the
optimal schedule. The smallest c for which the algorithm is c-competitive is
the competitive ratio of the algorithm.

The paper is organized as follows. In the next section we introduce the
basic notations and recall some results and algorithms from the areas of
scheduling with machine cost and scheduling with rejection which will be
used later. In Section 3 we present the developed online algorithms for the

3

problem. First we consider some algorithms which are the combinations of
the algorithms used in the simpler models and we show that these algorithms
are not constant competitive. We present an improved algorithm which we
call OPTCOPY, and we prove that it is (3 +

√
5)/2-competitive (≈ 2.618).

We close the paper by summarizing the results and listing some related open
questions.

2 Preliminaries

In the problem each job j has a processing time pj and a penalty which is
the cost of rejecting it, denoted by wj. For a set H ⊆ J we make use of the
notations PH =

∑
j∈H

pj and WH =
∑
j∈H

wj. As a shorthand we denote P{1,...,`}

with simply writing P`. Moreover, for every m we denote the set of jobs with
penalty wj ≤ pj/m by Bm.

For an arbitrary list J of jobs and an algorithm A, we denote by A(J)
the cost of the schedule produced by algorithm A on list J , the cost of the
optimal schedule is denoted by OPT (J). Therefore we say that an algorithm
is c-competitive if A(J) ≤ c ·OPT (J) is valid for every J .

As subroutines we will use some known algorithms, we collect them and
the related results below.

During the solution of the problem we have to schedule the accepted
jobs on the already purchased machines. In the scheduling part our goal is
to minimize the makespan. Since the jobs have no release time we obtain
that scheduling the jobs without idle time on each machine, the maximal
completion time is the total processing time of the jobs assigned to the ma-
chine. Therefore the algorithms do not have to schedule the jobs, only to
assign them to the machines. Several algorithms are developed for the online
scheduling problem on n identical machines (see the survey [12]), we will use
the classical, greedy online scheduling algorithm LIST ([6]). This algorithm
always schedules greedily the arriving job on a least loaded machine.

Since in the problem the number of the machines is not fixed, we need
to give strategies for the problem of purchasing machines. We suppose that
each machine has cost 1. In [8] the following class of purchasing strategies is
defined. For an increasing sequence % = (0 = %1, %2 . . . %i . . .) we can define
the following rule. When job j` is revealed A% purchases machines (if neces-
sary) so that the current number of machines i satisfies %i ≤ P` < %i+1. An

4

algorithm A% uses the above purchasing strategy and List scheduling for the
schedule which means that it assigns job j` to the least loaded machine.

We also have to define some rules for the rejection of jobs. In [1] the
following rule called RTP(α) (reject total penalty) is presented. If a job j is
contained in Bm we reject it. Otherwise we denote by Wj−1 the total penalty
paid for the rejection of jobs rejected earlier which are not contained in Bm.
If Wj−1 + wj ≤ αpj we reject the job, otherwise we accept it.

3 Algorithms

In this section we develop and analyze some algorithms for the solution of
the problem. Since we have rules for purchasing the machines and for the
rejection and scheduling of the jobs it is a straightforward idea to mix these
rules and build algorithms for the complex problem. In the first part we show
that the simple combinations of these rules are not constant competitive.

3.1 Mixed algorithms

In all of the following algorithms, α is a given constant, ρ = (0, ρ2, . . . , ρi, . . .)
is an increasing sequence, Bi = {j | wj ≤ pj/i}, when i 6= 0 and B0 = B1.
In the j-th step Aj denotes the set of accepted jobs and Rj the set of the
rejected ones. In all cases we start with 0 machines.

1st combined algorithm (CA1).
jth step:

(i) When job j appears, we purchase machines (if necessary)
so that the current number of machines i satisfies ρi ≤
PAj−1∪{j} < ρi+1.

(ii) If j ∈ Bi, we reject job j.
(iii) If j /∈ Bi, and WRj−1\Bi

+ wj ≤ αpj, we also reject it.
(iv) Otherwise, we schedule it on a least loaded machine, accord-

ing to the List algorithm.

Proposition 1 There is no such C that algorithm CA1 is C-competitive.

Proof. Assume that CA1 is C-competitive for some C > 0. Let n > C,
J = {1}, let p1 = ρn+1 and w1 = 1. For this job, the optimal schedule rejects
it and OPT (J) = 1 holds. Algorithm CA1 also rejects it, but it purchases

5

n + 1 machines; so its cost CA1(J) = n + 2 > n > C · OPT (J), because
of the constraint n > C. From this contradiction follows that CA1 is not
C-competitive. 2

We also investigate the following similar algorithm which can handle the
counterexample given above.

2th combined algorithm (CA2).
jth step:

(i) When job j appears, we compute the number i such that
ρi ≤ PAj−1∪{j} < ρi+1 holds.

(ii) If j ∈ Bi, we reject job j.
(iii) If j /∈ Bi, and WRj−1\Bi

+ wj ≤ αpj, we also reject it.
(iv) Otherwise if necessary, we purchase machines so that the

current number of them reaches i; after that, we schedule it
on a least loaded machine, according to the List algorithm.

Proposition 2 There is no such C that algorithm CA2 is C-competitive.

Proof. Assume that CA2 is C-competitive for some C > 0. Let n and k
be two integers such that n > 2C and ρ2/2 ≤ n/k < ρ2. Furthermore, let
|J | = kn, and for all j ∈ J let pj = wj = n/k. If we purchase n machines and
schedule k jobs on each of them, the cost will be n+ k(n/k) = 2n. From this
we can conclude OPT (J) ≤ 2n. Since algorithm CA2 rejects all the jobs, the
cost CA2(J) = kn(n/k) = n2. Because of the constraint n > 2C, n2 > 2Cn
holds, so CA2 is not C-competitive. 2

3rd combined algorithm (CA3).
jth step:

(i) Let i be the actual number of the machines. If j ∈ Bi, we
reject job j.

(ii) If j /∈ Bi, and WRj−1\Bi
+ wj ≤ αpj, we also reject it.

(iii) Otherwise if necessary, we purchase machines so that the
number of them i satisfies ρi ≤ PAj−1∪{j} < ρi+1. After that,
we schedule it on a least loaded machine, according to the
List algorithm.

Proposition 3 There is no such C that algorithm CA3 is C-competitive.

Proof of Proposition 2 can also be applied to this case.

6

3.2 Algorithm OPTCOPY

In this section we present a more sophisticated algorithm. The basic idea is
that instead of the original problem we consider a relaxed version, where we
replace part of the cost of the schedule (purchasing cost of machines plus the
makespan) with a lower bound of it.

Suppose that we accepted a set A of jobs, m machines were purchased,
and the current makespan is M . Then Mm ≥ PA, thus m ≥ PA/M . So we
obtain that for the cost of the schedule M + m ≥ M + PA/M is valid. Let
lA denote the greatest processing time that belongs to a job in A. We define
the following expression:

MA :=

{
max {

√
PA, lA}, if PA > 1

1 otherwise

Concerning the value of MA the following statement follows immediately
by the definition.

Lemma 4 For two arbitrary sets A1 and A2 of jobs if A1 ⊆ A2 then MA1 ≤
MA2.

Now for an arbitrary set A of jobs let

TA :=

 MA +
PA

MA

if A 6= ∅
0 if A = ∅

The geometrical meaning of TA is the following: if we consider the jobs as
rectangles with sides 1 and pi, then 2TA is the smallest possible perimeter of
the rectangles which can be used to pack the rectangles assigned to the jobs.
By this interpretation we can prove easily the following statements.

Lemma 5 For two arbitrary sets A1 and A2 of jobs if A1 ⊆ A2 then TA1 ≤
TA2.

Lemma 6 Let A be an arbitrary nonempty set, furthermore let x ≥
max{1, lA} an arbitrary positive number, then x+ PA/x ≥ TA

Using Lemma 6 we immediately obtain the following statement for the
case where rejection is not allowed which is also proven in [8].

7

Lemma 7 [8] The cost of an optimal schedule with machine cost of the jobs
from set A when no rejection is allowed is at least TA.

In [8] Theorem 2 proves that algorithm A% with the sequence % =
(0, 4, . . . , i2, . . .) is ϕ competitive with ϕ = (1 +

√
5)/2 in the model where

the rejection of the jobs is not allowed. In the proof the authors show that
for an arbitrary set A of jobs A%(A)/OPT (A) ≤ ϕ. This is shown by case
disjunction, and in each case the inequality A%(A)/TA ≤ ϕ is proven and by
Lemma 7 this shows the required statement. Therefore the same proof proves
the following statement:

Lemma 8 [8] For algorithm A% with the sequence % = (0, 4, . . . , i2, . . .) and
an arbitrary input set A of jobs when no rejection is allowed

A%(A) ≤ ϕTA

where ϕ = (1 +
√

5)/2.

Now we can define the relaxed problem. Jobs arrive, each job has a pro-
cessing time and a penalty. We have to find a solution where the total penalty
paid for the rejected jobs plus the value TA for the set A of accepted jobs is
minimal. We call this problem relaxed. For a set J of jobs the cost of the op-
timal solution of the relaxed problem is denoted by ROPT (J). From Lemma
7 the following statement follows.

Corollary 9 For an arbitrary set J of jobs ROPT (J) ≤ OPT (J).

Proof. Consider an optimal solution of the original problem on input J . Let
A be the set of the accepted jobs, R be the set of the rejected jobs. Then
by Lemma 7 we obtain that OPT (J) ≥

∑
j∈R wj + TA. On the other hand

using the sets R and A in the case of the relaxed problem the value of the
objective function is

∑
j∈R wj +TA. Therefore we obtain a feasible solution of

the relaxed problem with not larger objective function value than OPT (J),
thus the statement of the corollary follows. 2

To develop algorithm OPTCOPY we have to examine the structure of
the optimal solutions of the relaxed problem. For an arbitrary list of jobs J
denote Jk the set of the first k jobs of J . Then the following statement is
valid.

8

Lemma 10 Suppose that A*
k−1 is the set which belongs to an optimal solution

of the relaxed problem on set Jk−1. Then the relaxed problem on set Jk has
an optimal solution such that A*

k−1 is a subset of the set of the accepted jobs.

Proof. Assume that there is no such optimal solution. Let Ak be the set
of the accepted jobs and Rk the set of rejected jobs in an optimal solution
of the relaxed problem on set Jk. As we assumed, A*

k−1 6⊆ Ak. Therefore
A*

k−1 6= ∅. We have to deal with the following two cases: 1) when k ∈ Rk

and 2) when k ∈ Ak.

Case 1: k ∈ Rk

If we use Ak as the accepted jobs we receive a feasible solution of the
relaxed problem on set Jk−1, therefore we obtain that

ROPT (Jk−1) ≤ WRk\{k} + TAk
.

If we substitute the definition of ROPT (Jk−1) and we increase both side by
wk then we receive that

WR*
k−1

+ wk + TA*
k−1
≤ WRk

+ TAk
.

On the other hand the right side is ROPT (Jk) thus we obtained that

WR*
k−1∪{k}

+ TA*
k−1
≤ ROPT (Jk).

Let A*
k := A*

k−1, that is an optimal solution and naturally satisfies prop-
erty A*

k−1 ⊆ A*
k. This is a contradiction.

Case 2: k ∈ Ak

Case 2 has two subcases: a) MA*
k−1

> MAk
and b) MA*

k−1
≤ MAk

.

a) MA*
k−1

> MAk

We obtain by Lemma 4 that MA*
k−1∪{k}

≥MA*
k−1

. Then using Lemma 6 with

the values x = MA*
k−1

and A = A*
k−1 ∪ {k} (the conditions of the lemma are

satisfied since MA*
k−1

> MAk
≥ pk) we obtain that

TA*
k−1∪{k}

≤MA*
k−1

+
PA*

k−1∪{k}

MA*
k−1

= TA*
k−1

+
pk

MA*
k−1

.

9

On the other hand if we use the sets Rk and Ak \ {k} we have a feasible
solution of the relaxed problem on set Jk−1, thus

WR*
k−1

+TA*
k−1

+
pk

MA*
k−1

= ROPT (Jk−1) +
pk

MA*
k−1

≤ WRk
+TAk\{k}+

pk
MA*

k−1

Furthermore
pk

MA*
k−1

<
pk
MAk

is valid and by Lemma 6 (with values x =

MAk
and A = Ak \ {k})

TAk\{k} ≤MAk
+
PAk\{k}

MAk

follows. Therefore we obtain that

WRk
+ TAk\{k} +

pk
MA*

k−1

< WRk
+MAk

+
PAk\{k}

MAk

+
pk
MAk

= ROPT (Jk).

Using the chain of inequalities proven above we obtain that

WR*
k−1

+ TA*
k−1∪{k}

< ROPT (Jk),

which is a contradiction, thus this case is not possible.

b) MA*
k−1
≤ MAk

If we use the sets R*
k−1∪(Rk∩A*

k−1) and Ak∩A*
k−1 we have a feasible solution

of the relaxed problem on set Jk−1, thus

ROPT (Jk−1) ≤ WR*
k−1

+WRk∩A*
k−1

+ TAk∩A*
k−1

Then we apply lemma 6 with the values x = MA*
k−1

and A = Ak ∩A*
k−1 (the

conditions hold since MA*
k−1
≥MAk∩A*

k−1
by Lemma 4), and we obtain that

TAk∩A*
k−1
≤MA*

k−1
+
PAk∩A*

k−1

MA*
k−1

,

therefore

10

ROPT (Jk−1) ≤ WR*
k−1

+WRk∩A*
k−1

+MA*
k−1

+
PAk∩A*

k−1

MA*
k−1

(1)

If we use that ROPT (Jk−1) = WR*
k−1

+MA*
k−1

+ PA*
k−1
/MA*

k−1
and PA*

k−1
=

PAk∩A*
k−1

+ PRk∩A*
k−1

then by inequality (1) and by the constraint of the

subcase it follows that

PRk∩A*
k−1

MAk

≤
PRk∩A*

k−1

MA*
k−1

≤ WRk∩A*
k−1

(2)

If we use Lemma 6 with the values x = MAk
and A = Ak ∪ A*

k−1 (the
conditions of the lemma hold since MAk

≥ lAk
, MAk

≥ MA*
k−1
≥ lA*

k−1
) then

we obtain

WRk∩R*
k−1

+ TAk∪A*
k−1
≤ WRk∩R*

k−1
+MAk

+
PAk∪A*

k−1

MAk

(3)

From inequality (2) we get

WRk∩R*
k−1

+MAk
+
PAk∪A*

k−1

MAk

=

WRk∩R*
k−1

+MAk
+
PAk∩A*

k−1
+ PAk∩R*

k−1
+ PRk∩A*

k−1
+ pk

MAk

≤

WRk∩R*
k−1

+WRk∩A*
k−1

+ TAk
= ROPT (Jk) (4)

Let A*
k := Ak∪A*

k−1. Using inequalities (3) and (4) it follows that A*
k provides

an optimal solution and A*
k−1 ⊆ A*

k, what is again a contradiction. 2

The relaxed problem can be solved in polynomial time. The algorithm
which solves the problem is based on the following structural property.

Lemma 11 For each job j we consider the problem REL(j) which is the
restricted relaxed problem where it is given that j is the largest accepted job.
Order the set of jobs which are not larger than j by the value pi/wi into
inreasing sequence. Then REL(j) has an optimal solution which is a prefix
of this sequence.

11

Proof. Consider the problem REL(j) for a job j and let A and R be the
sets of the accepted and rejected jobs in an optimal solution. Let i 6= j be
the accepted job, where the value pi/wi is maximal. Since A and R are the
optimal sets we obtain that

WR + TA ≤ WR∪{i} + TA\{i}

On the other hand MA ≥MA\{i} thus by Lemma 6 we obtain that MA +
(PA − pi)/MA ≥ TA\{i}. Therefore

WR + TA ≤ WR + wi +MA +
PA − pi
MA

= WR + TA + wi −
pi
MA

.

Thus we obtained that pi/wi ≤MA.
Now suppose that the solution does not satisfy the property stated in

the lemma. Then there exists a job k 6= j with the properties pk ≤ pj and
pk/wk ≤ pi/wi which is rejected. Consider the feasible solution which also
accepts k. Then the value of the objective function is WR\{k} + TA∪{k} and
by Lemma 6 we obtain that

WR\{k} + TA∪{k} ≤ WR − wk +MA +
PA + pk
MA

.

On the other hand pk/wk ≤ pi/wi ≤ MA thus pk/MA ≤ wk which yields
that WR\{k} + TA∪{k} ≤ WR + TA. Therefore accepting job k the value of
the objective function does not increase and this proves the statement of the
lemma. 2

By Lemma 11 we can find a polynomial time algorithm which solves the
relaxed problem. (We consider the restricted problem REL(j) for each j and
we investigate the possible prefixes of the ordered sequences and choose the
best solution.) Furthermore by Lemma 10 it follows that we can find in each
step such an optimal solution of the relaxed problems for set Jk where the
size of the maximal accepted job is increasing. Using such maximal jobs and
the prefixes of the ordered sequences in each step we have a polynomial time
algorithm which gives such optimal solutions which satisfy Lemma 10. We
call this algorithm RELOPT. Denote the sets of the accepted jobs from Jk
by A*

k and the set of rejected jobs by R*
k. Therefore A*

i ⊆ A*
k if i ≤ k. Then

the following statement holds.

12

Lemma 12 For the above defined sets, the following inequality is valid:

n∑
j=1

WR*
j−1∩A*

j
≤ TA*

n

Proof. We have R*
j \ {j} ⊆ R*

j−1 by A*
j−1 ⊆ A*

j . Therefore

ROPT (Jj−1) = WR*
j\{j}

+WR*
j−1∩A*

j
+ TA*

j−1
.

On the other hand using the sets R*
j \ {j} and A*

j \ {j} we get a feasible
solution of the relaxed problem on set Jj−1 thus

ROPT (Jj−1) ≤ WR*
j\{j}

+ TA*
j\{j}

,

so substituting the definition of ROPT (Jj−1) we obtain that

WR*
j−1∩A*

j
≤ TA*

j\{j}
− TA*

j−1
.

Therefore

n∑
j=1

WR*
j−1∩A*

j
≤

n∑
j=1

(TA*
j\{j}
− TA*

j−1
).

On the other hand by Lemma 5 we obtain TA*
j\{j}

≤ TA*
j
, thus

n∑
j=1

WR*
j−1∩A*

j
≤

n∑
j=1

(TA*
j
− TA*

j−1
) = TA*

n
,

and this is what we have to prove.
2

Now we are ready to define the class of algorithms OPTCOPY%.
OPTCOPY% rejects all of the jobs rejected by RELOPT, therefore it does
not accept more jobs than the optimal solution of the relaxed problem. On
the other hand it may reject more jobs than an optimal solution, but we can
prove some bounds on the amount of the rejected jobs.

Algorithm OPTCOPY%.
At the arrival of a new job j perform the following steps.

(i) If j is rejected by RELOPT , reject it, otherwise go to step
(ii)

13

(ii) Schedule the job by algorithm A%, where in the machine pur-
chasing rule only the accepted jobs are taken into account.

We have the following result.

Theorem 13 OPTCOPY% with the sequence % = (0, 4, . . . , i2, . . .) is (3 +√
5)/2-competitive.

Proof. Denote An the set of jobs scheduled by OPTCOPY and A*
n the set

of jobs accepted by RELOPT. Since An ⊆ A*
n and because of Lemma 8

OPTCOPY%(J) = WRn +A%(An) ≤ WRn + ϕTA*
n

(5)

furthermore by the definition of the algorithms OPTCOPY and RELOPT
we obtain that

Rn =
n⋃

j=1

R*
j =

n−1⋃
j=1

(
R*

j \R*
j+1

)
∪R*

n =
n−1⋃
j=1

(
R*

j ∩ A*
j+1

)
∪R*

n,

so applying Lemma 12

WRn = WR*
n

+
n−1∑
j=1

WR*
j∩A*

j+1
≤ WR*

n
+ TA*

n
. (6)

Finally applying inequalities (5) and (6), we get

OPTCOPY%(J) ≤ WR*
n

+ (1 + ϕ)TA*
n
≤ (1 + ϕ)OPT (J)

and this is exactly what we have to prove. 2

We note that we could not determine the competitive ratio of the algo-
rithm, we just proved an upper bound on it. On the other hand it is easy to
see that the competitive ratio of the algorithm is at least 2+2ϕ

ϕ+1/ϕ
≈ 2, 34. Con-

sider the following sequence of jobs: the first job is (ϕN,ϕN), and then N3

jobs of size (1/N,∞) followed by one job of size (ϕN,∞) follows. (The second
part of the example is the same which was used in [8].) Then OPTCOPY
will reject the first job and accept the others, it will schedule the first N3 by
purchasing N machines and putting N2 jobs on each machine. The final job
will be placed on an arbitrary machine. Therefore, OPTCOPY ’s cost will
be N + N + 2ϕN . The optimal cost is no more than ϕN + d(N + 2ϕ)/ϕe.
So, the competitive ratio of OPTCOPY is at least

(2 + 2ϕ)N

ϕN + d(N + 2ϕ)/ϕe
N→∞
−−−−−→ 2 + 2ϕ

ϕ+ 1/ϕ

14

4 Conclusions and further questions

In this paper we introduced a new scheduling model called scheduling with
machine cost and rejection which is a common generalization of the well-
known models of scheduling with machine cost and scheduling with rejec-
tion. We have shown that the straightforward combinations of the known
algorithms are not constant competitive, and we presented algorithm OPT-
COPY which is (3 +

√
5)/2-competitive.

Concerning our model many interesting questions arise. In the case of
scheduling with machine cost some results are proven for semi online models,
this can also be an interesting question in this case. In the simpler models
the versions where preemption is allowed are also investigated, we think so
that this could be an interesting question in this more general case.

Acknowledgement: The authors wish to thank the anonymous referees
for their helpful and valuable advice and suggestions that helped to improve
significantly the first version of this paper.

References

[1] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, L. Stougie,
Multiprocessor scheduling with rejection, SIAM Journal on Discrete
Mathematics 13 (2000) 64–78.

[2] Gy. Dósa, Y. He, Better online algorithms for scheduling with machine
cost, SIAM Journal of Computing 33 (2004) 1035–1051.

[3] Gy. Dósa, Y. He, Scheduling with machine cost and rejection Journal of
Combinatorial Optimization, 12(4), (2006) 337–350

[4] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma,
J. Wein, Techniques for scheduling with rejection, Journal of Algorithms
49 (2003) 175–191.

[5] L. Epstein, J. Sgall, Approximation schemes for scheduling on uniformly
related and identical parallel machines, Algorithmica, 39 (2004) 43–57.

[6] R.L. Graham, Bounds for certain multiprocessor anomalies, Bell System
Technical Journal 45 (1966) 1563–1581.

15

[7] Y. He, S.Y. Cai, Semi-online scheduling with machine cost, Journal of
Computer Science Technology 17 (2002) 781–787.

[8] Cs. Imreh, J. Noga, Scheduling with Machine Cost, in: Proc. AP-
PROX’99, Lecture Notes in Computer Science, Vol. 1761, Springer,
Berlin, 1999, pp. 168–176.

[9] Cs. Imreh, On-line scheduling with general machine cost functions, Elec-
tronic Notes in Discrete Mathematics 27 (2006) 49–50.

[10] S.S. Seiden, A guessing game and randomized online algorithms, in:
Proc. STOC’00, SIGACT, ACM, Portland USA, 2000, pp. 592-601.

[11] S.S. Seiden, Preemptive Multiprocessor Scheduling with Rejection, The-
oretical Computer Science 262 (2001) 437–458.

[12] J. Sgall, On-line scheduling, in A. Fiat, G.J. Woeginger (eds.) Online
algorithms: The State of the Art, Lecture Notes of Computer Science,
Vol. 1442, Springer-Verlag Berlin, 1998, pp. 196–231.

[13] Y.W. Jiang, Z. He, Preemptive online algorithms for scheduling with
machine cost, Acta Informatica 41 (2005) 315–340.

16

	Introduction
	Preliminaries
	Algorithms
	Mixed algorithms
	Algorithm OPTCOPY

	Conclusions and further questions

