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Abstract

Usage of computer-readable visual codes became common in our everyday
life at industrial environments and private use. The reading process of visual
codes consists of two tasks: localization and data decoding. Unsupervised
localization is desirable at industrial setups and for visually impaired people.
This paper examines localization efficiency of cascade classifiers using Haar-
like features, Local Binary Patterns and Histograms of Oriented Gradients,
trained for the finder patterns of QR codes and for the whole code region as
well, and proposes improvements in post-processing.

1 Introduction

QR code is a common type of visual code format that is used at various industrial
setups and private projects as well. Its structure is well-defined and makes auto-
matic reading available by computers and embedded systems (Fig. 1). These codes
can encapsulate significantly more embedded data than their one-dimensional an-
cestors referred to as bar codes. QR codes had a decent increase of usage in the last
couple of years, more than other patented code types, like Aztec codes or Maxi-
codes. Furthermore, it has a well-constructed error correction scheme that allows
recovery of damaged codes up to cca. 30 % of damage.

Image acquisition techniques and computer hardware have also improved sig-
nificantly, that made automatic reading of QR codes available. State of the art
algorithms do not require human assistance and assumptions on code orientation,
position and coverage rate in the image [6, 9] any longer. However, image qual-
ity and acquisition techniques vary considerably and each application has its own
requirements for speed and accuracy, making the task more complex.

The recognition process consists of two tasks: localization and decoding. The
literature already has a wide selection of papers proposing algorithms for efficient
QR code localization [1,3,7,10,11], however, each has its own strengths and weak-
nesses. For example, while those methods are proven to be accurate, morphological
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Figure 1: (a): example QR code, (b): same code with finder patterns (red circle)
and data density patterns (blue rectangle) indicated

operations, convolutions, corner detection can be a bottleneck for processing per-
formance. In order for the decoding to work well, an efficient localization step is
required, which outputs boundary information of the code candidates as tightly as
possible. After that, correction of blur, noise reduction and inverse perspective dis-
tortion takes place in the selected regions of interest (ROI), which operations can
be considered as preprocessing for the decoding task. This paper pays attention
only to the localization step, since while decoding can be time-consuming, it also
can be considered straightforward using tight-fitting ROIs of an efficient locator.

Belussi et al. [1] built an algorithm around the Viola-Jones framework [12],
which proved that, even though the framework was originally designed for face
detection, it is also suitable for QR code localization, even on low resolutions. The
authors used a cascade of weak classifiers, trained on the finder patterns (FIP) of
the QR code. In the next section, their original idea is extended and examined, and
results are discussed. We propose alternatives of both choosing the feature type of
classifiers and their training target.

2 Localization Using Cascade Classifier Training

Using boosted cascade of weak classifiers is a common approach in general classi-
fication problems. A single classifier can be trained quickly, however, it will have
low classification power (typically with high false negative rate), and thus it is
considered weak. To overcome this issue, weak classifiers are chained, so the first
classifier gets the original input, and each consecutive one has its input from the
output of the preceeding one. If all classifiers have a high hit rate (typically from
0.990−0.999) and a moderate false positive rate (around 0.5), the overall hit rate of
the cascade is the product of the hit rates of all weak classifiers, and false positive
rate is calculated in a similar manner. Using this approach, it is possible to train
classifiers with high overall classification power, but without the need of complex
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Figure 2: Haar-like features: edge type (a, b), line type (c, d), center type (e), and
rotated entities (f–n)

features. Furthermore, each link in this chain can be composed of multiple weak
classifiers, organized to a decision tree, or using Boosting methods.

2.1 Features for Object Recognition

In image processing, Viola and Jones [12] introduced the use of Haar-like features
as the core of these weak classifiers, whose got their name from their similarity
to the square-shaped functions of the Haar wavelet family. There are three sets
of features, edge-type, line-type and center-type, and each set has its 45-degree
rotated extension (Fig. 2), proposed by Lienhart et al. [5].

Each classifier has one or more features, defined by wavelet type, scale and
orientation within the image region of interest (ROI). The classification process is
the evaluation of these weak classifiers assembled in a cascade way, using a sliding
window. The process is repeated on more than one scales, so a trained cascade can
be used to detect objects of equal and larger size than they were present in the
training database. Recurrences of a detected object are often filtered by grouping
the overlapping results of different scales. Furthermore, we used Gentle AdaBoost
in order to increase accuracy. Feature evaluation time can be further reduced by
using integral images (Fig. 3) for the evaluation, that is derived from the original
image as

Iint(x, y) =
∑

u<x,v<y

Iorig(u, v), (1)

where Iint and Iorig denotes for the integral image and the original image, respec-
tively. Intensity sum of a rectangular region can be computed by accessing the sum
values at the corner points of the rectangle in the integral image, as∑
Ax≤x<Cx
Ay≤y<Cy

Iorig(x, y) = Iint(Cx, Cy)− Iint(Bx, By)− Iint(Dx, Dy) + Iint(Ax, Ay), (2)

where A, B, C and D denote for the corner points of the rectangle (Fig. 3).
Instead of Haar-like features, Local Binary Patterns (LBP) and Histograms of

Oriented Gradients (HOG) can also be used for the feature evaluation. A paper on
bar code localization [2] proposes partitioning of the image, and reading each block
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Figure 3: Calculation of the intensity sum over rectangle S. Intensity sum of S
is calculated as Rect(O,C) − Rect(O,B) − Rect(O,D) + Rect(O,A), O = {0, 0}
Integral image already has intensity sums calculated from O to points A, B, C, D,
thus simplifying intensity sum query to O(1) w.r.t. rectangle size.

in a circular pattern. A 1D feature vector is formed this way, which makes a feature
of bar code presence within the block. This concept is analogous to LBP [8], with
the main difference of not using the center point for making the feature.

HOG descriptors were first introduced in pedestrian detection [4], however, it
is often used in areas of computer vision where LBP, SIFT or shape context is
applicable. There are some special cases [13] where LBP and HOG can be used
together with improved overall accuracy, too.

2.2 Localization Based on FIPs and Whole Object

A classifier based on a Haar-like feature set is already discussed in the literature [1],
and will serve as a reference method to our further experiments. The basic idea
of QR code localization is the quick localization of possible FIPs in the image
with high hit rate, then aggregation of the FIP candidates to FIP triplets of a
possible QR code. FIP candidate localization is based on the cascade of boosted
weak classifiers using Haar-like features, while the decision on a FIP candidate to
be kept or dropped is decided by a geometrical constraint on distances and angles
with respect to other probable FIPs.

While Haar-like feature based classifiers are the state of the art in face detection,
the training process is more difficult on FIPs. A face has more, empirically observ-
able, strong features, like the shape, position and shade of eyes, eyebrows, forehead,
mouth, etc., than a QR FIP, which has only one prominent Haar-like feature to
be perfectly covered with (Fig. 4(a)). In order to increase the strong features of
the object intended to detect, we propose training of a classifier for the whole code
area. Even though QR codes have high variability on the data region, they contain
data density patterns, a fourth, smaller FIP that can be perfectly covered with the
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Figure 4: (a): FIP with two instances of a Haar-like feature. The feature fits for
both the inner and outer black regions in all directions, however, this is the only
feature that perfectly fits to the FIP. (b): Examples of Haar-like features fitting on
a QR code, using FIPs and data density pattern.

center-type Haar-feature, furthermore, they contain the three discussed FIPs at the
corners of the ROI (Fig. 4(b)). This approach also suggests promising rate of false
positives due to the offered features, and is reassured at the Results section.

LBP and HOG based classifiers also can be trained both to FIPs and whole
code areas, and since they are also considered fast and accurate general purpose
object detectors, evaluation of their performance on code localization is highly
motivated. Furthermore, LBP can be more suitable than Haar classifiers, since it
is not restricted to a pre-selected set of patterns, while HOG can also be efficient
due to the strict visual structure and limited number of distinct gradient directions
of the QR code.

2.3 Classifier Training

Cascade classifier training starts with generating the database of labeled occur-
rences of the desired object to detect. The database can consist of arbitrarily
acquired images, however, it has to be large enough for the training, with thou-
sands of samples. A training database is often generated with one or a couple of
positive samples rendered onto negative ones with various artificial modifications
of the original object, like distortion, opacity changes, or addition of noise. As
the next step, the database is divided into a larger and two smaller portions for
training, validation and testing purposes. The training portion will be the input
of the classifier training, while the test set will help to evaluate the performance
of the training. OpenCV provides highly customizable classifier training as part of
the library, with the Viola-Jones Haar-like features extended with the rotated en-
tities of Lienhart et al., as well as LBP and HOG-based training. It offers feature
symmetry, cascade and tree topology, and parameters for sample size, number of
stages, splits, acceptance rate, and false positive rate as well.

The default weak classifier parameter values for true positive rate (TPR, recall)
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and false positive rate (FPR) are 0.995 and 0.5, respectively, which means 99.5 %
of the positive samples are classified correctly at each stage. A stage is a set
of weak classifiers based on a single feature or a they can be Classification And
Regression Trees (CART) themselves, with a given number of maximum splits.
Classifiers based on simple features are boosted by one of the four offered boosting
algorithms. To avoid combinatorical explosion of the parameter tuning, Belussi
et al. [1] experimented with individual parameter variation while keeping other
parameters fixed, and documented their empirically observed optimal parameter
values for the Haar-training on FIPs. We have set the number of stages to 10,
according to the experiments of [1]. For the first four stages, using only one feature
was sufficient to reach the TPR and FNR defined above, while in later stages, more
features were required, from 9 up to 15. The training did not contain a priori
information about which features to prefer, they were chosen empirically as it is
implemented in the OpenCV library. We trained a total number of six classifiers,
based on Haar-like features, LBP and HOG, both for FIPs and full code objects. For
the FIPs, feature symmetry is also recommended to speed up the training process,
while usage of the rotated features of Lienhart et al. is not very useful, since these
classifiers are not flexible enough to detect QR codes of any orientation. However,
this issue can be solved by training two classifiers, for codes with orientation of
0◦ and 45◦, respectively. We used a 32 × 32 sample size, which is larger than the
one of the reference method, since training to the whole code object requires finer
sample resolution. We decided on the cascade topology for the classifier instead
of a tree, since it showed higher overall hit rate in [1], and left required hit rate
and false positive rate at the default values for each stage, with a total number of
10 stages. We trained our classifiers on a synthetic database consisting of 10 000
images. Images of the database are artificially generated QR codes, each containing
a permutation of all lower- and uppercase letters and numerals, rendered with
perspective distortion on to images not having QR codes. During the selection of
the applied transformation matrices, we used such that shift the FIP not more than
one FIP width, which property is needed for the assumption of maximum expected
distortion at the postprocessing step of the FIP-based classification. However,
this limit is large enough to render FIP-based classifiers unreliable. After that,
Gaussian smoothing and noise have been gradually added to the images. The σ of
the smoothing Gaussian kernel fell into the [0, 3] range. For adding noise, a random
image (In) was generated with intensities ranging from [−127, 127] following normal
distribution. This image was added gradually to the original 8-bit image (Io) as
I = αIn+(1−α)Io, with α ranging [0, 0.5]. The noise was added to the image using
saturation arithmetic, i.e. values falling beyond the [0, 255] range were clamped to
the appropriate extreme intensities. Some samples with parameters being in the
discussed ranges are present in (Fig. 5).

2.4 Post-processing

For the classifiers trained to FIPs, post-processing is needed to reduce the amount of
false detections. Belussi et al. proposes searching through the set of FIP candidates
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(a) σ = 0.07, α = 0.39 (b) σ = 0.65, α = 0.77 (c) σ = 1.32, α = 0.05

(d) σ = 1.88, α = 0.95 (e) σ = 2.86, α = 0.65 (f) σ = 2.99, α = 0.69

Figure 5: Samples of the training database with different amount of smoothing and
noise.

for triplets that can form QR code, using geometrical constraints. Since real-
life images of QR codes also suffer perspective distortion, it is obligatory to give
tolerance values for positive triplet response. We had to make assumptions on the
geometry of the expected codes with respect to the distance of FIPs and the angle
they enclose. In our case, 62 bytes of information are embedded into each QR code,
which results in 33:7 as Code:FIP width ratio (Fig. 6(a)).

To the synthetic image set, we added perspective distortions that were capable
of shifting the FIPs of the QR code by one FIP width at most in inward (Fig. 6(b))
or outward (Fig. 6(c)) direction from the code center. Let a be the FIP width
and b the distance of the outer edges of two FIPs. For a code with no distortion,
a + b is the distance of the two other FIPs to the upper left FIP of the code, and
their enclosed angle is 90◦ looking from the upper left (Fig. 6(a)). A QR code
having a distortion that warps the FIP center inward by a (Fig. 6(b)), can be
detected by letting Td = c/(a+ b) tolerance to FIP distance, where c =

√
a2 + b2.

Calculating with (a+ b) : a = 33 : 7, the formula gives 0.7788 for Td, which shows
that letting 22.12 % of tolerance to the expected code size can detect codes up to
the discussed distortion. The expected enclosing angle is 90±20.22◦, calculated by
Ta = tan−1(a/b)/90, which is a 22.47 % of tolerance. The other case of distortion
(Fig. 6(c)) can be calculated in a similar manner, and results in Td = 0.7707
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and Ta = 0.1331. According to these results, the post-processing step of triplet
formation has to have a tolerance set to 23 % for FIP candidate distance and also
for enclosing angle in order to not to lose any successfully localized QR codes during
that step. Since detected FIPs are of different sizes, it would be possible to add a
new constraint to the triplet formation defined as a tolerance factor for FIP size
differences among triplets. However, due to the perspective distortions, it is not
possible to narrow down results by FIP size variability, it only causes decreased hit
rate. Furthermore, even with those relatively small degrees of distortion, necessary
tolerances for distance and angle are high enough to compromise the filtering power
of the triplet formation rule.

(a) (b) (c)

Figure 6: Example for deciding on triplet formation tolerance. From the top left
corner of a perfect QR code, the other two FIPs are enclosing 90 degrees and
distance of FIP centers is a + b (a); Considering two scenarios of distortion where
FIPs are shifted inwards (b) and outwards (c) with a, distances and angle tolerances
for acceptance can be calculated using basic geometry.

Belussi et al. [1] proposed similar constraints for FIP triplet formation. Accord-
ing to their paper, each FIP candidate center is a vertex, which has a size attribute.
Their defined vertex size equals to FIP width, which is the same as FIP height since
FIPs are square shapes. Distance of the vertices are limited to 18 times vertex size
for successful triplet formation, and a tolerance of 25 % for vertex size is applied
within each triplet. As a final filter of the triplets, each one has some angle and
distance constraints. For successful triplet formation, all these three rules have to
be met. However, this still requires the calculation of angles and distances for all
FIP candidates.

While classifiers trained to the whole code area need no post-processing, FIP-
trained ones require the formation of a distance matrix for all FIP candidate pairs,
and a direction matrix that stores the angle of the line segment defined by all FIP
pairs. After that, reading through n FIP candidates still takes O(n3) time, which
is a bottleneck since a FIP-trained classifier can produce a large number of FIP
candidates (Fig. 7).

Originally, FIPs are designed to indicate QR code presence while scanning the
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Figure 7: Example QR code and result of a Haar classifier trained on FIPs. Orig-
inal image (a); feature image (b) with numerous FIP candidates (gray square),
and marked candidates (white circle) that have passed post-processing. FIP-based
classifiers show high false positive rate that neither the triplet formation constraint
can reduce. Circles on the same square mean that a FIP candidate is participating
in formation of more than one probable QR code.

image line by line. A FIP has a binarized intensity runlength profile of 1-1-1-3-
1-1-1 when scanned horizontally, vertically, or diagonally. That approach involves
reading the whole image, which is a slow procedure, and it is sensitive to noise and
blur. Cascade classifiers are designed to overcome these issues, however, the concept
of scan-lines can be re-introduced within the FIP candidates as a powerful filtering
step before the triplet calculation. Even though the FPR of FIP candidates is about
0.5, the overall proportion of FIP size to image size is small enough to perform scan-
line analysis. A maximum of four scan-lines with the step of 45◦ is sufficient to
determine if there is a FIP candidate present in the box that the classifier outputs. If
less than two of them give positive intensity profile response, that FIP candidate can
be dropped. Furthermore, the scan-lines of positive response give hints about the
direction of neighboring FIPs for triplet formation, although, in most cases, tracing
those hints in image space would be slower than iterating through the remaining
FIP candidates. However, after the triplets have been formed, the orientation of
the scan-lines can serve as a final constraint for triplet validation (Fig. 8).

As further post-processing, rotated bounding boxes can be computed, which are
more tight-fitting in most cases than axially aligned ones. This is the final step of the
localization task. Skew correction of the ROI, inverse perspective transformation
and binarization are considered preprocessing steps of the decoding task.

3 Evaluation and Results

The classifiers have been trained using OpenCV on the discussed training database.
Training time for Haar features took cca. 15 hours on a Core 2 Duo 3.00 GHz
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(a) FIP candidates (b) Scan-lines and final validation

Figure 8: Scan-line postprocessing of the FIP candidates in order to reduce false
positives. FIP candidates are scanned with four lines, and dropped if less than
half of the lines have positive response. As a final validation, the angle of positive
scan-lines can be compared between FIP candidates within the triplets. For a valid
triplet, positive scan-lines have similar angles.

CPU, while LBP training took about 1.5 hours, and HOG-training was the fastest,
taking only about 30 minutes. There were only minor increases in training times
of each category when training target was the full code object instead of the FIPs.
Processing of test images with the trained classifiers has no significant difference
respecting detection time, and each one is fast enough for real-time application.
Detection time mostly depends on the scaling parameter in multi-scale detection.
The default scaling factor is 1.1 in OpenCV, in which case detection takes cca.
100–200 ms for 512× 512 px images on an Intel Core 2 Duo 3.00GHz CPU.

Table 1 shows performance measures of the examined cascade classifiers. HAAR-
FIP, as stated by authors of [1], has a hit rate above 90 %, and represents a good
solution for FIP-training. However, all FIP-based classifiers have poor precision
compared to the ones trained for full code region, and they can cause serious over-
head for the next, decoding step of the QR code recognition process. Classifiers
based on LBP and HOG do not reach the hit rate of the one with Haar features.
HOG-FIP shows a noticeably higher precision than its siblings, but still cannot be
considered as an effective classifier according to its hit rate. Performance measures
are made by a 90 % minimum required overlap of detected bounding box to the
ground truth for a true positive.

For classifiers with the whole code object as their target, results are much more
spectacular. Both HAAR-FULL, LBP-FULL and HOG-FULL show outstanding
hit rate and acceptable precision. The LBP-FULL classifier was able to detect all
codes of the test database with a very low amount of false positives, having an
F-measure over 0.95.

Table 2 shows results of the trained classifiers for the public database of Sörös
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Precision Hit rate F-measure
HAAR-FIP [1] 0.1535 ± 0.0920 0.9436 ± 0.0753 0.2640 ± 0.1125
LBP-FIP 0.1686 ± 0.0530 0.7356 ± 0.1112 0.2743 ± 0.0773
HOG-FIP 0.4753 ± 0.2466 0.7885 ± 0.1960 0.5931 ± 0.1947
HAAR-FULL 0.4208 ± 0.2404 0.9995 ± 0.1092 0.5923 ± 0.1050
LBP-FULL 0.9050 ± 0.1312 0.9999 ± 0.0857 0.9501 ± 0.0721
HOG-FULL 0.5390 ± 0.2549 0.9975 ± 0.1001 0.6999 ± 0.1221

Table 1: Test results of the proposed cascade classifiers based on Haar-like
features, LBP and HOG, both trained for finder patterns (-FIP) and whole
code objects (-FULL).

Precision Hit rate F-measure
HAAR-FULL 0.2366 ± 0.2325 0.9060 ± 0.2192 0.3752 ± 0.1285
LBP-FULL 0.3663 ± 0.3265 0.7607 ± 0.1847 0.4944 ± 0.1430
HOG-FULL 0.7817 ± 0.2842 0.9487 ± 0.2871 0.8571 ± 0.2141
HAAR-SOROS 0.9999 ± 0.4220 0.7619 ± 0.2587 0.8649 ± 0.2937
LBP-SOROS 0.3684 ± 0.2082 0.9999 ± 0.1640 0.5385 ± 0.0973
HOG-SOROS 0.9999 ± 0.2127 0.9524 ± 0.1063 0.9756 ± 0.1347

Table 2: Classifier performances for the database of Sörös et al. [10]. The ones
ending with -FULL are the same classifiers trained on our synthetic database, while
-SOROS classifiers are trained on their public database.

et al. [10]. HAAR-FULL, LBP-FULL and HOG-FULL are the same classifiers
like in Table 1, they are trained only in our training database and were evaluated
with no modifications. The last three classifiers, HAAR-SOROS, LBP-SOROS and
HOG-SOROS are classifiers using full code object, trained on their database which
consists of about 100 arbitrarily acquired images taken with iPhone camera. The
main difference between the two databases besides one containing synthetic data
and the other real, is the higher variability in size and orientation of QR codes
for the latter. As expected, each classifier has noticeably lower hit rate, since they
were trained using another database with different constraints, however, results still
prove that cascade classifiers are a reasonable approach for the selected task, even
when they are evaluated on a significantly different test set.

We also experimented with training cascade classifiers on the Sörös data set,
however, training had only 85 samples as input and 21 for evaluation, which is too
few for making strong statements in a machine learning context. HAAR-SOROS
and HOG-SOROS had no false positives at all, but they were also unable to detect
all instances. LBP could be trained well for the database with respect to hit rate,
but probably due to the low count of training samples, shows poor precision.

In conclusion, the most efficient classifier disposes of the following parameters:
LBP of 32×32 sample size used for feature extraction in cascade topology, boosted
by Gentle AdaBoost, and a 10 stage learning phase with 0.995 hit rate and 0.5 false
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alarm rate, with no splits or tree structure. In cases where orientation variability
is high for the expected codes, we recommend training two separate LBP-FULL
classifiers with two training sample databases, with sample orientations around 0◦

and 45◦, respectively.

4 Concluding Remarks

QR codes became common for the past few years and their wide use made auto-
matic reading desirable. We presented various cascade classifiers based on different
features and training target, and studied their performance and capability for QR
code localization. Our approach can be used in real-time applications with high hit
rate and a moderate false positive rate that depends mainly on training parameters
that can be tuned to meet the requirements of each final application. Efficient auto-
matic localization of visual codes is desirable at many industrial setups and also for
end-user cases, where localization is performed using only little human assistance,
like on smartphones used by visually impaired people.

According to our experiments, cascade classifiers seem to be a decent option for
QR code localization, especially a classifier using LBP for features and trained for
the whole code object.
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