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Pázmány P. stny. 1A, H-1117 Budapest, Hungary
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Background: Short regulating RNAs guide many cellular processes.
Compared to transcription factor proteins they appear to provide more
specialised control and their deletions are less frequently lethal.
Results: We find large differences between computationally predic-
ted lists of human microRNA-target pairs. Instead of integrating these
lists we use the two most accurate of them. Next, we construct
the co-regulation network of human microRNAs (miRNAs) as nodes
by computing the correlation (link weight) between the gene silen-
cing scores of individual miRNAs. In this network we locate groups
of tightly co-regulating nodes (modules). Despite explicitly allowing
overlaps the co-regulation modules of miRNAs are well separated.
We use the modules and miRNA co-expression data to define and
compute miRNA essentiality. Instead of focusing on particular bio-
logical functions we identify a miRNA as essential, if it has a low
co-expression with the miRNAs in its module. This may be thought
of as having many workers performing the same tasks together in
one place (non-essential miRNAs) as opposed to a single worker
performing those tasks alone (essential miRNA).
Conclusions: On the system level we quantitatively confirm pre-
vious findings about the specialised control provided by miRNAs. For
knock-out tests we list the groups of our predicted most and least
essential miRNAs. In addition, we provide possible explanations for (i)
the low number of individually essential miRNAs in C. elegans (Miska
et al., 2007) and (ii) the high number of ubiquitous miRNAs influencing
cell and tissue-specific miRNA expression patterns (Landgraf et al.,
2007) in mouse and human.
Contact: fij@elte.hu

1 INTRODUCTION
RNA silencing was first observed in modified strains of petunia
where over-expressed enzymes did not accelerate but rather decele-
rated the pathways they catalysed (van der Krol et al., 1990; Napoli
et al., 1990). Subsequent studies, in both uni- and multicellular
organisms, have identified a number of 20-22bp long regulating
RNAs with diverse origins (Bartel et al., 2004). The precursors
of these non-coding RNAs can be, for example, transcribed in
separate 1-2 kbp units, extracted from eukaryotic introns or inser-
ted into the host cell by viruses. Based on their biogenesis and
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in vivo observations, short regulating RNAs have been categori-
sed as microRNAs (miRNAs), short interfering RNAs (siRNAs),
Piwi-interacting RNAs (piRNAs), etc. Here we investigate the
translational silencing interactions of human miRNAs.

In metazoans miRNAs have a widespread effect on mRNA and
protein levels: at least hundreds of them control differentiation
during development as well as other tissue-specific functions (Farh
et al., 2005). The bulk of this impact is due to the destabilisation and
cleavage of messenger RNAs and translational repression. It is esti-
mated that in vertebrates RNAs coding for proteins account for as
little as 1.5% of all transcribed RNA, a huge drop compared to over
75% in prokaryotes (Mattick and Gagen, 2001). The largely expan-
ded warehouse of non-coding RNAs has resulted in organisms of
previously unseen complexity (Heimberg et al., 2008). To describe
biological and other systems of such complexity, networks (graphs)
have proven to be a highly useful tool: they map interactors, e.g.,
miRNAs or proteins, and their interactions to nodes and links. We
map a protein, its mRNA and its gene to a node, and represent a
silencing interaction as a directed link from a miRNA to a target
gene.

A central goal of large-scale biomolecular interaction studies is to
connect the static structure of the interaction map(s) with dynamical
properties of the underlying biological system (Barabási and Oltvai,
2004; Warner et al., 2006). Well-known examples for this connec-
tion include graph motifs, often performing basic signal processing
tasks (Alon, 2007), and functional modules (Hartwell et al., 1999).
Each of these groups (motifs, modules) is a set of molecules densely
linked to each other by interactions and carrying out specific biologi-
cal tasks together. Overlaps between such groups show that multiple
processes use the same molecules (the shared nodes), while well-
separated groups indicate that jobs are managed independently. Here
we search for modules in the network of co-regulating miRNAs. In
this network two regulators (nodes) are connected, if they share at
least one target and the strength of a co-regulation link is computed
from the silencing efficiencies of the two connected miRNAs. miR-
NAs participating in the same module of the co-regulation network
co-silence many of their targets.

After comparing the lists of human miRNA - target gene interacti-
ons from four computational databases we find that even though the
four interaction lists are highly different, their similarity (relative
overlap) moderately increases with growing sample size. Experi-
mental benchmarks sufficient for calibrating the prediction quality

c© Oxford University Press 2005. 1



G. Boross et al

of each data set are not yet available. Two recent studies, however,
found that mRNA and protein level fold changes due to miRNA con-
trol are best predicted by TargetScan and PicTar (Baek et al., 2008;
Selbach et al., 2008). Based on a list of unified miRNA - target
gene interaction scores derived from TargetScan data we compute
the co-regulation network of miRNAs. Next, we search for modu-
les – groups of tightly co-regulating miRNAs – in this network.
Despite explicitly allowing for overlaps between the modules we
find that most nodes belong to a single module. We conclude that the
co-silencing groups of human miRNAs work with little cross-talk.
Following the functional analysis of two selected modules we define
and compute the essentiality of miRNAs. A miRNA co-expressed
with the miRNAs of the same module can be easily replaced by
another member of the same module in most of its regulatory roles.
On the other hand, miRNAs not co-expressed with their module
partners may not be easily replaced and are therefore more essential.

2 METHODS
2.1 miRNA-target gene interaction scores
First we compared human miRNA - human target interactions from one
manually curated and four computational data sources. Then, for our ana-
lyses we used data from TargetScan and – as a control – from PicTar (see
Figs. 4 and 5 and the Supplementary Material for controls). The five data
sources were TarBase (as provided in a filtered form under “known targets”
by miRBase in June 2008) (Sethupathy et al., 2006), miRBase (version 5)
(Griffiths-Jones et al., 2008), PicTar (vertebrates: “conservation in mam-
mals”, Dec. 2007) (Lall et al., 2006), PITA (top: “3-15”, Nov. 2007)
(Kertesz et al., 2007) and TargetScan v4.1 (conserved and non-conserved
sites) (Lewis et al., 2003). TarBase provides a manually collected list of
experimentally verified interactions, while the four computational data sets
(i) provide a score for each predicted miRNA - target (transcript, protein or
gene) link quantifying the efficiency of silencing and (ii) apply a lower cutoff
score (a threshold) below which they discard all links.

We consider only human miRNAs and omit the hsa- prefix from each
name. In PicTar and PITA target transcripts are identified by RefSeq mRNA
IDs, miRBase contains Ensembl transcript IDs, while TargetScan and Tar-
Base contain gene/protein names. We mapped all target names to Ensembl
gene IDs. In each of the four computationally predicted lists and for each
miRNA - target gene pair (M , G) we calculated a single unified interaction
score, wM,G. See the Supplementary Material for details.

2.2 The co-regulation network of miRNAs and its
modules

In the co-regulation network of miRNAs two miRNAs (nodes) are connec-
ted, if they share at least one target gene. The weight (score) of each
link is calculated as the similarity of the regulation patterns of the two
miRNAs. To compute the score of each link, we first listed for each
miRNA, M , its unified interaction score with all genes in the genome,
~vM = (wM,G1

, wM,G2
, . . . ), based on TargetScan data. We set the silen-

cing score to zero for any non-interacting regulator-target pair and computed
the co-regulation score (link weight) of two miRNAs (network nodes) as the
correlation of their ~vM vectors.

To find modules in the co-regulation network of miRNAs, we discarded
co-regulation links with weights below a fixed threshold, W . With the Cli-
que Percolation Method, Palla et al. (2005), implemented by CFinder, we
simultaneously selected the optimal link weight threshold, W , and compu-
ted the modules of the network. The Clique Percolation Method (CPM) finds
groups of nodes (modules) in the network such that the density of links is hig-
her inside the groups than between them. At the same time the CPM selects
an optimal link weight threshold, W . Note that the CPM explicitly allows

for overlaps between the identified network modules. For details please see
the Supplementary Material.

2.3 Co-expression of miRNAs and miRNA essentiality
We downloaded the correlations between the expression profiles of human
miRNAs across several tissue types and experimental conditions from a
recent compendium (Supplementary Table 20. of Landgraf et al., 2007).
For each miRNA, M , we computed its average expression correlation with
(i) all other miRNAs (Aall) and with (ii) miRNAs co-regulating with M

more strongly than the co-regulation score threshold, W (Atop). We defi-
ned the essentiality of each miRNA, relative to other miRNAs, as the ratio
of strengths of its two roles: E = (1 + Aall)/(1 + Atop). We note that the
co-expression data set was filtered: miRNAs not present in at least ten tissues
with an overall frequency of at least five clones were discarded. Thus, a total
of 4 005 co-expression links were listed among 90 miRNAs. Out of these
miRNA - miRNA pairs 3 081, connecting 79 miRNAs, were also present in
the list of co-regulation links computed from TargetScan data.

3 RESULTS
3.1 Computationally predicted lists of miRNA-target

pairs differ strongly
Many biochemical and thermodynamical factors influence miRNA-
target pairing and the description of these factors is still an ongoing
process (Grimson et al., 2007; Filipowicz et al., 2008). Currently,
computationally predicted miRNA - target pairs (interactions, links)
by far outnumber experimentally verified ones. For example, miR-
Base (version 5) lists 584 403 predicted miRNA - target gene pairs
in human, while, according to TarBase, direct experimental evi-
dence is available only for a total of 61 pairs so far. Moreover,
when comparing the human gene silencing interactions predicted
by miRBase, PicTar, PITA and TargetScan, we find that only 0.17%

of all predicted miRNA - target gene pairs are listed by all four
sources and only 12.4% by at least two (see Table 1 for details). We
have checked that these ratios are similar in other metazoans. As
an example for the large differences between prediction algorithms,
we compare two well-known silencing interactions from C. elegans.

Database Number of Number of Experimentally
miRNAs / interactions verified interactions

target genes according to TarBase

Experimental
TarBase 33 / 54 61

Computationally predicted
miRBase 711 / 22 474 584 403 16 (0.003%)
PicTar 171 / 6 885 54 947 31 (0.06%)
PITA 470 / 8 720 152 040 23 (0.02%)
TargetScan 455 / 15 878 955 644 44 (0.004%)

Table 1. Statistics of experimentally verified and computationally predicted
lists of human miRNA - target gene pairs (silencing interactions). The four
computationally predicted interaction lists – from miRBase, PicTar, PITA
and TargetScan – contain a total of 1 529 836 miRNA - target gene pairs
between 816 miRNAs and 22 968 target genes. Out of these pairs only 2 565

(0.17%) are contained by all four sources, 190 480 (12.4%) by at least two
and 48 (0.003%) have been experimentally verified.

2



Co-silencing by human miRNAs is modular

1

0.1

0.01

100000100001000100

N
um

be
r o

f s
ha

re
d 

lin
ks

 / 
n

Number of top scoring miRNA - target pairs from each source [ n ]

miRBase -     PicTar
miRBase -       PITA
miRBase - TargetScan
PicTar  -       PITA
PicTar  - TargetScan
PITA    - TargetScan

Fig. 1. Similarity of the lists containing the top scoring n = 1, 2, . . . human
miRNA - human target gene pairs (links) from two computational databases,
e.g., miRBase – PicTar or PITA – TargetScan. As larger numbers of top
scoring links are chosen from any two of the four databases, the relative size
of their intersection (number of pairs contained by both sources divided by
n) grows. For large n we used larger step sizes.

Scoring schemes vary across databases, and therefore, scores from
different databases cannot be directly compared. However, scores
within each database can be ordered and one can easily see whether
two selected interactions have the same strength order in two diffe-
rent databases. In C. elegans two thoroughly studied miRNA - target
interactions are the silencing of lin-14 by lin-4 (Lee et al., 1993;
Wightman et al., 1993) and the silencing of lin-41 by let-7 (Slack
et al., 2000). PicTar lists both interactions, with scores 11.20 and
4.18, respectively and TargetScan lists only the first, lin-4 a lin-14,
but not the second. (We use the sign a to denote a silencing interac-
tion.) Thus, PicTar and TargetScan predict that the first interaction
is significantly stronger than the second. On the other hand, miR-
Base and PITA contain only the second interaction, let-7 a lin-41,
but not the first, indicating that the second is significantly stronger.
In summary, even for well-studied miRNA - target pairs, compu-
tational algorithms may provide very different predictions. This is
likely due to the different biological and thermodynamical effects
that each algorithm emphasises as well as the quantification of these
effects.

3.2 Computationally predicted interaction lists become
increasingly similar with growing sample size

Despite the large differences that may occur between computational
predictions for a single miRNA - target pair, computationally predic-
ted interaction lists do indeed converge as more pairs are considered.
To analyse how sample size affects the similarity of predictions,
we selected a representative sample, the n = 1, 2, . . . interactions
(links) with the top scores, from each of the four investigated com-
putational sources. We found that for any two, e.g., miRBase–PicTar
or miRBase–PITA, the relative intersection size of the two selected
lists, i.e., the number of shared links divided by n, grows with n

(see Fig. 1). This implies that as sample size grows predictions of
computational algorithms become increasingly similar.

Even though the four predicted interaction lists become more
similar with increasing sample size, their qualities significantly dif-
fer (Sethupathy et al., 2006), thus, for further analyses it is necessary
to select a list of high-confidence miRNA - target gene interacti-
ons. One option for selecting high-quality interactions is (i) to apply
benchmarks for computing a confidence score for each data source
and then (ii) to use these scores to a single interaction score This
method is frequently applied for integrating protein-protein asso-
ciation and interaction (PPI) data and relies on the availability of
benchmarks with a sufficiently high coverage of the full interac-
tome, see, e.g., Ref. (Lee et al., 2004). For RNA silencing however,
experimental data sets have not yet reached the coverage necessary
for quantifying the precision of computational predictions. Based
on two recent studies (Baek et al., 2008; Selbach et al., 2008),
we have decided to restrict ourselves to the interaction scores from
TargetScan and use PicTar scores as a control.

3.3 Modules of co-regulating miRNAs are well
separated

A simple format for listing the overall silencing effect of a given
miRNA, M , is a vector ~vM , in which the ith component, vM,i, is the
score of the silencing interaction between M and the ith gene. We
quantified the similarity, wM,N , of the silencing functions of two
miRNAs, M and N , as the Pearson correlation of their silencing
vectors, ~vM and ~vN , and applied these wM,N similarity scores as
link weights in the co-regulation network of miRNAs (see Fig. 2a).

For non-normally distributed variables rank correlation measu-
res, e.g., the Spearman rank correlation, are often preferred over
the Pearson correlation. After computing both correlation measures
for all miRNA-miRNA pairs, we found that in the current case they
provide almost identical top scoring pairs, thus, neither of them is
significantly better than the other (see the Supplementary Material
for details).

Compared to other similarity measures, the Pearson correlation
efficiently finds small numbers of significantly co-regulated targets
and at the same time strongly suppresses those silencing scores,
vM,i, of a miRNA that are small (and may contain a higher rela-
tive error) compared to other silencing scores of the same miRNA.
Next, to illustrate why the Pearson correlation of silencing scores is
biologically more relevant than the number of shared targets of the
two miRNAs, we discuss two examples. First consider two hypothe-
tical miRNAs, both controlling all genes of the human genome and
each silencing all of its targets with the same large wM,G score plus
a random error. Despite the large number of shared target genes,
the correlation of the ~vM vectors these two miRNAs is 0, i.e., there
is no co-regulation at all. On the other hand, two miRNAs silen-
cing strongly the same ten target genes with equal strength, have
maximally correlated ~vM vectors, and thus, a co-regulation score
of 1. Interestingly, in Fig. 2b we found a strongly bimodal distribu-
tion of co-regulation link weights: the score of a miRNA - miRNA
co-regulation link is almost always below ≈ 0.4, while for a small
fraction of the links the score is above 0.9. In other words, it is mea-
ningful to filter the co-regulation links by discarding those below
the co-regulation score threshold, W (see Methods and the Supple-
mentary Material for details on how the precise value of W was
selected).

We proceed now to computing the modules of co-regulating
miRNAs. A network module (also called cluster or community) in
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Fig. 2. Co-regulation scores of human miRNAs and co-regulating modules. (a) The co-regulation score between two miRNAs is defined as the Pearson
correlation of their silencing scores over all target genes. This score is used as the weight of the link connecting the two miRNAs in the co-regulation network.
(b) The distribution of miRNA co-regulation scores is bimodal. There are very few values between 0.4 and 0.9. For finding modules, i.e., densely internally
linked groups of nodes in the miRNA co-regulation network, we used only co-regulation scores above the threshold value. Note that the vertical scale is
logarithmic. The line connecting the data points is a guide to the eye. (c) The modules of co-regulating human miRNAs identified with CFinder. Despite
explicitly allowing for overlaps between the modules, they are well-separated. Only two modules share nodes, these are shown with dark colour. Most of the
miRNA modules are (close to) fully connected with co-regulation links of weight 0.95 or above, thus, in one module all miRNAs silence roughly the same
group of targets. The area of a node is proportional to the number of target genes of the given miRNA; the width of a link is proportional to the co-regulation
score of the two miRNAs. The functions of two selected modules are discussed in Sec. 3.4. The layout of this network was produced with Cytoscape (Shannon
et al., 2003). While this figure displays each miRNA separately, Supplementary Figure 5. shows the same modules by merging all miRNAs from the same
family (as defined by miRBase).

the miRNA co-regulation graph corresponds to a group of miRNAs
silencing together a group of target genes: there are many regulator-
target pairs between the two groups, and both groups (regulators and
targets) have few further silencing interactions. Overlaps among the
identified miRNA modules would indicate that the shared miRNAs
strongly participate in more than one regulatory task. Most cluste-
ring algorithms, including commonly used hierarchical clustering
methods, by their definition prohibit overlaps between the identified
clusters and break down the network (or any other data set) into non-
overlapping clusters. As our goal was not only to identify groups
(modules) of co-silencing miRNAs, but also to determine whe-
ther these modules overlap, we applied CFinder (Adamcsek et al.,
2006), a fast algorithm explicitly allowing for overlaps between the
detected network modules.

Despite allowing overlaps between the modules of co-regulating
miRNAs, we found very few. Figure 2c shows the groups of
miRNAs densely internally linked by co-regulation links, as identi-
fied by CFinder. We conclude that, according to current experimen-
tal data, groups of human miRNAs silence well-separated groups of
target genes. In other words, the scarcity of overlaps between co-
silencing groups shows that in human most translational silencing
tasks are managed by well-defined groups of miRNAs. Interestin-
gly, not only specialised miRNAs work in the modules, but also two
ubiquitously expressed miRNAs, e.g., let-7a and miR-30c (Sempere
et al., 2004), may silence well-separated groups of target genes.

3.4 Seed sequences and functions in selected modules of
co-regulating miRNAs

In mammals perfect base pairing between residues 2 to 8, the seed,
of a miRNA and a transcript was shown to be a better predictor of
the silencing interaction than perfect pairing on any other heptamer
of the miRNA (Lewis et al., 2003). Observe in the main panel of
Fig. 2c that the miRNAs miR-15a, miR-15b, miR-16, miR-195, miR-
424 and miR-497 (all from the same highly conserved family) are in
the same module and have the seed AGCAGCA. Replacing the last
residue, A, in this seed by the other purine, G, allows a miRNA to be
in the same module: miR-503 (from a different conserved family),
which has the seed AGCAGCG. On the other hand, replacing the
5th residue, G, by a pyrimidine, C, separates miRNAs from this
group: miR-29a,b,c all have the seed AGCACCA, and they form a
co-regulating module isolated from that of miR-15a.

Even though the two modules are separated, they control similar
processes. Both modules contain experimentally verified repres-
sors of anti-apoptotic members from the Bcl-2 protein family and
thereby induce apoptosis: miR-15a and miR-16 downregulate Bcl2
(Cimmino et al., 2005), while miR-29 represses Mcl1 (Mott et al.,
2007). In addition to this similarity, the two modules can also con-
trol cell fate through biochemically different mechanisms. Members
of the miR-16 module cause cell cycle arrest by directly silencing
targets enriched with cell cycle functions (Linsley et al., 2007; Liu
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Fig. 3. Co-expression and co-regulation scores between two selected
miRNAs and other miRNAs. We call two miRNAs “strongly co-regulating”,
if their co-regulation score is above the threshold value. The average co-
expression of let-7a with its module member miRNAs is Atop = 0.42. With
all miRNAs of the modules this average is Aall = 0.027. Thus, the essen-
tiality of let-7a, relative to other miRNAs, is E = (1+Aall)/(1+Atop) =
0.72. While let-7a is co-expressed with its strongly co-regulating partners,
let-7g is not, and therefore, it is more essential: E = 0.94.

et al., 2008), while miR-29 was found to keep the methylation pat-
tern of DNA favourable for the expression of tumour-suppressor
genes FHIT and WWOX by targeting DNA methyl transferases
DNMT3A/B (Fabbri et al., 2007).

From the above examples one may reach the conclusion that in
general a purine-purine difference in one (e.g., the last) residue
of the seed can be present in the same co-regulation module of
miRNAs, but a purine-pyrimidine swap inside the seed can already
distinguish between co-regulation modules. This result is some-
what refined by the module in the top left corner of Fig. 2c, where
the miRNAs miR-520a,b,c,d,e all have the same seed, AAGUGCU,
while miR-520f and miR-520g have different seed regions, but con-
tain the same AAGUGCU sequence at positions 1 to 7 and 4 to 10,
respectively.

3.5 Predicted essentiality of human miRNAs
MiRNAs fit into the full regulatory web of the cell through ups-
tream and downstream connections: they control well-separated
groups of target transcripts and their expression is also controlled,
often in groups. The co-expression of two miRNAs may be achie-
ved through different sets of controlling molecules, nevertheless, it
usually reflects a common biological cause. Co-expressing miRNAs
that also co-regulate allows the cell to defend itself against ran-
dom failures. Each of these regulators can be replaced with several
others in most of their regulatory roles. Again, one may think of a
group of workers performing similar tasks together. Removing a sin-
gle worker (a co-expressed miRNA) will not halt production. One
may also imagine individual workers (non-co-expressed miRNAs)
performing their tasks in different locations. Remove one of these
workers and production halts immediately. Such diversified expres-
sion of co-regulating miRNAs provides the cell with the opportunity
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Figure 4. for a randomised control.

to integrate signals and silence the same target group under a num-
ber of different conditions. To determine the participation of each
miRNA in these two mechanisms, error tolerance and signal inte-
gration, we have computed how strongly (on average) each miRNA
is co-expressed with (i) all others and (ii) those in its module.
Observe that if a miRNA is co-expressed with those miRNAs that
it strongly co-regulates with, then in case of a knock-out most of
its regulatory functions can be replaced. On the other hand, the
disruption of a miRNA that is expressed differently from its co-
regulating partners is more likely to strongly reduce the viability of
the cell. Consequently, we define the essentiality of each miRNA,
relative to others, as the ratio between how strongly it participates
in replacement and signal integration (see Methods for details). The
full list of predicted miRNA essentiality values is available in the
Supplementary Material.

Certainly, each miRNA may contribute both to error tolerance and
signal integration to some extent, but since both tasks are based on
the collective action of miRNAs, only module members can contri-
bute significantly. In Fig. 3 we take – as an example – two miRNAs
from the same co-regulation module and show that one of them,
let-7a, is better co-expressed with its co-regulating partners, than
the other, let-7g. Thus, let-7g is more essential than let-7a. Below
we show that the set of predicted most and least essential miRNAs
changes little, if TargetScan is replaced with PicTar as a data source.
Indeed, six of the predicted ten most essential miRNAs are identi-
cal in both cases (see Fig. 4): miR-130a, miR-195, miR-30d, let-7g,
miR-30a-5p and miR-30c. Out of the ten least essential miRNAs
identified with TargetScan and PicTar data, nine are identical: miR-
181a, miR-29b, miR-181b, miR-29c, miR-29a, miR-20a, let-7a,
miR-19b and miR-19a. Many of the miRNAs on these two lists have
been experimentally linked with some form of tumour, as well as
other functions. For example, miR-195 and miR-130a were connec-
ted with cardiac growth and angiogenesis, respectively, and miR-181
with hematopoietic lineage differentiation (Chen et al., 2004; van
Rooij et al., 2006; Chen and Gorski, 2008). As we could not iden-
tify marked functional differences between the predicted most and
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least essential miRNAs, we conclude that essentiality defined in the
above way – low co-expression with strongly co-regulating partners
– cannot be linked with a particular function. Rather, we suggest
that the essentiality of a miRNA is determined merely by its posi-
tion in the co-regulation network relative to other members of the
same co-regulating module.

3.6 MiRNA co-regulation scores, modules and miRNA
essentialities extract high-quality information

The four computational databases compared in Table 1 share only
a small portion of their predicted interactions and up to this point
we have used data only from TargetScan. To validate our results, we
have also performed all analyses above with PicTar data. Similar
to Fig. 1, where the top scoring miRNA - target gene interac-
tions of, e.g., PicTar and TargetScan were compared, in Fig. 5
we compare miRNA - miRNA co-regulation scores and miRNA
essentiality levels computed from PicTar and TargetScan data. The
agreement between the strongest co-regulation scores is much bet-
ter than between the top scoring miRNA - target interaction scores.
As a consequence, the co-regulation modules are also well preser-
ved when TargetScan is replaced by PicTar as a source of primary
data. Note that usually not all miRNAs fall into the co-regulation
modules. If TargetScan interactions are used, then 111 of the 455

miRNAs are in the co-regulation modules. Next, consider PicTar
as a data source. All miRNAs listed by PicTar are listed by Tar-
getScan as well. If we use PicTar data, 70 miRNAs are module
members, out of which 55 were also module members with TargetS-
can data. As a randomised control the chance for at least 55 miRNAs
to be in both results is, according to the hypergeometric distribu-
tion, 3.62 × 10

−26. Thus, the co-regulating modules of miRNAs
computed with PicTar and TargetScan are indeed highly similar. In
the Supplementary Material we show that the co-regulation scores,
modules and miRNA essentialities computed from miRBase and
PITA are also highly similar to TargetScan results.

4 DISCUSSION AND OUTLOOK
Considering the impact of human miRNAs on messenger RNA
and protein levels, direct experimental evidence on the underlying
miRNA - transcript interactions is scarce. Due to this absence it is
not yet possible to measure the precision and coverage of compu-
tationally predicted miRNA - target interaction lists nor to integrate
these lists. Two recent experimental studies (Baek et al., 2008; Sel-
bach et al., 2008) focusing on small numbers of human miRNAs
found two of the computational databases to be the most precise
predictors of mRNA and protein level changes upon miRNA remo-
val and insertion. We used miRNA - target silencing scores from one
of these two sources, TargetScan, and applied data from the other,
PicTar, as a control.

After defining and computing miRNA co-regulation scores we
found that human miRNAs work in well-separated co-regulating
modules. For a possible biochemical explanation consider the fol-
lowing. In transcription regulation transcription factor (TF) proteins
need to recognise a section of a double helical nucleic acid, while in
RNA silencing template formation between sections of two nucleic
acids is necessary. Thus, a short RNA regulator is constrained to
be more specific in the space of transcript (seed) sequences than a
TF protein in the space of DNA sequence motifs. In other words,
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Fig. 5. Comparing TargetScan and PicTar through silencing scores between
miRNA - target gene pairs (solid line, this curve is repeated from Fig. 1),
miRNA - miRNA co-regulation scores (dotted line) and predicted essentiali-
ties of miRNAs (dash-dot). When changing between TargetScan and PicTar
as primary data sources the list of top scoring miRNA co-regulation links
and the list of predicted most essential miRNAs are clearly much better pre-
served than the list of top scoring miRNA - target gene pairs. The end points
of the two upper curves are higher than the end point of the lower curve,
thus, the improvement in data quality cannot be accounted to the reduced
number of items (n).

compared to TF proteins miRNAs are more strongly forced to be
organised into tightly co-regulating modules. One such module is
a group of miRNAs all of which silence almost the same group of
targets and regulate few others.

The examples in Sec. 3.4 show that even though the seeds of
miRNAs in the same co-regulation module are mostly similar (often
identical), there is no one-to-one mapping between modules and
seeds. Rather, each module seems to correspond to a small group
of similar seeds that may be even shifted from the usual position
(residues 2 − 8) to, e.g., the positions 1 − 7 or 4 − 10. We found
that the groups of miRNAs defined by these small groups of seeds
share almost none of their members.

The setup outlined here may be called collective targeting or
“group-to-group control”. We anticipate that in other animal species
translational silencing operates in a similarly specialised, group-
to-group manner. This may partly explain the recent experimental
result that only a very small portion of single miRNAs is essen-
tial for development or viability in C. elegans (Miska et al., 2007).
Landgraf et al. (Landgraf et al., 2007) have reported that in human
and mouse a small set of ubiquitously expressed miRNAs account
for the bulk of cell lineage- and tissue-specific miRNA expression.
Seeking an explanation for this result we argue that – compared
to TFs – among miRNAs ubiquitous expression may be a stron-
ger indicator of essentiality which may lead to the preservation of a
number of ubiquitously expressed miRNAs over evolutionary time
scales. We identified a miRNA as more essential, if it is expres-
sed differently from the miRNAs it co-regulates with. If such a
miRNA is turned off, there are few others that can take over its
silencing tasks precisely without side effects. For example, assume
that a group of target genes is silenced by the miRNA M1 that is
expressed in many tissues and the miRNAs M2, M3, . . . that are
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all expressed in the same single tissue only. We liken this to many
workers performing the same task together (non-essential miRNAs)
as opposed to a single worker performing the task alone (essential
miRNAs). In this case the removal of M1 will leave the group of
target genes unsilenced under many conditions, but the removal of,
e.g., M2 can be compensated for easily. As discussed above, due
to the mechanism of RNA silencing miRNAs often have to regu-
late their targets together with closely co-silencing partners. Within
such co-regulation modules the most broadly expressed miRNAs are
likely to be the most essential.

Recently, Huang et al.(Huang et al., 2007) have combined
miRNA and mRNA expression profiles with predicted miRNA -
mRNA silencing scores to improve the silencing scores. Here we
built the co-regulation network of mRNAs first – using only silen-
cing scores – and then compared miRNA-miRNA co-regulation
with miRNA-miRNA coexpression. The method of the current
paper is probably less applicable to improving the predicted silen-
cing scores of single miRNA-mRNA pairs. However, silencing
scores have currently little direct experimental support and are still
often rather ambiguous (see Table 1 and Fig. 5). The co-regulation
modules of miRNAs and the essentiality scores obtained in the
current paper extract biological information that is robust to this
ambiguity (Fig. 5).

In the current paper we have defined the predicted essentialities
of miRNAs through expression correlations. An interesting, though
conceptually different, definition may focus on single tissues (or
conditions) and compare the expression level of a miRNA in a sin-
gle tissue to its expression levels in all other tissues. We note also
that two recent in silico studies have revealed pathway components
collectively targeted by miRNAs (Gusev et al., 2007) and regula-
tory modules comprising miRNAs and target genes (Yoon and De
Micheli, 2005). However, neither of these two studies discussed the
separation of the co-regulating modules and the improvement in data
quality that can be achieved by data filtering steps. We provide the
experimentally testable hypothesis that after individual deletions of
the predicted six most essential miRNAs, the percentage of inviable
strains will be higher as compared with deletions of the predicted
nine least essential.
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