
A Cost Model Based on Software Maintainability
Tibor Bakota, Péter Hegedűs, Gergely Ladányi, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy

University of Szeged
Department of Software Engineering

Árpád tér 2. H-6720 Szeged, Hungary
{bakotat,hpeter,lgergely,kortve,ferenc,gyimothy}@inf.u-szeged.hu

Abstract—In this paper we present a maintainability based
model for estimating the costs of developing source code in its
evolution phase. Our model adopts the concept of entropy in
thermodynamics, which is used to measure the disorder of a
system. In our model, we use maintainability for measuring
disorder (i.e. entropy) of the source code of a software system. We
evaluated our model on three proprietary and two open source
real world software systems implemented in Java, and found that
the maintainability of these evolving software is decreasing over
time. Furthermore, maintainability and development costs are
in exponential relationship with each other. We also found that
our model is able to predict future development costs with high
accuracy in these systems.

Index Terms—Software maintainability, development cost es-
timation, cost prediction model, ISO/IEC 9126, ISO/IEC 25000

I. INTRODUCTION

Maintainability is generally defined as the effort (i.e. cost)
required to perform specific modifications in a software [1].
Being in direct connection with cost, maintainability is one
of the most important quality characteristics of a software
system. Exploring the relationship of software maintainability
and development cost is one of the central issues in software
maintenance activities today. However, because of the nonexis-
tence of formal definitions and the subjectiveness of the notion
of maintainability, there is currently no common understanding
among researchers about its relation to development costs.

Thanks to the abundance of existing software quality mod-
els [2]–[6], estimating software maintainability is not the most
important challenge nowadays. Although these models may
differ a lot in the approach how maintainability is computed,
they all rest on capturing low level attributes of source code
(e.g. metrics) and aggregating this information to obtain a
single measure for maintainability. Very little is known about
how these models correlate with each other and actually,
answering this question is beyond the scope of this paper.
However, software quality models play a crucial role in our
current work.

In this paper we present a very simple model for relating
development costs to the maintainability of the source code. In
our approach, we adopt the concept of entropy in thermody-
namics, which is used to measure the disorder of a system. In
the case of software systems, maintainability is an appropriate
candidate for measuring disorder (i.e. entropy).

Our model is based on two simple assumptions:

1) When making changes to a software system without
explicitly aiming to improve it (like e.g. adding new
functionalities), its maintainability will decrease (i.e. its
disorder will increase), or at least it will remain un-
changed.

2) Performing changes in a software system with lower
maintainability (i.e. higher disorder) is more expensive.

Only these two assumptions were used to derive a system of
equations which serve as a model for relating maintainability
to development cost. We introduce the notion of erosion factor,
which is a vital parameter of the model, that measures the
amount of “damage” caused by changing source code lines
of a software. As we will show later in Section III, the
erosion factor may also serve as a measure for process quality.
Model parameters can be computed from historical data, like
development costs in the past. After the estimates for the
parameters are available, predictions for the future can be
obtained from the model.

We evaluated the model on five software systems im-
plemented in Java programming language. Three of these
are commercial closed-source systems. In order to facil-
itate the repeatability of the experiments, we performed
the analysis on two open source systems as well. All
data are available as an online appendix to this paper at:
http://www.inf.u-szeged.hu/∼ferenc/papers/ICSM2012

Our findings can be summarized as follows:

• The maintainability of evolving software is decreasing
over time, which is also in accordance with Lehman’s
laws [7].

• Maintainability and development costs are in exponential
relationship with each other.

• The presented model is able to predict future development
costs based on estimated change rate of the code, with
high accuracy.

The paper is organized as follows: in the next section we
give a brief overview of other studies which are related to ours.
Next, in Section III we present the details of our approach. In
Section IV we present the results of the evaluation of our
model on real world systems. Afterwards, we give a brief
overview regarding the threats to validity in Section V. Finally,
we round up with conclusions and future work in Section VI.



II. RELATED WORK

Modeling software development costs has been an intensive
research area for a long time [8]–[12]. Effort estimation is
important not just for software developers [13] but for system
operators, as well [14]. While summaries of research results
achieved in the last thirty years are available [15], [16],
the field still shows very promising undiscovered areas [17].
Relevant comparison studies of different techniques [18] in
various domains [19]–[23] also exist.

As an analogy to the notion of entropy in thermodynamics,
software entropy was first introduced by I. Jacobson et al. [24]
for measuring the disorder of a software system. The second
law of thermodynamics, in principle, states that a closed
system’s disorder cannot be reduced, it can only remain
unchanged or increase. This law also seems plausible for
software systems; as a system is modified, its disorder or
entropy always increases. In accordance with that, Lehman
stated that software, which is being used needs to be changed,
and the changes result in an increased complexity and decrease
of quality [25].

Canfora et al. [26] used software entropy when examin-
ing changes in ArgoUML1 and Eclipse.2 First, the authors
computed source code metrics, various design patterns and
different process metrics. They approximated the cost by
counting the number of contributors to file changes. They
found that different types of changes may contribute either
negatively or positively to the entropy. Namely, refactoring
decreases entropy, while feature development usually increases
it. They also showed that entropy tends to increase with the
number of contributors to file changes.

Bianchi et al. [27] investigated software entropy using bug
information. They showed that constantly changing software
systems are affected by degradation. The authors collected a
dataset from individual groups of university students respon-
sible for developing systems with a predefined functionality.
The dataset consisted of bug reports from various development
stages, which contained the number of found and slipped bugs
as well as the amount of time spent on fixing them. They found
that the more time was spent on bug correction, the harder it
was to correct newly appeared defects. This study correlates
to ours; although we used product metrics instead of process
ones. Moreover, they found that there was high correlation
between the decrease of source code maintainability and the
number of faults in the analysis and design phases.

Hanssen et al. [28] examined software entropy in agile
product development. An industrial study was conducted at a
company with 60 developers. The code being developed was
continuously monitored by a third party consultant using an
automated toolchain. They found that code entropy highly af-
fected agile processes, and development tasks took longer time
when code complexity increased due to entropy. Moreover,
in the short time iterations of the agile model, the resources
needed to detect and resolve coding issues were insufficient.

1http://argouml.tigris.org/
2http://www.eclipse.org/

Instead of lengthening the iterations, the authors gave a viable
solution to overcome code entropy. The authors stated that
refactoring helps to overcome entropy problems in an agile
environment. Our findings are similar, though we stated them
generally for all kinds of development methodologies as the
processes were not taken into account during our experiments.
They suggested using continuous and automated code smell
detection and refactoring to preserve maintainability through
the iterations.

The ways of conducting development effort estimation [29]
range from experience [18] through benchmark [30] to model
based approaches. Several methods using a mixture of the
above techniques also exist [31], [32]. Many researches are
aimed at comparing the different approaches.

In a recent study, Dubey at al. [33] defined a model
based on object-oriented metrics for maintainability analysis.
The authors used the maintainability definition derived from
the ISO/IEC 9126 standard [1]. They proposed high level
properties (e.g. fault proneness, defect density, etc.) of a
software that affect maintainability. An extensive review of
existing methodologies regarding high level characteristics
was performed by the authors. They found that source code
metrics are highly usable for quantifying software maintain-
ability based on ISO/IEC 9126 standard. They created a
non-benchmark based approach by using the Chidamber &
Kemerer object-oriented metrics suite [34]. No experimental
validation of the model was conducted. We used our previously
published model [4] based on source code metrics to quantify
maintainability. Our model is using a benchmark database
of the source code measurement data of many systems from
various domains.

Radlinski and Hoffman [35] compared 23 machine learning
algorithms using local data as a benchmark for development
effort prediction. The four datasets used for the experiments
contained both process and product information, but lacked
source code metrics (except KLOC, measuring the lines of
code). The accuracy of the algorithms was highly dependent on
the set of predictors, therefore no universal machine learning
algorithm was found by the authors. Instead, they found that
running several algorithms using arbitrary predictors could
serve as a good starting point for project managers on esti-
mating development costs.

Several comprehensive studies summarize the effectiveness
of various cost prediction methodologies.

Riaz et al. [36] examined 710 studies and selected 15 for
an in-depth analysis. Their aim was to evaluate the ability of
existing methods to measure maintainability. The paper gives
a thorough overview of the interpretations of maintainability
and summarizes the most commonly used techniques for
defining it. The authors analyzed the measures used by these
approaches and also the accuracy of the prediction results. A
systematic review of research questions found in the papers
was performed. The answers of these questions were used
to grade the effectiveness of the studies based on a system
of criterions. They found that there is little evidence on the
effectiveness of maintainability prediction models.



Mair et al. [37] examined 171 papers regarding analogy and
regression based techniques for cost estimation. They proposed
a broad selection of criterions for defining the effectiveness of
the different approaches. They found that regression models
performed poorly, while analogy based methods were much
superior. In many cases, the two different methods provided
conflicting results on the same dataset. Case based reasoning
using a benchmark database gave fine results in general, but
exceptions were also found. Due to the lack of standardization
in software quality assurance, no universally good method was
found by the authors for conducting software cost estimation.

III. APPROACH

Our approach presented in this section is based on soft-
ware entropy. In thermodynamics, entropy is a measure of
the disorder of a system. According to the second law of
thermodynamics, the entropy of a closed system cannot be
reduced; it can only remain unchanged or increase. The only
way to decrease entropy (disorder) of a system is to apply
external forces, i.e. to put energy into making order.

We will apply the notion of entropy in a very similar way for
software systems. Maintainability of a source code is usually
defined as a measure of the effort required to perform specific
modifications in it. Assuming that the higher the disorder
is, the more effort is needed to perform the modifications,
maintainability can be interpreted as a measure of the disorder,
i.e. entropy of the source code.

Our approach lays on two basic assumptions, which we
mentioned already in the Introduction section:

1) Making changes in a source code does not decrease the
disorder of it, provided that one does not work actively
against this. In other words, when making changes to a
software system without explicitly aiming to improve it,
its maintainability will decrease, or at least it will remain
unchanged.

2) The amount of changes applied to the source code is
proportional to the effort invested, and to the maintain-
ability of the code. In other words, if one applies more
effort, the code will change faster. Additionally, a more
maintainable code will change faster, even if the applied
effort is the same. Another interpretation is that the effort
aiming on code change is inversely proportional to the
maintainability at a particular time t.

Before formalizing these assumptions, we introduce the
following notions:

• S (t) - the size of the source code at time t, measured in
lines of code.

• λ (t) - the change rate of the source code at time t, i.e. the
probability of changing any line independently. S (t)λ (t)
equals the number of lines changed at time t.

• k - a constant for the conversion between different units
of measure. Our approach deals with two scalar measures:
maintainability and cost. We do not fix particular units
of measure for each, instead we introduce the conversion
constant k. In the sequel, we may assume without the

loss of generality, that cost is expressed by any measure
of effort, e.g. salary, person month, time, etc., while
maintainability may have any other scalar measure. In
practice, after fixing the measures of unit for each, k can
be estimated from historical project data.

• C (t) - the cost invested into changing the system until
time t, measured from an initial time t = 0. Obviously,
C (0) = 0.

• M (t) - maintainability (i.e. disorder) of the system at
time t.

In the following, we assume that modifications do not
explicitly aim on code improvement, meaning that only new
functionality is being added to the system and no refactoring
or other explicit improvements are done. In this case, the first
assumption above can be formalized as follows:

dM (t)

dt
= −qS (t)λ (t) (q ≥ 0) , (1)

meaning that the decrease rate of maintainability is pro-
portional to the number of lines changed at time t. The
constant factor q is called the erosion factor which repre-
sents the amount of “damage” (decrease in maintainability)
caused by changing one line of the code. The erosion fac-
tor depends on many internal and external factors like the
experience and knowledge of the developers, maturity of
development processes, quality insurance processes used, tools
and development environments, the programming language,
the application domain, etc. The q ≥ 0 assumption makes it
impossible for the code to improve by itself just by adding new
functionality. The assumption is in accordance with Lehman’s
laws of software evolution, which state that the complexity of
evolving software is increasing, while its quality is decreasing
at the same time.

Formalizing the second assumption, leads us to the follow-
ing equation:

dC (t)

dt
= k

S (t)λ (t)

M (t)
. (2)

The nominator represents the amount of change introduced
at time t. The formula states that the utilization of the
cost invested at time t for changing the code is inversely
proportional to maintainability.

Solving the above system of ordinary differential equations,
yields the following result:

C (t1)− C (t0) =

∫ t1

t0

k
S (t)λ (t)

M (t)
dt = −k

q

∫ t1

t0

Ṁ (t)

M (t)
dt =

= −k

q
[lnM (t1)− lnM (t0)] = −k

q
ln

M (t1)

M (t0)
. (3)

By expressing M (t) from the above equation, we get to
the main result:

M (t1) = M (t0) e
− q

k (C(t1)−C(t0)), (4)

which suggests that the maintainability of a system decreases
exponentially with the invested cost to change the system.



The erosion factor q determines the decrease rate of main-
tainability. It is obvious that for a higher erosion factor
the decrease rate will be higher as well. It is crucial for
software development companies to push the erosion factor
as low as possible, for instance by training the employees,
improving processes, utilizing sophisticated quality assurance
technologies.

Although, the formula does not provide a way of having
an absolute measure for maintainability, one can easily define
a relative maintainability for the system. Indeed, by letting
t0 = 0, and defining M (0) = 1, we get to the following
function for maintainability:

M (t) = e−
q
kC(t) (5)

For the interpretation, let us consider two artificial scenarios.
Figure 1 shows the case, when the invested effort is constant
over the time. In this case, both the maintainability M (t) and
the change rate λ (t) decrease exponentially.

Figure 1. Changes of Change rate (λ (t)) and Maintainability (M (t)) when
the cost of the development (C (t)) is constant over time.

In the other case, let us suppose that one intentionally wants
to keep the change rate of the system constant. Figure 2
shows how the maintainability M (t) and the overall cost
C (t) change over time. Now, the maintainability decreases
linearly until it reaches zero, while the cost is increasing faster
than an exponential rate. The cost will reach infinity in finite
time, exactly when maintainability reaches zero, meaning that
any further change would require infinite amount of effort.
This is, of course, just a theoretical possibility, as no one
disposes an infinite amount of resources required to degrade
the maintainability of a system to absolute zero.

The problem with applying the model to real-world software
systems lies in the erosion factor q. While the other model
parameters (k and C (t)) can be computed easily, the erosion
factor, which measures the “damage” caused by changing
one line, is challenging. Contrarily, if there was an abso-
lute measure of maintainability, the constant, project specific
erosion factor q could easily be computed by expressing it
from Equation 5. Furthermore, by having an absolute measure
for q as well, the erosion factors of different projects, orga-
nizations could be compared. The analysis of the causes of

Figure 2. Changes of Cost (C (t)) and Maintainability (M (t)) when the
Change rate (λ (t)) is constant over time.

the differences would make it possible to lower the erosion
factor, e.g. by improving the processes, training people, etc.
In addition, the overall cost of development could also be
expressed explicitly from the model:

C (t) = −k

q
ln

∣∣∣∣1− q

M (0)

∫ t

0

S (s)λ (s) ds

∣∣∣∣. (6)

For computing future development costs, it would just be
required to have an estimate for the change rate λ (t) over a
time period.

In one of our earlier papers [4] we presented an approach for
obtaining an absolute measure of maintainability for software
systems. We used source code metrics and benchmarks to
probabilistically approximate a benchmark independent mea-
sure of maintainability. In this paper, we use this approach
for computing absolute maintainability, to obtain an absolute
erosion factor q, which can be used to estimate further devel-
opment costs and to compare the erosion factors of different
projects and organizations.

IV. VALIDATION RESULTS

In order to evaluate the presented cost model, we analyzed
a large number of consecutive versions of five different Java
projects. Three of these are commercial, closed source sys-
tems, which will be referred to as System-1, System-2 and
System-3. To facilitate the repeatability of the experiments, we
performed the analysis of two open source systems as well.
Some of the relevant details about the analyzed systems are
listed in Table I.

Table I
PROPERTIES OF THE ANALYZED SYSTEMS

System Nr. of First date Last date System size3 Nr. of
revisions interval authors

System-1 149 06/03/2011 01/31/2012 14175-24861 7
System-2 357 05/09/2008 03/09/2010 53262-143017 21
System-3 641 11/05/2010 10/12/2010 128653-148903 12
jEdit4 1370 09/02/2001 07/25/2006 30986-96203 18
log4j5 1889 12/14/2000 08/15/2007 1464-25642 17

3Measured by the total of non-empty non-comment lines of code (TLLOC)
4https://jedit.svn.sourceforge.net/svnroot/jedit/jEdit/branches/4.5.x
5http://svn.apache.org/repos/asf/logging/log4j/branches/BRANCH_1_3



The reader may have noticed that the model presented in
this paper deals with parameters which must be approximated
in order to work. For computing the k and q parameters of
the model, one needs to know C (T0) for some T0 > 0, i.e.
the cost of development until time T0. This can usually be
estimated by using historical project records, but can also be
approximated in other ways. After k and q are computed for
some time T0 (i.e. the model is trained), the model can be used
to make predictions for C (t) , t > T0. Unfortunately, historical
records regarding the development costs were not available in
any of the cases. Therefore, in order to conduct the evaluation,
we were forced to make assumptions regarding the costs: we
assumed that the costs of the development are proportional to
the elapsed time. Provided that, in case of industrial systems,
fixed teams are usually working on a project with relatively
little variations in their size, the assumption does not seem
too restricting. Unfortunately, this might not be the case with
open source systems: there is usually no stakeholder enforcing
steady expectations regarding the invested effort. We treat the
case of open source systems as a threat to validity because of
this assumption.

We performed the evaluation according to these steps:

1) First, we checked out every revision of the source code
of each system from their configuration management
systems.

2) We calculated the maintainability of each source code
revision by using our probabilistic software quality
model [4]. We used this number as an approximation of
M (t).

3) For each source code revision, we computed the number
of changed source code lines (added, deleted and mod-
ified), compared to the previous revision. The number
obtained in this way is exactly equal to S (t)λ (t),
therefore computing S (t) explicitly is not necessary.

4) We computed estimates for k and q from Equation 2
and Equation 5, respectively, at some time T0 > 0. The
estimates for k and q are the following:

k = C (T0)

(
1/

∫ T0

0

S (t)λ (t)

M (t)
dt

)
, (7)

and

q = − k

C (T0)
ln

M (T0)

M (0)
. (8)

5) These estimates, being constants according to our model,
are valid for time t > T0, and can be used to make
predictions by using Equation 6. The predicted costs will
be denoted by C̃ (t).

For computing the number of modified lines of code, in
step three, we used a heuristic algorithm that combines diffs
returned by the SVN client. We consider it as a threat to
validity as well.

Different aspects of our findings are summarized in the
following subsections.

A. The maintainability of evolving software is decreasing over
time

The dark lines on the right hand side diagrams in Figure 3
show how maintainability M (t) changes as a function of
time t, measured in number of revisions. All of the charts
show a decreasing tendency of maintainability as more effort
is put in the development of these systems. To confirm the
intuitive feeling of decreasing functions, the linear regression
lines and their equations are also visible on the diagrams. All
the coefficients of x being negative, the average decrease of
maintainability follows in every case, which is in accordance
with Lehman’s laws [7].

B. Maintainability and development costs are in exponential
relationship with each other

Let M̃ (t) denote the predicted maintainability computed by
using Equation 5 and C̃ (t) (the cost function predicted by the
model). Clearly, M̃ (t) decreases exponentially as a function
of C̃ (t). It is sufficient to show that the real cost C (t) highly
correlates with the predicted cost C̃ (t) and real maintainability
M (t) with the predicted maintainability M̃ (t) for some k
and q constants. It would mean, that for some parameters, the
model describes the real world relatively well. Consequently,
measured maintainability would be decreasing exponentially
as a function of real costs (at least with high correlation).

We may compute estimates for any time T0 > 0 as
suggested in step 4 above. Obviously, for larger T0 values,
the estimates are better, provided that more historical data is
available for training the model. By taking the last revisions,
i.e. the biggest possible T0, we obtain the best estimates for
k and q. These constants are then used to compute C̃ (t) and
M̃ (t) for any t ≥ 0.

The left-hand side diagrams in Figure 3 show both C (t)
(dark) and C̃ (t) (light) functions. On the right-hand side, the
dark lines visualize the changes of M (t), while the light
ones show M̃ (t). The diagrams also show the Pearson’s
correlations between the real and the predicted curves. The
high correlations indicate, that both costs and maintainability
are well described by the model, at the same time. It follows,
that maintainability and cost are in exponential relationship
with each other in a way prescribed by the model, with a high
correlation. In case of System-3 and log4j the correlations are
slightly worse than in the other cases. The reason of that might
be that the time period of the analysis was relatively short, and
lots of refactoring work was done, according to the SVN logs.

C. The presented model is able to predict future development
costs based on change rate of the code, with high accuracy

In the previous subsection we showed that the model param-
eters k and q can be chosen such that the model describes real
world costs and maintainability with high correlation. Figure 4
shows the estimated k, q and q/k values for every system.

Based on the diagram, the most damage is caused in
System-1 when changing one line, as the erosion factor q is
the largest in this case. This might be due to the rapid and
intensive development of System-1 during the analyzed period.



Figure 3. Estimated and real costs and maintainability as functions of time

This is also the system whose maintainability decreases the
most, provided that the applied effort is the same, because the
q/k is also the largest in this case. The conversion constant
k is the largest for log4j, meaning that same amount of effort
induces less amount of changes compared to the other systems.

For estimating the cost of a new development, Equation 2
of the model requires to have an estimation of the total
amount of lines that will change, and the function describing
maintainability change in the future. Although the total number
of changes can be estimated in advance, based on requirement



Figure 4. The calculated constant values for the different systems

and impact analysis [38], the maintainability is obviously
unavailable before the changes would have been committed,
and maintainability would have been measured. Fortunately,
the erosion factor introduced by Equation 1 in Section III
makes it possible to approximate future maintainability based
on estimated change rates. Future development costs can be
computed using Equation 6, without having to know the
change of maintainability in advance.

To validate the prediction power of our model, we per-
formed future estimations with different window sizes mea-
sured in time. For a particular window size n > 0, we used
the model to compute the estimated cost at time t, based
on the already known cost at t − n (≥ 0) and the planned
amount of changes between t − n and t. In other words, at
time t−n we are trying to estimate the overall cost at time t,
by knowing the overall cost until time t− n and the planned
amount of future changes. In this way, for a particular window
of size n we obtain a sequence of predicted costs, for time
n + 1, n + 2, etc. Window sizes vary form 1 to the largest
possible ones, i.e. the number of revisions available. When
the window size is 1, it means that the development cost of a
revision is being approximated based on the previous revision,
and the changes between them. In the case of the largest
possible window, the overall development cost of the whole
period is estimated based on the initial cost (which is zero),
and the future changes. For every window size, we computed
both the mean squared error [39] and Pearson’s correlation
between the real costs and the ones predicted by the model.

For comparability reasons, we also performed another, clas-
sical type of cost estimation. Namely, for estimating future
costs, we computed the average cost of a change up to time
t − n, then interpolated the future cost by multiplying the
average change cost with the amount of overall change till
time t. In other words, we computed the average change cost
based on historical data, and expected it to remain the same
in the future. This classical model, differs from ours, as it
does not take the change of maintainability over time into
account, which makes the changes more and more expensive.
We will refer to this classical type of cost estimation as linear
prediction.

The left-hand side diagrams in Figure 5 show how the mean
squared errors (MSE) behave for various window sizes, while

on the right-hand side the correlations of the predicted and real
costs are visible. In both cases, the x-axis stands for the size
of the window, measured in number of revisions, i.e. time, and
the y-axis shows the MSE and Pearson’s correlation values,
respectively.

Seemingly, both models become more and more precise
for larger window sizes, but this happens only because the
prediction sequences are getting shorter. For example, in the
case of the largest possible window size, only one cost value
is predicted, the last one.

It can be seen that the predictions made by the presented
model outperform the classical linear model, which does
not take the changes of maintainability into account. The
differences are especially noticeable for larger window sizes,
i.e. long term predictions. Actually, it is a natural phenomenon,
because changes of maintainability are more significant in
longer periods of time.

V. THREATS TO VALIDITY, LIMITATIONS

First of all, our cost model is based on two assumptions
described in Section I. If these assumptions do not hold, our
cost model may be invalid. However, our practical experience
and the feedbacks from our industrial and research partners
show that these assumptions are reasonable.

Another threat to the validity is that we assume that the k
conversion and q erosion factors in the model are constants.
It might be possible that these factors are changing over
time in reality. But even if this is the case, it only means
that further improvements in the prediction model can be
achieved. Our aim was to validate a new approach for software
maintainability based cost estimation and not to model it in
full detail. The presented model is a simplistic cost model that
appears to be very expressive in its current form according to
the empirical results shown in Section IV.

Due to the lack of real data, we had to apply heuristics
several times in the work. For calculating the total amount of
changed lines between two revisions of the system, we used
the SVN diff command that returns only added and removed
lines. Modified lines are presented by consecutive inserted and
deleted lines. Although our algorithm for calculating modified
lines might not be totally precise, it does not affect the
achieved results too much. Our experiments show that we get



Figure 5. The mean squared errors and correlations of the linear and model predictions

similarly good results using only the number of inserted lines
as a measure of total changes.

Not being able to collect real efforts from tracking sys-
tems, we assumed that the amount of invested cost to the
development is proportional to the elapsed time. The reason

behind this is that usually there is a constant team developing
the software, putting a constant amount of effort into the
development. This was the case for the three proprietary
systems that we analyzed but a possible threat to validity might
be that this assumption is not valid for open source systems.



Another major threat to validity is using our previously pub-
lished model for calculating maintainability values. Although
we have done some empirical validation on our probabilistic
quality model in our previous work, we cannot state that the
used maintainability model is fully validated. Moreover, as the
ISO/IEC 9126 standard is not defining the low-level metrics,
the results can vary depending on the quality model’s settings
(chosen metrics and weights given by professionals). It is also
very important to have a source code metrics repository with a
large enough number of systems to get an objective absolute
measure for maintainability. The maintainability model uses
only source code metrics and no process metrics at all. All
these factors are possible threats to validity, but our first results
and continuous empirical validation of the maintainability
model proves its applicability and usefulness.

Seemingly, the model cannot deal with refactoring and other
improvements, as it assumes that only pure feature develop-
ments are allowed. Fortunately, considering these activities as
part of the development or quality assurance processes, which
are meant to moderate quality degradation, they are implicitly
encoded in the erosion factor q. In particular, q is smaller in
cases when refactoring and other improvements are performed
regularly or even occasionally. Therefore, we do not consider
this as a threat to validity.

A major limitation of the approach is that the predictions are
made based on the amount of changes of lines in the system,
which makes the model less useful in practice. This restriction
follows from the simplicity of the model. However, the model
can be easily altered to use function points instead of line
changes, yielding a more practical prediction model. We chose
to use line changes, because they can easily be extracted from
a configuration management system, which is not the case with
function points.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a cost model based on software
maintainability. The model describes the relationship between
the change rate of the source code, the maintainability of
the system and the costs of development. Measuring software
maintainability is one of the core parts of our cost model.
For measuring the maintainability we applied the probabilistic
quality model introduced in our previous work [4].

To validate our approach we analyzed five Java systems
(three proprietary and two open source) and collected a vast
amount of data. Altogether 4,396 different revisions of the
systems and more than 1 million lines of code changes
were examined. We also checked all the change set logs
of those commits that caused a larger improvement in the
maintainability of the system manually. In most of the cases
some kind of refactoring (e.g. component replacing) caused
the improvement, which further strengthens our theory that
pure development does not improve the maintainability of the
software. The analysis of the empirical data shed light to the
following important findings:

• The maintainability of an evolving software is decreasing
over time.

• Maintainability and development costs are in exponential
relationship with each other.

• The presented model is able to predict future development
costs based on estimated change rate of the code, with
high accuracy.

Although our model and analysis process contains some
threats to validity, we believe that the results are very valuable,
and reflect the theoretical connection between development
costs and software maintainability.

Of course, our presented work is just a small step in the
direction of connecting software maintainability with devel-
opment costs, but we have lots of plans for future work to
further improve our cost and maintainability models. First of
all, for making our results more general, we would like to
repeat the empirical analysis on more proprietary and open
source systems.

In the current approach we consider the q erosion and
k conversion factors as constants. Although this simplifies
our model, in reality these numbers might change over time
(e.g. by changing development processes or changes in the
economy). Further investigation and modeling of these values
is planned to improve the precision of our cost model.

It would also be interesting to compare the erosion factors
of software systems developed by different companies. The
question is how these factors are related to different company-
specific processes and regulations, the nature of the develop-
ment, the domain of the developing systems, etc. Based on the
findings we could introduce cost predictors based on processes
of the developers (according to CMM [40] or CMMI) based
on the early work of Knox [41] and taking into account
governance, based on the work of Capra et al. [42]. We could
also examine the correlation of the invested effort with the
applied process maturity of the company.

As the model for estimating software maintainability plays
an important role in our approach, improving it may also
help enhancing the cost model. A possible improvement to
the maintainability model is to make it compatible with the
ISO/IEC 25000 standard, the successor of ISO/IEC 9126.
Another possibility is to extend the input of the model with
process metrics and other important aspects of software main-
tainability.

ACKNOWLEDGEMENTS

This research was supported by the Hungarian national
grants GOP-1.1.1-11-2011-0038, GOP-1.1.1-11-2011-0006,
and OTKA K-73688.

REFERENCES

[1] ISO/IEC, ISO/IEC 9126. Software Engineering – Product quality.
ISO/IEC, 2001.

[2] T. Kuipers and J. Visser, “Maintainability Index Revisited - position
paper,” in System Quality and Maintainability, satellite of CSMR 2007.
IEEE Computer Society Press, 2007.

[3] J. P. Correia and J. Visser, “Certification of Technical Quality of
Software Products,” in Proc. of the Int’l Workshop on Foundations and
Techniques for Open Source Software Certification, 2008, pp. 35–51.

[4] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy, “A
probabilistic software quality model,” in Software Maintenance (ICSM),
2011 27th IEEE International Conference on, sept. 2011, pp. 243 –252.



[5] E. Georgiadou, “Gequamo - a generic, multilayered, customisable,
software quality model,” Software Quality Control, vol. 11, no. 4, pp.
313–323, Nov. 2003. [Online]. Available: http://dx.doi.org/10.1023/A:
1025817312035

[6] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard, “An
activity-based quality model for maintainability,” in Proceedings of the
23rd International Conference on Software Maintenance (ICSM 2007).
IEEE Computer Society. Society Press, 2007.

[7] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry,
and W. M. Turski, “Metrics and laws of software evolution
- the nineties view,” in Proceedings of the 4th International
Symposium on Software Metrics, ser. METRICS ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 20–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=823454.823901

[8] A. Albrecht and J. Gaffney, J.E., “Software function, source lines of
code, and development effort prediction: A software science validation,”
Software Engineering, IEEE Transactions on, vol. SE-9, no. 6, pp. 639
– 648, nov. 1983.

[9] Y. Miyazaki and K. Mori, “Cocomo evaluation and tailoring,”
in Proceedings of the 8th international conference on Software
engineering, ser. ICSE ’85. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1985, pp. 292–299. [Online]. Available:
http://dl.acm.org/citation.cfm?id=319568.319657

[10] C. F. Kemerer, “An empirical validation of software cost estimation
models,” Commun. ACM, vol. 30, pp. 416–429, May 1987. [Online].
Available: http://doi.acm.org/10.1145/22899.22906

[11] A. Cuelenaere, M. van Genuchten, and F. Heemstra, “Calibrating
a software cost estimation model: why and how,” Information
and Software Technology, vol. 29, no. 10, pp. 558 – 567,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0950584987900899

[12] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes:
Cocomo 2.0,” Annals of Software Engineering, vol. 1, pp. 57–94,
1995, 10.1007/BF02249046. [Online]. Available: http://dx.doi.org/10.
1007/BF02249046

[13] N. Nan and D. Harter, “Impact of budget and schedule pressure on
software development cycle time and effort,” Software Engineering,
IEEE Transactions on, vol. 35, no. 5, pp. 624 –637, sept.-oct. 2009.

[14] B. W. Boehm, “Software engineering economics,” Software Engineering,
IEEE Transactions on, vol. SE-10, no. 1, pp. 4 –21, jan. 1984.

[15] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software
quality models: Purposes, usage scenarios and requirements,” in Soft-
ware Quality, 2009. WOSQ ’09. ICSE Workshop on, may 2009, pp. 9
–14.

[16] M. Jorgensen and M. Shepperd, “A systematic review of software de-
velopment cost estimation studies,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 33 –53, jan. 2007.

[17] M. Shepperd, “Software project economics: a roadmap,” in Future of
Software Engineering, 2007. FOSE ’07, may 2007, pp. 304 –315.

[18] M. Jorgensen, B. Boehm, and S. Rifkin, “Software development effort
estimation: Formal models or expert judgment?” Software, IEEE, vol. 26,
no. 2, pp. 14 –19, march-april 2009.

[19] L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. D.
Maxwell, “An assessment and comparison of common software
cost estimation modeling techniques,” in Proceedings of the 21st
international conference on Software engineering, ser. ICSE ’99.
New York, NY, USA: ACM, 1999, pp. 313–322. [Online]. Available:
http://doi.acm.org/10.1145/302405.302647

[20] L. C. Briand, T. Langley, and I. Wieczorek, “A replicated assessment
and comparison of common software cost modeling techniques,”
in Proceedings of the 22nd international conference on Software
engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp. 377–
386. [Online]. Available: http://doi.acm.org/10.1145/337180.337223

[21] T. Lee, D. Choi, and J. Baik, “Empirical study on enhancing the accuracy
of software cost estimation model for defense software development
project applications,” in Advanced Communication Technology (ICACT),
2010 The 12th International Conference on, vol. 2, feb. 2010, pp. 1117
–1122.

[22] P. Nesi and T. Querci, “Effort estimation and prediction of object-
oriented systems,” Journal of Systems and Software, vol. 42, no. 1,
pp. 89 – 102, 1998. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121297100218

[23] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented
design metrics as quality indicators,” Software Engineering, IEEE Trans-
actions on, vol. 22, no. 10, pp. 751 –761, oct 1996.

[24] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[25] M. M. Lehman and L. A. Belady, Eds., Program evolution: processes of
software change. San Diego, CA, USA: Academic Press Professional,
Inc., 1985.

[26] G. Canfora, L. Cerulo, M. Di Penta, and F. Pacilio, “An exploratory
study of factors influencing change entropy,” in Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on, 30 2010-july 2
2010, pp. 134 –143.

[27] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio, “Evaluating
software degradation through entropy,” in Software Metrics Symposium,
2001. METRICS 2001. Proceedings. Seventh International, 2001, pp.
210 –219.

[28] G. Hanssen, A. Yamashita, R. Conradi, and L. Moonen, “Software
entropy in agile product evolution,” in System Sciences (HICSS), 2010
43rd Hawaii International Conference on, jan. 2010, pp. 1 –10.

[29] B. Boehm, C. Abts, and S. Chulani, “Software development cost
estimation approaches Ů a survey,” Annals of Software Engineering,
vol. 10, pp. 177–205, 2000, 10.1023/A:1018991717352. [Online].
Available: http://dx.doi.org/10.1023/A:1018991717352

[30] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating
software development effort,” Software Engineering, IEEE Transactions
on, vol. 21, no. 2, pp. 126 –137, feb 1995.

[31] P. Pendharkar, G. Subramanian, and J. Rodger, “A probabilistic model
for predicting software development effort,” Software Engineering, IEEE
Transactions on, vol. 31, no. 7, pp. 615 – 624, july 2005.

[32] M. Klas, A. Trendowicz, Y. Ishigai, and H. Nakao, “Handling estimation
uncertainty with bootstrapping: Empirical evaluation in the context of
hybrid prediction methods,” in Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on, sept. 2011,
pp. 245 –254.

[33] S. K. Dubey and A. Rana, “Assessment of maintainability metrics
for object-oriented software system,” SIGSOFT Softw. Eng. Notes,
vol. 36, no. 5, pp. 1–7, Sep. 2011. [Online]. Available: http:
//doi.acm.org/10.1145/2020976.2020983

[34] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476 –493, jun 1994.

[35] L. Radlinski and W. Hoffmann, “On predicting software development
effort using machine learning techniques and local data,” in International
Jounral of Software Engineering and Computing, ser. Vol.2, No.2.
International Science Press, 2010.

[36] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of
software maintainability prediction and metrics,” in Proceedings
of the 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 367–377. [Online]. Available:
http://dx.doi.org/10.1109/ESEM.2009.5314233

[37] C. Mair and M. Shepperd, “The consistency of empirical comparisons
of regression and analogy-based software project cost prediction,” in
Empirical Software Engineering, 2005. 2005 International Symposium
on, nov. 2005, p. 10 pp.

[38] M. Lee, A. J. Outt, and R. T. Alexander, “Algorithmic analysis of the
impacts of changes to object-oriented software,” in In Proceedings of
the International Conference on Software Maintenance. IEEE, 2000,
pp. 171–184.

[39] D. M. Allen, “Mean square error of prediction as a criterion for
selecting variables,” Technometrics, vol. 13, no. 3, pp. 469–475, 1971.
[Online]. Available: http://www.jstor.org/stable/1267161?origin=crossref

[40] M. Agrawal and K. Chari, “Software effort, quality, and cycle time: A
study of cmm level 5 projects,” Software Engineering, IEEE Transac-
tions on, vol. 33, no. 3, pp. 145 –156, march 2007.

[41] S. T. Knox, “Modeling the Cost of Sofware quality,” in Digital Technical
Journal, ser. Vol.5 No.4, 1993.

[42] E. Capra, C. Francalanci, and F. Merlo, “An empirical study on the
relationship between software design quality, development effort and
governance in open source projects,” Software Engineering, IEEE Trans-
actions on, vol. 34, no. 6, pp. 765 –782, nov.-dec. 2008.


