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Abstract. The maintainability of software systems is getting more and
more attention both from researchers and industrial experts. This is due
to its direct impact on development costs and reliability of the software.
Many models exist for estimating maintainability by aggregating low
level source code metrics. However, very few of them are able to predict
the maintainability on method level; even fewer take subjective human
opinions into consideration. In this paper we present a new approach to
create method level maintainability prediction models based on human
surveys using regression techniques.
We performed three di�erent surveys and compared the derived predic-
tion models. Our regression models were built based on approximately
150 000 answers of 268 persons. These models were able to estimate the
maintainability of methods with a 0.72 correlation and a 0.83 mean ab-
solute error on a continuous [0,10].

Keywords: Software maintainability, Regression analysis, ISO/IEC 9126,
Comparative study

1 Introduction

Analyzing the maintainability of software systems is one of the core research
topics in the �eld of software engineering. This is due to its direct impact on
development costs and reliability of the software [3]. The development costs of a
system with poor maintainability are signi�cantly higher and unexpected errors
are more likely to occur. This might be critical in many software domains, e.g.
air tra�c control, banking systems or energetics.

In our previous work [11] we built a maintainability model based on the
ISO/IEC 9126 [13] standard by applying classi�cation algorithms (using source
code metrics as predictors) on manually labeled methods. The labeling of 350
Java methods was performed by 35 IT experts in such a way that each expert
evaluated 10 di�erent methods. Although the classi�cation models worked well
in classifying the maintainability of methods using 3 classes: good, average, bad;
using a �ner scale the precision of the models decreased. We have found out that
this is due to the deviation of the experts' votes and the classi�cation performs
badly in an unbalanced training set (almost 70% of the labeled methods fell
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into the good category). To overcome this problem we improved our surveys in
two di�erent ways: �rst, only one expert was asked to evaluate lots of methods
while in the other case one method was evaluated by more participants and the
evaluation score of the methods were calculated as the averages of the votes.

Moreover, instead of using classi�cation we applied regression techniques to
assess the tendency of maintainability on a much �ner scale. As it de�ned in [18]
predicting the values of numeric or continuous attributes is known as regression
in the statistical literature. Regression di�ers from classi�cation in that the out-
put or predicted feature in regression problems is continuous. However, many
standard classi�cation techniques (e.g. neural networks, decision trees) can be
adapted for regression. In this paper we present and compare the results of the
regression models based on the following three surveys:
• Experts' evaluation. More experts evaluated the methods; every method
was evaluated by only one expert.

• One person's evaluation. One expert evaluated all the methods; every
method was evaluated by this expert.

• Students' evaluation. A large number of students evaluated the methods;
every method was evaluated by at least 7 students.

Our regression models were built based on approximately 150 000 answers of 268
persons. These models were able to estimate the maintainability of methods with
a 0.72 Pearson-correlation and a 0.83 mean absolute error on a continuous [0,10]
scale where 0 means the absolutely not maintainable and 10 means the perfectly
maintainable source code. With the improved surveys we tried to answer the
following research questions:

Research question 1: How e�ectively can we apply regression techniques

to predict maintainability sub-characteristic on a continuous scale?

Research question 2: How is the prediction of regression models a�ected

by the underlying surveys?

The rest of the paper is structured as follows. In Section 2 we overview
the related work. Then, in Section 3 we introduce the improved surveys and
technical details about the performed evaluations. Section 4 presents the results
of the surveys and the comparison of the di�erent regression models. Afterwards,
Section 5 discusses the known threats to the validity of our work. Finally, we
conclude the paper and present future work in Section 6.

2 Related Work

The ISO/IEC 9126 model clearly de�nes the characteristics of software quality
but it does not provide su�cient details about how one should calculate them
in practice. Using the results of static source code analyzers is one of the most
widespread solutions to calculate an external quality attribute from internal
quality attributes [5]. There are several case studies about that the metrics are
appropriate indicators for external quality attributes such as code fault proneness
[7] [9] [15], maintainability [1] and attractiveness [14].

Dagpinar and Jahnke [8] indicated that size and coupling metrics are sig-
ni�cant predictors for measuring maintainability of classes while inheritance,
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cohesion, and indirect/export coupling measures are not. Contrary to them we
investigated the maintainability on method level rather than class or system
level. We used the following method level metrics: method coupling, complexity,
size, number of coding rule violations and clone metrics.

Wang, et al. [17] compared di�erent machine learning algorithms to predict
software defects. They found that multiple classi�ers (e.g. Bagging, Boosting,
Random trees, Vote) can e�ectively improve classi�cation performance of the
single classi�ers like Naive Bayes. The e�ciency of the classi�cation algorithms
were tested on 14 datasets and the average accuracy of the best algorithm (Vote)
was 88.48%. We also used single (Linear Regression, Neural Network) and multi-
ple (Bagging) machine learning algorithms, but our purpose was not to compare
the e�ciency of these techniques, but to �nd out how well these algorithms are
applicable to predict the maintainability sub-characteristics.

There are several models for calculating maintainability in a direct way [2]
[4] [12] [16]. All of them use some kind of aggregation technique based on various
metrics. For example Heitlager et al. [12] proposed an extension of the ISO/IEC
9126 model where metric values are split into �ve categories, from poor (--) to
excellent (++). The evaluation in their model means summing the values for each
attribute and then aggregating the values for sub-characteristics. Similarly to
them we also tried to provide a bridge between source code metrics and the high
level ISO/IEC 9126 quality characteristics, but we approximated maintainability
on the level of methods and our estimation model is based on subjective opinions
of many IT experts.

3 Applied Surveys

As a sequel of our previous work [11] 268 participants took part in the experi-
ment where the three surveys introduced in Section 1 were performed and more
than 150 000 questions were answered (for evaluation statistics see Table 1).
The participants had to score the sub-characteristics of maintainability de�ned
by the ISO/IEC 9126 standard (analyzability, changeability, testability, stability)
and a new quality attribute, comprehensibility, introduced by us [11]. Besides
these quality attributes, the students had to evaluate the maintainability of the
methods as well. The evaluation has been performed with the help of our on-
line survey system called Metric Evaluation Framework. For details about the
application and technical questions refer to our earlier paper [11].

Experts' evaluation. First, 35 experienced software engineers dealing with
software quality at our Software Engineering Department evaluated the 5 sub-
characteristics of 350 di�erent methods of jEdit open source text editor (http:
//www.jedit.org). One method was evaluated by only one participant and each
participant evaluated 10 methods. The results pointed out that there was a
large deviation in the judgments of the sub-characteristics which a�ected the
e�ciency of the built prediction models [11]. The cause of the large deviation
can be that di�erent experts might have di�erent subjective scales and di�erent
interpretation of the same quality concepts. We tried to resolve this problem in
two di�erent ways: �rst, only one expert was asked to evaluate lots of methods
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while in the other case one method was evaluated by more participants and the
evaluation scores of the methods were calculated as the averages of the votes.

Table 1. Statistics about the evaluations

Experts One person Students

Evaluators 35 1 232

Questions 13 407 11 901 125 097

Methods 350 250 200

System jEdit Industrial jEdit

Table 2. The deviation of the jus-
ti�cations of the properties

Property Deviation

Analyzability 1.859

Changeability 2.049

Stability 2.222

Testability 2.019

Comprehensibility 1.880

Maintainability 1.975

One person's evaluation. Our �rst attempt to eliminate the large deviation
of the answers was that we asked a software engineer having 2 years experience
to evaluate 250 methods of a closed source industrial system. Although we could
build a more e�ective model (see Section 4) this result cannot be treated as a
representative one as it might be speci�c to the given system and evaluator.

Students' evaluation. The next step was that 232 students having preliminary
Java studies evaluated 200 methods. Because of the large number of participants,
almost all methods were evaluated at least 7 di�erent students and those methods
which had less than 7 evaluations were excluded (about 10%). For each method
the averages of the scores were calculated which approximated the student justi-
�cations of the given sub-characteristics and the maintainability. Table 2 shows
the deviations of the scores given to the di�erent maintainability characteristics.
As we can see, the deviation is about 2 in all cases which are surprisingly large
taking into account that the scores range from 0 to 10. This points out why it is
di�cult to build an e�ective model based on human evaluations. On the other
hand, we have to remark that experts usually judge the methods similarly so
they would have given more similar scores and the deviation would have been
smaller. Unfortunately, we would have to involve lots of experts to prove this
hypothesis which would be quite expensive.

4 Results

Applied regression techniques. In order to apply machine learning mod-
els e�ectively in practice, appropriate properties have to be chosen that can
be calculated fast and automatically at the same time so we chose method level
metrics in our experiment and we calculated them for all methods that were eval-
uated [11]. The list of considered metrics is the following: lines of code3, logical
lines of code4, number of statements, number of parameters, number of incoming

invocations, number of outgoing invocations, number of foreign methods accessed,
number of local methods accessed, McCabe's cyclomatic complexity, nesting level,
clone coverage, and rule violations5. This way we had all necessary information
to build models that could predict maintainability and its sub-characteristics

3 The end-line of the method minus its begin-line plus 1.
4 All nonempty, non-comment lines of the method.
5 Number of PMD (http://pmd.sourceforge.net/) rule violations of the method.
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based on method level metrics. We used 10-fold cross-validation to evaluate the
models. This means that the training data set was split into 10 disjoint parts
and 9 of them were used to build the model and its usefulness was tested on the
10th part. Then this process was repeated ten times with di�erent splitting.

In the classical form of machine learning, the unknown value being predicted
is nominal, which means that it can have �nite possible values and there is
neither order nor ratio among them. In our previous work [11] we used three
categories (good, average, bad) to classify the methods. In this case, one of
the best measures of such learning is the rate of the correctly classi�ed elements.
Unfortunately, in that case almost 70% of the methods belonged to the good class
and therefore the model classi�ed almost all methods into the good category so
too few bad methods were found what the real purpose of the experiment was.

Regression [18] is another frequently used technique to build models, where
the unknown variable can be an arbitrary real number. The Pearson-correlation
and the mean absolute error (MAE) are used to measure the usefulness of the
model, more precisely, to measure the di�erences between the expected values
and the values given by the model. One of the advantages of regression is that
we use continuous scale so we expect more precise results. Furthermore, the
correlation tells us how well the model hits the tendency while the MAE indicates
how much the model di�ers from the expected values which are more useful
information than those received in the nominal case. This is why we did not use
the standard IR measures like precision and recall.

Comparing the di�erent algorithms. In this experiment we applied neural
networks, linear regression and decision tree techniques. We used the Weka data
mining tool [10] to build appropriate models. First, we examined the e�ciency of
the three techniques on the results of the students' evaluation, then we compared
the results of the three di�erent method evaluations. Weka o�ers only one option
for neural networks and linear regression, but in case of decision trees we chose
the one that worked the best for us. This was the REPTree algorithm but it was
further improved with a bagging technique [6] which builds more trees based
on the learning data set and the prediction is combined by the average of their
predictions. Besides the correlation and MAE the e�ciency of the results can be
measured by comparing to the ZeroR algorithm, whose prediction is always the
average of the predicted values in the training set. Without using the metrics as
predictors this technique gives the prediction with the smallest average error so
we can compare how much the result improves when the metrics are used.

First, we compared the di�erent regression algorithms on the students' eval-
uation. We calculated the correlation values and the MAEs of all models (see
Table 3). As we can see the decision tree has signi�cantly larger average corre-
lation value (0.631) and signi�cantly smaller MAE value (0.87) than the others.

In the following we compared the di�erent evaluations as well. Since the
decision tree gave the best results, we applied it in our further investigations.

Comparing the evaluations. We compared the models trained on the three
di�erent survey results to see which gives the best results. The results of the
model built by decision tree are presented in Table 4.
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Table 3. The MAE and Correlation values of the examined regression techniques

ZeroR Neural Network Linear Reg. Decision Tree

MAE Corr. MAE Corr. MAE Corr. MAE Corr.

Analyzability 1.201 -0.162 1.076 0.408 1.076 0.466 0.884 0.660

Changeability 1.026 -0.116 1.088 0.362 0.965 0.437 0.861 0.571

Comprehens. 1.574 -0.153 1.387 0.275 1.188 0.491 1.048 0.621

Stability 0.822 -0.239 0.824 0.297 0.833 0.360 0.670 0.572

Testability 1.189 -0.118 1.168 0.427 1.145 0.363 0.926 0.639

Maintainability 1.187 -0.122 1.193 0.587 0.909 0.615 0.831 0.723

Average 1.166 -0.152 1.123 0.393 1.019 0.455 0.870 0.631

Table 4. E�cency of the decision tree algorithm based on the di�erent surveys

Experts One Person Students

MAE Corr. MAE Corr. MAE Corr.

Analyzability 1.792 0.479 0.896 0.660 0.884 0.660

Changeability 1.656 0.445 1.011 0.758 0.861 0.571

Comprehensibility 1.867 0.395 1.063 0.712 1.048 0.621

Stability 1.712 0.509 1.154 0.453 0.670 0.572

Testability 1.910 0.520 1.781 0.476 0.926 0.639

Average 1.787 0.469 1.181 0.612 0.878 0.612

The 0.469 average correlation value and the 1.787 average MAE value of
the model trained on experts' evaluation show that the decision tree algorithm
could not build an e�ective model. On the other hand, it is interesting that if we
consider the correlation only, the model based on experts' evaluation predicts
stability and testability better than the model based on the result of the one
person's evaluation. The average correlation of the other two models is the same
but the average MAE value of the students' evaluation is smaller.
Answering the research questions. RQ1: Neural network and linear regres-
sion performed poorly in our experiment so we can say that they are not able
to predict the maintainability sub-characteristics e�ciently. On the other hand
the REPTree decision tree method gave good results in all cases therefore it can
be considered an e�ective regression technique.

RQ2: Because of the preliminary results only decision tree was applied to
answer this question. On the students' evaluation it performed uniformly well
while on the one person's evaluation it could not predict stability and testability
values e�ciently. On the other hand, we were not able to predict the results of
the experts' evaluation.

5 Threats to Validity
It is common to collect large amount of data with the help of students, but it is
always a huge risk as well. The risk in our case is that the opinion of a student
is much less reliable than an expert's opinion. To handle this threat we used the
averages of lots of student opinions about the quality of the methods. This way
we decreased the e�ect of the unreliable votes.

We compared the e�ciency of the regression techniques based on the di�erent
surveys, but we left out of consideration that only two of the surveys evaluated
the same system. The one person evaluation is based on an industrial system.
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Although it is possible that the subject systems have an e�ect on the e�ciency
of applied regression techniques, our results are mainly based on the experts'
and students' surveys, which use the same subject systems.

The used regression algorithms were trained on 350, 250 and 200 methods,
but to accept the achieved results in general a larger amount of data might be
needed. However, even these survey results are valuable assets considering the
huge number of human evaluators involved.

6 Conclusions and Future Work

In this paper we presented a way to build prediction models for maintainability
based on human evaluations. We performed three surveys with di�erent set-ups:
experts, one person, and students evaluated a large number of Java methods. By
comparing the results of the three evaluations we can conclude that the experts'
survey provided the hardest predictable opinions due to the high deviation in
the di�erent expert votes (each expert evaluated di�erent methods). On the
contrary, the one person and student opinions were equally well predictable by
the means of correlation but the mean average error is signi�cantly smaller in
the case of student evaluations.

Looking at the di�erent regression techniques we can say that on our training
data the decision tree algorithm was the best performing one. The model trained
on the students' evaluation predicts the quality attributes with 0.61 correlation
and 0.88 mean average error on a [0,10] continuous scale. The maintainability
itself is predicted by the model with 0.72 correlation and 0.83 average error.
Based on these results we can conclude that e�cient maintainability prediction
models can be built using regression techniques when we have a large amount
of reliable subjective evaluations from one person or less reliable but redundant
evaluations from multiple persons.

An interesting question is that how the results of existing maintainability
models correlate with the opinions of human evaluators. Our future plan is to
improve our probabilistic quality model [2] to enable method level quali�cations
and compare its results with the human evaluations.

We also plan to extend the questionnaire of the evaluation and apply di�erent
kind of predictors for the model building (not just basic metrics).
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