
Acta Cybernetica 21 (2014) 331–352.

Runtime Exception Detection in Java Programs

Using Symbolic Execution∗

István Kádár†, Péter Hegedűs†, and Rudolf Ferenc†

Abstract

Most of the runtime failures of a software system can be revealed during
test execution only, which has a very high cost. In Java programs, runtime
failures are manifested as unhandled runtime exceptions.

In this paper we present an approach and tool for detecting runtime ex-
ceptions in Java programs without having to execute tests on the software.
We use the symbolic execution technique to implement the approach. By
executing the methods of the program symbolically we can determine those
execution branches that throw exceptions. Our algorithm is able to generate
concrete test inputs also that cause the program to fail in runtime.

We used the Symbolic PathFinder extension of the Java PathFinder as
the symbolic execution engine. Besides small example codes we evaluated
our algorithm on three open source systems: jEdit, ArgoUML, and log4j. We
found multiple errors in the log4j system that were also reported as real bugs
in its bug tracking system.

Keywords: Java runtime exception, symbolic execution, rule checking

1 Introduction

Nowadays, it is a big challenge of the software engineering to produce huge, reliable
and robust software systems. About 40% of the total development costs go for
testing [13], and the maintenance activities, particularly bug fixing of the system
also require a considerable amount of resources [20]. Our purpose is to develop a
new method and tool, which supports this phase of the software engineering lifecycle
with detecting runtime exceptions in Java programs, and finding dangerous parts
in the source code, that could behave as time-bombs during further development.
The analysis will be done without executing the program in a real environment.

Runtime exceptions in the Java programming language are the instances of class
java.lang.RuntimeException, which represent a sort of runtime error, for example

∗This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-0038 and
the TÁMOP 4.2.4. A/2-11-1-2012-0001 European grant.
†University of Szeged, Department of Software Engineering Árpád tér 2. H-6720 Szeged,

Hungary, E-mail: {ikadar|hpeter|ferenc}@inf.u-szeged.hu



332 István Kádár, Péter Hegedűs, and Rudolf Ferenc

an invalid type cast, an array over indexing, or division by zero. These exceptions
are dangerous because they can cause a sudden stop of the program, as they do
not have to be handled by the programmer explicitly.

Exploration of these exceptions is done by using a technique called symbolic
execution [12]. When a program is executed symbolically, it is not executed on
concrete input data but input data is handled as symbolic variables. When the ex-
ecution reaches a branching condition containing a symbolic variable, the execution
continues on both branches. This way, all of the possible branches of the program
will be executed in theory. Java PathFinder (JPF) [10] is a software model checker
which is developed at NASA Ames Research Center. In fact, Java PathFinder is
a Java virtual machine that executes Java bytecode in a special way. Symbolic
PathFinder (SPF) [14] is an extension of JPF, which can perform symbolic execu-
tion of Java bytecodes. The presented work is based on these tools.

The paper explains how the detection of runtime exceptions of the Java pro-
gramming language was implemented using Java PathFinder and symbolic execu-
tion. Concrete input parameters of the method resulting a runtime exception are
also determined. It is also described how the number of execution branches, and the
state space have been reduced to achieve a better performance. The implemented
tool called Jpf Checker has been tested on real life projects, the log4j, ArgoUML,
and jEdit open source systems. We found multiple errors in the log4j system that
were also reported as real bugs in its bug tracking system. The performance of the
tool is acceptable since the analysis was finished in a couple of hours even for the
biggest system used for testing.

The remainder of the paper is organized as follows. We give a brief introduction
to symbolic execution in Section 2. After that in Section 3 we present our approach
for detecting runtime exceptions. Section 4 discusses the results of the implemented
algorithm on different small examples and real life open source projects. Section 5
collects the works that related to ours. Finally, we conclude the paper and present
some future work in Section 6.

2 Symbolic Execution

During its execution, every program performs operations on the input data in a
defined order. Symbolic execution [12] is based on the idea that the program is
operated on symbolic variables instead of specific input data, and the output will
be a function of these symbolic variables. A symbolic variable is a set of the
possible values of a concrete variable in the program, thus a symbolic state is a set
of concrete states. When the execution reaches a selection control structure (e.g.
an if statement) where the logical expression contains a symbolic variable, it cannot
be evaluated, its value might be also true and false. The execution continues on
both branches accordingly. This way we can simulate all the possible execution
branches of the program.

During symbolic execution we maintain a so-called path condition (PC). The
path condition is a quantifier-free logical formula with the initial value of true, and



Runtime Exception Detection in Java Programs Using Symbolic Execution 333

(a) (b)

Figure 1: (a) Sample code that determines the distance of two integers on the number line
(b) Symbolic execution tree of the sample code handling variable x and y symbolically

its variables are the symbolic variables of the program. If the execution reaches a
branching condition that depends on one or more symbolic variables, the condition
will be appended to the current PC with the logical operator AND to indicate
the true branch, and the negation of the condition to indicate the false branch.
With such an extension of the PC, each execution branch will be linked to a unique
formula over the symbolic variables. In addition to maintaining the path condition,
symbolic execution engines make use of the so called constraint solver programs.
Constraint solvers are used to solve the path condition by assigning values to the
symbolic variables that satisfy the logical formula. Path condition can be solved at
any point of the symbolic execution. Practically, the solutions serve as test inputs
that can be used to run the program in such a way that the concrete execution
follows the execution path for which the PC was solved.

All of the possible execution paths define a connected and acyclic directed graph
called symbolic execution tree. Each point of the tree corresponds to a symbolic
state of the program. An example is shown in Figure 1.

Figure 1 (a) shows a sample code that determines the distance of two integers
x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with
the corresponding symbolic execution tree. We handle x and y symbolically, their
symbols are X and Y respectively. The initial value of the path condition is true.
Reaching the first if statement in line 3, there are two possibilities: the logical ex-
pression can be true or false; thus the execution branches and the logical expression
and its negation is added to the PC as follows:

true ∧X > Y ⇒ X > Y, and true ∧ ¬(X > Y )⇒ X ≤ Y

The value of variable dist will be a symbolic expression, X-Y on the true branch
and Y-X on the false one. As a result of the second if statement (line 8) the
execution branches, and the appropriate PCs are appended again. On the true
branches we get the following PCs:

X > Y ∧X − Y < 0⇒ X > Y ∧X < Y,

X ≤ Y ∧ Y −X < 0⇒ X ≤ Y ∧X > Y



334 István Kádár, Péter Hegedűs, and Rudolf Ferenc

Figure 2: Java PathFinder as a virtual machine itself runs on a JVM, while performing a
verification of a Java program

It is clear that these formulas are unsolvable, we cannot specify such X and Y
that satisfy the conditions. This means that there are no such x and y inputs with
which the program reaches the write(”Error”) statement. As long as the PC is
unsatisfiable at a state, the sub-tree starting from that state can be pruned, there
is no sense to continue the controversial execution.

It is impossible to explore all the symbolic states. It takes unreasonably long
time to execute all the possible paths. A solution for this problem can be e.g. to
limit the depth of the symbolic execution tree or the number of states which, of
course, inhibit to examine all the states. The next subsection describes what are
the available techniques in Symbolic PathFinder to address this problem.

2.1 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) [10] is a highly customizable execution environment that
aims at verifying Java programs. In fact, JPF is nothing more than a Java Virtual
Machine which interprets the Java bytecode in a special way to be able to verify
certain properties. It is difficult to determine what kind of errors can be found and
which properties can be checked by JPF, it depends primarily on its configuration.
The system has been designed from the beginning to be easily configurable and
extendable. One of its extensions is Symbolic PathFinder (SPF) [14] that provides
symbolic execution of Java programs by implementing a bytecode instruction set
allowing to execute the Java bytecode according to the theory of symbolic execution.

JPF (and SPF) itself is implemented in Java, so it also have to run on a virtual
machine, thus JPF is actually a middleware between the standard JVM and the
bytecode. The architecture of the system is illustrated on Figure 2.

To start the analysis we have to make a configuration file with .jpf extension in
which we specify different options as key-value pairs. The output is a report that
contains e.g. the found defects. In addition to the ability of handling logical, integer
and floating-point type variables as symbols, SPF can also handle complex types
symbolically with the lazy initialization algorithm [11], and allows the symbolic
execution of multi-threaded programs too.

SPF supports multiple constraint solvers and defines a general interface to com-
municate them. Cvc3 is used to solve linear formulas, choco can handle non-linear



Runtime Exception Detection in Java Programs Using Symbolic Execution 335

logical formulas too, while IASolver use interval arithmetic techniques to satisfy
the path condition. Among the supported constraint solvers, CORAL proved to
be the most effective in terms of the number of solved constraints and the perfor-
mance [19].

To reduce the state space of the symbolic execution SPF offers a number of
options. We can specify the maximum depth of the symbolic execution tree, and the
number of elementary formulas in the path condition can also be limited. Further
possibility is that with options symbolic.minint, symbolic.maxint, symbolic.minreal,
and symbolic.maxreal we can restrict the value ranges of the integer and floating
point types. With the proper use of these options the state space and the time
required for the analysis can be reduced significantly.

3 Detection of Runtime Exceptions

We developed a tool that is able to automatically detect runtime exceptions in an
arbitrary Java program. This section explains in detail how this analysis program,
the JPF checker works.

To check the whole program we use symbolic execution, which is performed by
Symbolic PathFinder. However, we do not execute the whole program symbolically
to discover all of the possible paths, instead we symbolically execute the methods
of the program one by one. Starting the analysis from the main method has several
drawbacks. For example, the state space would be too large and we would need
to cut it when the execution reaches the defined maximal depth in the symbolic
execution tree. Our approach results in a significant reduction in the state space
of the symbolic execution.

An important question is which variables to be handled symbolically. In general,
execution of a method mainly depends on the actual values of its parameters and the
referred external variables. Thus, these are the inputs of a method that should be
handled symbolically to generally analyze it. Currently, we handle the parameters
and data members of the class of the analyzed method symbolically.

Our goal is not only to indicate the runtime exceptions a method can throw (its
type and the line causing the exception), but also to determine a parameterization
that leads to throwing those exceptions. In addition, we determine this parameter-
ization not only for the analyzed method which is at the bottom of the call stack,
but for all the other elements in the call stack (i.e. recursively for all the called
methods).

Our work can be divided into two steps:

1. It is necessary to create a runtime environment which is able to iterate through
all the methods of a Java program, and start their symbolic execution using
Symbolic PathFinder.

2. We need a JPF extension which is built on its listener mechanism, and which
is able to indicate potential runtime exceptions and related parameterization
while monitoring the execution.



336 István Kádár, Péter Hegedűs, and Rudolf Ferenc

Figure 3: Architecture of the runtime environment

3.1 The Runtime Environment

The concept of the developers of Symbolic PathFinder was to start running the
program in normal mode like in a real life environment, than at given points, e.g.
at more complex or problematic parts in the program switch to symbolic execution
mode [15]. The advantage of this approach is that, since the context is real, it
is more likely to find real errors. E.g. the values of the global variables are all
set, but if these variables are handled symbolically we can examine cases that
never occur during a real run. A disadvantage is that it is hard to explore the
problematic points of a program, it requires prior knowledge or preliminary work.
Another disadvantage is that you have to run the program manually namely, that
the control reach those methods which will be handled symbolic by the SPF.

In contrast, the tool we have developed is able to execute an arbitrary method
or all methods of a program symbolically. The advantage of this approach is that
the user does not have to perform any manual runs, the entire process can be
automated. Additionally, the symbolic state space also remains limited since we
do not execute the whole program symbolically, but their parts separately. The
approach also makes it possible to analyze libraries that do not have a main method
such as log4j. One of the major disadvantages is the that we back away from the
real execution environment, which may lead to false positive error reports.

For implementing such an execution environment we have to achieve somehow
that the control flow reaches the method we want to analyze. However, due to the
nature of the virtual machine, JPF requires the entry point of the program, which
is the class containing the main method. Therefore, we generate a driver class for
each method containing a main method that only passes the control to the method
we want to execute symbolically and carries out all the related tasks. Invoking
the method is done using the Java Reflection API. We also have to generate a
JPF configuration file that specifies, among others, the artificially created entry
point and the method we want to handle symbolically. After creating the necessary
files, we have to compile the generated Java class and finally, to launch Symbolic
PathFinder.

The architecture of the system is illustrated in Figure 3. The input jar file
is processed by the JarExplorer, which reads all the methods of the classes from
the jar file and creates a list from them. The elements of the list is taken by the
Generator one by one. It generates a driver class and a JPF configuration file for



Runtime Exception Detection in Java Programs Using Symbolic Execution 337

1. exceptionThrown() {

2. exception = getPendingException();

3. if (isInstanceOfRuntimeException(exception)) {

4. pc = getCurrentPc();

5. solve(pc);

6. summary = new FoundExceptionSummary();

7. summary.setExceptionType(exception);

8. summary.setThrownFrom(exception);

9. summary.setParameterization(parsePc(pc, analyzedMethod));

10. invocationChain = buildInvocationChain();

11. foreach(Method m : invocationChain) {

12. summary.addStackTraceElement(m, parsePc(pc, m));

13. }

14. foundExceptions.add(summary);

15. }

16.}

Figure 4: Pseudo code of the exceptionThrown event

each method. After the generation is complete, we start the symbolic execution.

3.2 Implementing a Listener Class

During functioning, JPF sends notifications about certain events. This is real-
ized with so-called listeners, which are based on the observer design pattern. The
registered listener objects are notified about and can react to these events. JPF
can send notifications of almost every detail of the program execution. There are
low-level events such as execution of a bytecode instruction, as well as high-level
events such as starting or finishing the search in the state space. In JPF, basically
two listener interfaces exist: the SearchListener and VMListener interface. While
the former includes the events related to the state space search, the latter reports
the events of the virtual machine. Because these interfaces are quite large and the
specific listener classes often implement both of them, adapter classes are intro-
duced that implement these interfaces with empty method bodies. Therefore, to
create our custom listener we derived a class from this adapter and implemented
the necessary methods only.

Our algorithm for detecting runtime exceptions is briefly summarized below. By
performing symbolic execution of a method all of its paths are executed, including
those that throw exceptions. When an exception occurs, namely when the virtual
machine executes an ATHROW bytecode instruction, JPF triggers and exception-
Thrown event. Thus, we implemented the exceptionThrown method in our listener
class. Its pseudo code is shown in Figure 4.

First, we acquire the thrown Exception object (line 2), then we decide whether it
is a runtime exception (i.e. whether it is an instance of the class RuntimeException)
(line 3). If it is, we request the path condition related to the actual path and



338 István Kádár, Péter Hegedűs, and Rudolf Ferenc

use the constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9 set
up a summary report that contains the type of the thrown exception, the line
that throws it and a parameterization which causes this exception to be thrown.
The parameterization is constructed by the parsePC() method, which assigns the
satisfactory solutions of the path condition to the method parameters. Lines 10-13
take care of collecting and determining parameterization for the methods in the
call stack. If the source code does not specify any constraint for a parameter on the
path throwing an exception (i.e. the path condition does not contain the variable),
then there is no related solution. This means that it does not matter what the
actual value of that parameter is, as it does not affect the execution path, and the
method is going to throw an exception due to the values of other parameters. In
such cases parsePc() method assigns the value “any” to these parameters.

It is also possible that a parameter has a concrete value. Figure 5 illustrates such
an example. When we start the symbolic execution of method x(), its parameter a
is handled symbolically. As x() calls y() its parameter a is still a symbol, but b is
a concrete value (42). In a case like this, parsePc() have to get the concrete value
from the stack of the actual method.

1. void x(int a) {

2. short b = 42;

3. y(a, b);

4. }

5. void y(int a, short b) {

6. ...

7. throw new NullPointerException();

8. ...

9. }

Figure 5: An example call with both symbolic and concrete parameters

We note that the presented algorithm reports any runtime exceptions regardless
of the fact whether it is caught by the program or not. The reason of this is that
we think that relying on runtime exceptions is a bad coding practice and a runtime
exception can be dangerous even if it is handled by the program. Nonetheless, it
would be easy to modify our algorithm to detect uncaught exceptions only.

4 Results

The developed tool was tested in a variety of ways. The section describes the re-
sults of these test runs. We analyzed manually prepared example codes containing
instructions that cause runtime exceptions on purpose; then we performed analysis
on different open-source software to show that our tool is able to detect runtime
exceptions in real programs, not just in artificially made small examples. The sub-
ject systems are the log4j (http://logging.apache.org/log4j/) logging library,
the ArgoUML modeling tool (http://argouml.tigris.org/), and the jEdit text
editor program (http://www.jedit.org/). We prove the validity of the detected
exceptions by the bug reports, found in the bug tracking systems of these projects,
that describe program faults caused by those runtime exceptions that are also found
by the developed tool.



Runtime Exception Detection in Java Programs Using Symbolic Execution 339

public class Example5 {

...

8. void callRun(int x, int y) {

9. Integer i = null;

10. if (x > 6) {

11. int b = 9;

12. run(b, y);

13. i = Integer.valueOf(b);

14. System.out.println(i);

15. } else {

16. i = Integer.valueOf(3);

17. System.out.println(i);

18. }

19. }

20. public void run(int x, int y) {

21. if (y > 10) {

22. int[] arr = new int[5];

23. for (int i = 0; i < x; i++) {

24. arr[i] = i;

25. }

26. } else {

27. Integer i = null;

28. if (y < 5) {

29. i = Integer.valueOf(4);

30. i.floatValue();

31. } else {

32. System.out.println(

33. i.floatValue());

34. }

35. }

36. }}

Figure 6: Manually prepared example code with the analysis of method callRun()

4.1 Manually Prepared Examples

A small manually prepared example code is shown on Figure 6. The method under
test is callRun() which calls method run() in line 12. Running our algorithm on
this code gives two hits: the first is an ArrayIndexOutOfBoundsException, the
second is a NullPointerException. The first exception is thrown by method run()
at line 24. A parametrization leading to this exception is callRun(7, 11). Method
run() will be called only if x > 6 (line 10) that is satisfied by 7 and it is called
with the concrete value 9 and symbol y. At this point there is no condition for y.
Method run() can reach line 24 only if y > 10, the indicated value 11 is obtained
by satisfying this constraint. Throwing of the ArrayIndexOutOfBoundsException
is due to the fact that in line 22 we declare a 5-element array but the following for
loop runs from 0 to x. The value of x at this point is 9 which leads to an exception.

The train of thought is similar in the case of the second exception. The problem
is that variable i created in line 27 initialized only in line 29 to a value different form
null, but not in the else block, therefore line 33 throws a NullPointerException.
This requires that the value of y not to be greater than 10 and not to be less than
5. These restrictions are satisfied by e.g. 5, and value 7 for x is necessary to invoke
run(). So the parametrizations are callRun(7, 5) and run(9, 5). The analysis is
finished in less than a second.

A second example code is presented in Figure 7. The resulting report refers to
an ArithmeticException, which is thrown at line 39 and the stack trace highlights
that the problematic method is expand() which is invoked at line 30 by run(). The
control flow reaches line 30 only if variable b is false. For example, if n is -999,
and check has the value true, as the parameter list in the error report included,
b will be false and the expand() method on the else branch will be executed. At



340 István Kádár, Péter Hegedűs, and Rudolf Ferenc

...

3. public class Example3 {

...

8. public void run(int n,

boolean check, A a) {

9. boolean b = check && n >= 0;

10. int max = Integer.MIN_VALUE;

11. if (b) {

12. if (a != null) {

13. int l = n;

14. int r = 2*n + 1;

15. if (a.getMember() > 120) {

16. if (l <= a.getMember()) {

17. max = a.getMember();

18. } else {

19. max = l;

20. }

21. if (r > max) {

22. max = r;

23. }

24. while (max < n) {

25. max = expand(n, 0);

26. }

27. }

28. }

29. } else {

30. max = expand(n, 0);

31. }

32. System.out.println("Maximum"

33. + value: " + max);

34. }

35. private int expand(int n, int m) {

36. double res = count(m);

37. if (res > n) {

38. do {

39. res = n / res;

40. res -= 2;

41. } while (res >= 0);

42. return n + m;

43. } else {

44. return (int)res;

45. }

46. }

47.

48. private int count(int l) {

49. int count = l;

50. for (int i=100; i>0; i--) {

51. if (i % 3 == 0) {

52. count++;

53. }

54. }

55. return count;

56. }

57.

58. }

1. public class A extends Letter {

2. ...

3. public int member;

4.

5. public int getMember() {

6. return member;

7. }

8. ...

9. }

Figure 7: Manually prepared example code with the analysis of method run()

line 36, variable res has a concrete value because method count() will be executed.
It can be seen that res is definitely a non-negative integer, thus the condition at
line 37 is true if n=-999. Then the loop begins to execute, and variable res will
be reduced to 0 after a number of iterations, leading to a division by 0 fault. In
the report, the third parameter of the examined run() method is “any”. That is
because this parameter does not play a role in whether or not the program runs
onto the discussed ArithmeticException.

Line 25 in method run() also calls expand(), but there is no corresponding error
report. In fact, due to the instructions at lines 13-23, the condition at line 24 is
always false, thus this expand() call will never be executed. Actually, line 25 is
unreachable code.



Runtime Exception Detection in Java Programs Using Symbolic Execution 341

(a) (b) (c)

Figure 8: (a)Number of methods examined in the programs and the number of JPF or
SPF faults (b) Number of successfully analyzed methods and the number of defective
methods (c) Analysis time

4.2 Analysis of Open-source Systems

Analysis of log4j 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a
desktop computer with an Intel Core i5-540M 2.53 GHz processor and 8 GB of
memory. In all three cases the analysis was done by executing all the methods of
the release jar files of the projects symbolically.

Figure 8 (a) displays the number of methods we analyzed in the different pro-
grams. We started analyzing 1242 methods in log4j of which only 757 were success-
ful, in 474 cases the analysis stopped due to the failure of the Java PathFinder (or
Symbolic PathFinder). There are a lot of methods in ArgoUML which also could
not be analyzed, more than half of the checks ended with failure. In case of jEdit
the ratio is very similar. Unfortunately, in general JPF stopped with a variety of
error messages.

Despite the frequent failures of JPF, our tool indicated a fairly large number
of runtime exceptions in all three programs. Figure 8 (b) shows the number of
successfully analyzed methods and the methods with one or more runtime excep-
tions. The hit rate is the highest for log4j and despite its high number of methods,
relatively few exceptions were found in ArgoUML.

The analysis times are shown in Figure 8 (c). Analysis of log4j completed within
an hour, while analysis of ArgoUML, that contains more than 7500 methods, took
3 hours and 42 minutes. Although jEdit contains fewer methods than ArgoUML,
its full analysis were more time-consuming. The performance of our algorithm is
acceptable, especially considering that the analysis was performed on an ordinary
desktop PC not on a high-performance server. However, it can be assumed that
the analysis time would grow with less failed method analysis.

It is important to note, that not all indicated exceptions are real errors. This is
because the analysis were performed in an artificial execution environment which
might have introduced false positive hits. When we start the symbolic execution of
a method we have no information about the circumstances of the real invocation.
All parameters and data members are handled symbolically, that is, it is considered



342 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class SimpleLayout extends Layout {

...

58. public String format(LoggingEvent event) {

59.

60. sbuf.setLength(0);

61. sbuf.append(event.getLevel().toString());

62. sbuf.append(" - ");

63. sbuf.append(event.getRenderedMessage());

64. sbuf.append(LINE_SEP);

65. return sbuf.toString();

66. }

...

}

public class LoggingEvent implements java.io.Serializable {

...

transient public Priority level;

...

255. public Level getLevel() {

256. return (Level) level;

257. }

}

public class Level extends Priority implements Serializable{

...

}

Figure 9: Method org.apache.log4j.SimpleLayout.format() and its environment.

that their value can be anything although it is possible that a particular value of a
variable never occurs.

Despite the fact that not all the reported exceptions are real program errors
they are definitely representing real risks. During the modification of the source
code there are inevitably changes that introduce new errors. These errors often
appear in form of runtime exceptions (i.e. in places where our algorithm found
possible failures). So the majority of the reported exceptions do not report real
errors, but potential sources of danger that should be paid special attention.

In the following, we are going to show some interesting faults found by our tool
in the above systems.

The first example method is org.apache.log4j.SimpleLayout.format() of log4j,
which is shwon in Figure 9. In this method three possible runtime exceptions are
found by the tool. The first two are NullPointerExceptions, both thrown at line
61. The produced report says that the first NPE will be thrown if the parameter
is null, and the second when this parameter differs from null. In the first case,
when the parameter is null, expression event.getLevel() causes the exception, since
a method of a null reference cannot be called. When parameter event is not null,
the code gets the level data member and calls its toString() method. The second
NullPointerException is caused by the fact that the requested level data member



Runtime Exception Detection in Java Programs Using Symbolic Execution 343

public class FindDialog extends ArgoDialog ... { ... }

class PredicateMType extends PredicateType {

...

727. public static PredicateType create(Object c0, Object c1, Object c2) {

728. Class[] classes = new Class[3];

729. classes[0] = (Class) c0;

730. classes[1] = (Class) c1;

731. classes[2] = (Class) c2;

732. return new PredicateMType(classes);

733. }

...

}

Figure 10: Method org.argouml.ui.PredicateMType.create()

can also be null, thus using operator ‘.’ may raise the exception.

The third exception is a ClassCastException. As shown, at line 256 in class
LoggingEvent there is a type cast which tries to convert the level member which
has a type Priority to a Level object. According to the listing in the bottom of
Figure 9, class Level is a descendant of class Priority, thus the cast at line 256 is a
downcast, which is incorrect in case the dynamic type of the member is not Level.

Three possible ClassCastExceptions are revealed in method PredicateMType.
create() that is depicted in Figure 10. Lines 729, 730 and 731 cast down the three
parameters from Object to Class without performing any type check. The first
entry in the report says that create(null, null, !null) parametrization can lead to
an exception thrown at line 731. If c0 and c1 parameters are null, lines 729 and
730 are executed without any problem, because casting a null reference to any
class is permitted in Java. It is important that this does not mean that c0 and c1
have to be necessarily null, the report just gives a sample parametrization which
leads the execution to the exception. As long as the third parameter is not null a
ClassCastException can be raised. Of course, to achieve this it is necessary that the
parameter type is different from Class. Parametrization create(null, !null, “any”)
leads to potential fault at line 730. The reasoning is similar to the previous one: if
c0 is null and c1 is non-null (and of course it is not a Class) ClassCastException
will be thrown. The third parameter is completely irrelevant. In case of the third
ClassCastException, occurring at line 729, the values of c1 and c2 do not matter.

The last example is a tiny method, MRUFileManager.getFile() shown in Fig-
ure 11. At line 98, getFile() checks whether the index parameter is less then the
size of the mruFileList LinkedList. If so, the return value is the corresponding
element of the LinkedList, otherwise null. Our report shows that the index can be
a negative number, too. This case is not handled, and LinkedList.get() will throw
an IndexOutOfBoundsException if method getField() is called for example with
-999. Calling getField() with a negative number seems unreasonable and of course
it is, but possible.



344 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class MRUFileManager {

...

private LinkedList _mruFileList;

...

public int size() {

return _mruFileList.size();

}

97. public Object getFile(int index) {

98. if (index < size()) {

99. return _mruFileList.get(index);

100. }

101.

102. return null;

103. }

...

}

Figure 11: Method org.apache.log4j.lf5.viewer.configure.MRUFileManager.getFile()

4.3 Real Errors

In this subsection a few defects are presented which are reported in bug tracking
systems, and caused by runtime exceptions found also by our tool. The first affected
bug1 reports the termination of an application using log4j version 1.2.14 caused by a
NullPointerException. The reporter got the Exception from line 59 of ThrowableIn-
formation.java thrown by method org.apache.log4j.spi.ThrowableInformation.get-
ThrowableStrRep() as shown in the given stack trace. The code of the method and
the problematic line detected by our analysis is shown in Figure 12.

The problem here is that the initialization of the throwable data member of class
ThrowableInformation is omitted, its value is null causing a NullPointerException
at line 59. This causes that the log() method of log4j can also throw an exception
which should never happen. Our tool found other errors as well which demonstrate
its strength of being capable of detecting real bugs.

The next exception is also a NullPointerException, which occurred in log4j
1.2.15. The bug report2 explains that the runtime exception causing the halt comes
form method org.apache.log4j.NDC.remove(), at line 377. Figure 13 shows the
corresponding piece of code. The fault here is that the ht static data member is
null. Although the data member is initialized as Figure 13 shows, it is possible
that during the execution its value is set to null. The report in the log4j bug
tracking system sheds light to this. The reporter also mentions that according
to his observations, the other methods of class NDC, which use the ht member,
first check whether it is null or not, but in method remove() there is no such
investigation.

1https://issues.apache.org/bugzilla/show bug.cgi?id=44038
2https://issues.apache.org/bugzilla/show bug.cgi?id=45335



Runtime Exception Detection in Java Programs Using Symbolic Execution 345

public class ThrowableInformation implements java.io.Serializable {

private transient Throwable throwable;

...

54. public String[] getThrowableStrRep() {

55. if(rep != null) {

56. return (String[]) rep.clone();

57. } else {

58. VectorWriter vw = new VectorWriter();

59. throwable.printStackTrace(vw);

60. rep = vw.toStringArray();

61. return rep;

62. }

63. }

...

}

Figure 12: Method org.apache.log4j.spi.ThrowableInformation.getThrowableStrRep()

We describe one more error that was also found in log4j version 1.2.153. The
error is at line 312 of the class org.apache.log4j.net.SyslogAppender. The line is
inside the method append() in which there is a NullPointerException again. The
code snippet is shown in Figure 14.

The reason of this runtime error is that the layout data member, which is
inherited from class AppenderSkeleton, stays uninitialized. Our report also includes
a ClassCastException thrown by method getLevel() at line 294. This fault is the
same that we already described explaining Figure 9 in the previous subsection.

5 Related Work

In this section we present works that are related to our research. First, we introduce
some well-known symbolic execution engines, then we show the possible applications
of the symbolic execution. We also summarize the problems that have been solved
successfully by Symbolic PathFinder that we used for implementing our approach.
Finally, we present the existing approaches and techniques for runtime exception
detection.

The idea of symbolic execution is not new, the first publications and execution
engines appeared in the 1970’s. One of the earliest work is by King that lays down
the fundamentals of symbolic execution [12] and presents the EFFIGY system that
is able to execute PL/I programs symbolically. Even though EFFIGY handles
only integers symbolically, it is an interactive system with which the user is able
to examine the process of symbolic execution by placing breakpoints and saving
and restoring states. Another work from the 1970’s by Boyer et al. presents a
similar system called SELECT [1] that can be used for executing LISP programs

3https://issues.apache.org/bugzilla/show bug.cgi?id=46271



346 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class NDC {

...

static Hashtable ht = new Hashtable();

...

374. static

375. public

376. void remove() {

377. ht.remove(Thread.currentThread());

378.

379. // Lazily remove dead-thread references in ht.

380. lazyRemove();

381. }

...

}

Figure 13: Source code of method org.apache.log4j.NDC.remove()

symbolically. The users are allowed to define conditions for variables and return
values and get back whether these conditions are satisfied or not as an output. The
system can be applied for test input generation; in addition, for every path it gives
back the path condition over the symbolic variables.

Starting from the last decade the interest about the technique is constantly
growing, numerous programs have been developed that aim at dynamic test in-
put generation using symbolic execution. The EXE (EXecution generated Execu-
tions) [3] presented by Cadar et al. at the Stanford University is an error checking
tool made for generating input data on which the program terminates with failure.
The input generation is done by the STP built-in constraint solver that solves the
path condition of the path causing the failure. EXE achieved promising results
on real life systems. It found errors in the package filter implementations of BSD
and Linux, in the udhcpd DHCP server and in different Linux file systems. The
runtime detection algorithm presented in this work solves the path condition to
generate test input data similarly to EXE. The basic difference is that for running
EXE one needs to declare the variables to be handled symbolically while for Jpf
Checker there is no need for editing the source code before detection.

The DART [7] (Directed Automata Random Testing) by Godefroid et al. tries
to eliminate the shortcomings of the symbolic execution e.g. when it is unable
to handle a condition due to its unlinear nature. DART executes the program
with random or predefined input data and records the constraints defined by the
conditions on the input variables when it reaches a conditional statement. In the
next iteration taking into account the recorded constraints it runs the program
with input data that causes a different execution branch of the program. The goal
is to execute all the reachable branches of the program by generating appropriate
input data. The CUTE and jCUTE systems [16] by Sen and Agha extend DART
with multithreading and dynamic data structures. The advantage of these tools is
that they are capable of handling complex mathematical conditions due to concrete



Runtime Exception Detection in Java Programs Using Symbolic Execution 347

public abstract class AppenderSkeleton {

protected Layout layout;

...

}

public class SyslogAppender extends AppenderSkeleton {

SyslogQuietWriter sqw;

private boolean layoutHeaderChecked = false;

...

291. public

292. void append(LoggingEvent event) {

293.

294. if(!isAsSevereAsThreshold(event.getLevel()))

295. return;

296.

297. // We must not attempt to append if sqw is null.

298. if(sqw == null) {

299. errorHandler.error("No syslog host is set for SyslogAppedender"

300. + named " + this.name + ".");

301. return;

302. }

303.

304. if (!layoutHeaderChecked) {

305. if (layout != null && layout.getHeader() != null) {

306. sendLayoutMessage(layout.getHeader());

307. }

308. layoutHeaderChecked = true;

309. }

310.

311.

312. String packet = layout.format(event);

313. String hdr = getPacketHeader(event.timeStamp);

314.

315. if(facilityPrinting || hdr.length() > 0) {

316. StringBuffer buf = new StringBuffer(hdr);

317. if(facilityPrinting) {

318. buf.append(facilityStr);

319. }

320. buf.append(packet);

321. packet = buf.toString();

322. }

...

}}

Figure 14: Source code of method org.apache.log4j.net.SyslogAppender.append()



348 István Kádár, Péter Hegedűs, and Rudolf Ferenc

executions. This can be also achieved in Jpf Checker by using the concolic execution
of SPF; however, symbolic execution allows a more thorough examination of the
source code. Further description and comparison of the above mentioned tools can
be found e.g. in the work of Coward [4].

There are also approaches and tools for generating test suites for .NET programs
using symbolic execution. Pex [21] is a tool that automatically produces a small test
suite with high code coverage for .NET programs using dynamic symbolic execution,
similar to path-bounded model-checking. Jamrozik et al. introduce an extension
of the previous approach called augmented dynamic symbolic execution [9], which
aims to produce representative test sets with DSE by augmenting path conditions
with additional conditions that enforce target criteria such as boundary or muta-
tion adequacy, or logical coverage criteria. Experiments with the Apex prototype
demonstrate that the resulting test cases can detect up to 30% more seeded defects
than those produced with Pex.

Song et al. applied the symbolic execution to the verification of networking
protocol implementations [18]. The SymNV tool creates network packages with
which a high coverage can be achieved in the source code of the daemon, therefore
potential rule violations can be revealed according to the protocol specifications.

The SAFELI tool [6] by Fu and Qian is a SQL injection detection program
for analyzing Java web applications. It first instruments the Java bytecode then
executes the instrumented code symbolically. When the execution reaches a SQL
query the tool prepares a string equation based on the initial content of the web
input components and the built-in SQL injection attack patterns. If the equation
can be solved the calculated values are used as inputs which the tool verifies by
sending a HTML form to the server. According to the response of the server it can
decide whether the found input can be a real attack or not.

The main application of the Java PathFinder and its symbolic execution exten-
sion is the verification of the internal projects in NASA. Bushnell et al. describes
the application of Symbolic PathFinder in TSAFE (Tactical Separation Assisted
Flight Environment) [2] that verifies the software components of an air control and
collision detection system. The primary target is to generate useful test cases for
TSAFE that simulates different wind conditions, radar images, flight schedules, etc.

The detection of design patterns can be performed using dynamic approaches
as well as with static program analysis. With the help of a monitoring software
the program can be analyzed during manual execution and conclusions about the
existence of different patterns can be made based on the execution branches. In his
work, von Detten [22] applied symbolic execution with Symbolic PathFinder sup-
plementing manual execution. This way, more execution branches can be examined
and the instances found by traditional approaches can be refined.

Ihantola [8] describes an interesting application of JPF in education. He gen-
erates test inputs for checking the programs of his students. His approach is that
functional test cases based on the specification of the program and their outcome
(successful or not) is not enough for educational purposes. He generates test cases
for the programs using symbolic execution. This way the students can get feedbacks
like “the program works incorrectly if variable a is larger than variable b plus 10”.



Runtime Exception Detection in Java Programs Using Symbolic Execution 349

Sinha et al. deal with localizing Java runtime errors [17]. The introduced
approach aims at helping to fix existing errors. They extract the statement that
threw the exception from its stack trace and perform a backward dataflow analysis
starting from there to localize those statements that might be the root causes of
the exception.

The work of Weimer and Necula [23] focuses on proving safe exception handling
in safety critical systems. They generate test cases that lead to an exception by
violating one of the rules of the language. Unlike Jpf Checker they do not generate
test inputs based on symbolic execution but solving a global optimization problem
on the control flow graph (CFG) of the program.

The JCrasher tool [5] by Csallner and Smaragdakis takes a set of Java classes as
input. After checking the class types it creates a Java program which instantiates
the given classes and calls each of their public methods with random parameters.
This algorithm might detect failures that cause the termination of the system such
as runtime exceptions. The tool is capable of generating JUnit test cases and can
be integrated to the Eclipse IDE. Similarly to Jpf Checker JCrasher also creates a
driver environment but it can analyze public methods only and instead of symbolic
execution it generates random data which is obviously not feasible for examining
all possible execution branches.

6 Conclusions and Future Work

The introduced approach for detecting runtime exceptions works well not just on
small, manually prepared examples but it is able to find runtime exceptions which
are the causes of some documented runtime failures (i.e. there exists an issue for
them in the bug tracking system) in real world systems also. However, not all the
detected possible runtime exceptions will actually cause a system failure. There
might be a large number of exceptions that will never occur running the system
in real environment. Nonetheless, the importance of these warnings should not be
underrated since they draw attention to those code parts that might turn to real
problems after changing the system. Considering these possible problems could help
system maintenance and contributes to achieving a better quality software. As we
presented in Section 4 the analysis time of real world systems are also acceptable,
therefore our approach and tool can be applied in practice.

Unfortunately the Java PathFinder and its Symbolic PathFinder extension –
which we used for implementing our approach – contain a lot of bugs. It made the
development very troublesome, but the authors at the NASA were really helpful.
We contacted them several times and got responses very quickly; they fixed some
blocker issues particularly for our request. Although JPF and SPF have several
bugs, it is under constant development and becoming more and more stable.

The achieved results are very promising and we continue the development of
our tool. Our future plan is to eliminate the false positive and those hits that are
irrelevant. We would also like to provide more details about the environment of the
method in which the runtime exception is detected. The implemented tool gives



350 István Kádár, Péter Hegedűs, and Rudolf Ferenc

only the basic information about the reference type parameters whether they are
null or not, and we cannot tell anything about the values of the member variables
of the class playing a role in a runtime exception. These improvements of the
algorithm are also in our future plans.

The presented approach is not limited to runtime exception detection. We plan
to utilize the potentials of the symbolic execution by implementing other types of
error and rule violation checkers. E.g. we can detect some special types of infinite
loops, dead or unused code parts, or even SQL injection vulnerabilities.

References

[1] Boyer, Robert S., Elspas, Bernard, and Levitt, Karl N. SELECT – a Formal
System for Testing and Debugging Programs by Symbolic Execution. In Pro-
ceedings of the International Conference on Reliable Software, pages 234–245,
New York, NY, USA, 1975. ACM.

[2] Bushnell, D., Giannakopoulou, D., Mehlitz, P., Paielli, R., and Păsăreanu, Co-
rina S. Verification and Validation of Air Traffic Systems: Tactical Separation
Assurance. In Aerospace Conference, 2009 IEEE, pages 1–10, 2009.

[3] Cadar, Cristian, Ganesh, Vijay, Pawlowski, Peter M., Dill, David L., and
Engler, Dawson R. EXE: Automatically Generating Inputs of Death. In
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[4] Coward, P. David. Symbolic Execution Systems – a Review. Software Engi-
neering Journal, 3(6):229–239, November 1988.

[5] Csallner, Christoph and Smaragdakis, Yannis. JCrasher: an Automatic Ro-
bustness Tester for Java. Software Practice and Experience, 34(11):1025–1050,
September 2004.

[6] Fu, Xiang and Qian, Kai. SAFELI: SQL Injection Scanner Using Symbolic
Execution. In Proceedings of the 2008 Workshop on Testing, Analysis, and
Verification of Web Services and Applications, TAV-WEB ’08, pages 34–39,
New York, 2008. ACM.

[7] Godefroid, Patrice, Klarlund, Nils, and Sen, Koushik. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[8] Ihantola, Petri. Test Data Generation for Programming Exercises with Sym-
bolic Execution in Java PathFinder. In Proceedings of the 6th Baltic Sea
Conference on Computing Education Research, Baltic Sea ’06, pages 87–94,
New York, 2006. ACM.



Runtime Exception Detection in Java Programs Using Symbolic Execution 351

[9] Jamrozik, Konrad, Fraser, Gordon, Tillman, Nikolai, and Halleux, Jonathan.
Generating Test Suites with Augmented Dynamic Symbolic Execution. In
Tests and Proofs, volume 7942 of Lecture Notes in Computer Science, pages
152–167. Springer Berlin Heidelberg, 2013.

[10] Java PathFinder Tool-set. http://babelfish.arc.nasa.gov/trac/jpf.

[11] Khurshid, Sarfraz, Păsăreanu, Corina S., and Visser, Willem. Generalized
Symbolic Execution for Model Checking and Testing. In Proceedings of the
9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’03, pages 553–568, Berlin, Heidelberg, 2003.
Springer-Verlag.

[12] King, James C. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385–394, July 1976.

[13] Pressman, Roger S. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Science/Engineering/Math, November 2001.

[14] Păsăreanu, Corina S. and Rungta, Neha. Symbolic PathFinder: Symbolic
Execution of Java Bytecode. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 179–180, New
York, NY, USA, 2010. ACM.

[15] Pǎsǎreanu, Corina S., Mehlitz, Peter C., Bushnell, David H., Gundy-Burlet,
Karen, Lowry, Michael, Person, Suzette, and Pape, Mark. Combining Unit-
level Symbolic Execution and System-level Concrete Execution for Testing
NASA Software. In Proceedings of the 2008 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’08, pages 15–26, New York, NY, USA,
2008. ACM.

[16] Sen, Koushik and Agha, Gul. CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-checking Tools. In Proceedings of the 18th International
Conference on Computer Aided Verification, CAV’06, pages 419–423, Berlin,
2006. Springer-Verlag.

[17] Sinha, Saurabh, Shah, Hina, Görg, Carsten, Jiang, Shujuan, Kim, Mijung,
and Harrold, Mary Jean. Fault Localization and Repair for Java Runtime
Exceptions. In Proceedings of the 18th International Symposium on Software
Testing and Analysis, ISSTA ’09, pages 153–164, New York, NY, USA, 2009.
ACM.

[18] Song, JaeSeung, Ma, Tiejun, Cadar, Cristian, and Pietzuch, Peter. Rule-Based
Verification of Network Protocol Implementations Using Symbolic Execution.
In Proceedings of the 20th IEEE International Conference on Computer Com-
munications and Networks (ICCCN’11), pages 1–8, 2011.



352 István Kádár, Péter Hegedűs, and Rudolf Ferenc

[19] Souza, Matheus, Borges, Mateus, d’Amorim, Marcelo, and Păsăreanu, Co-
rina S. CORAL: Solving Complex Constraints for Symbolic Pathfinder. In
Proceedings of the Third International Conference on NASA Formal Methods,
NFM’11, pages 359–374, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] Tassey, G. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Technical report, National Institute of Standards and Technology,
2002.

[21] Tillmann, Nikolai and De Halleux, Jonathan. Pex: White Box Test Generation
for .NET. In Proceedings of the 2nd International Conference on Tests and
Proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] von Detten, Markus. Towards Systematic, Comprehensive Trace Generation
for Behavioral Pattern Detection Through Symbolic Execution. In Proceedings
of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools, PASTE ’11, pages 17–20, New York, NY, USA, 2011. ACM.

[23] Weimer, Westley and Necula, George C. Finding and Preventing Run-time
Error Handling Mistakes. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA ’04, pages 419–431, New York, NY, USA, 2004. ACM.


