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Abstract. The number of software systems under development and
maintenance is rapidly increasing. The quality of a system's source code
tends to decrease during its lifetime which is a problem because main-
taining low quality code consumes a big portion of the available e�orts.
In this research we investigated one aspect of code change, the version
control commit operations (add, update, delete). We studied the impact
of these operations on the maintainability of the code. We calculated
the ISO/IEC 9126 quality attributes for thousands of revisions of an in-
dustrial and three open-source software systems. We also collected the
cardinality of each version control operation type for every investigated
revision. Based on these data, we identi�ed that operation Add has a
rather positive, while operation Update has a rather negative e�ect on
the quality. On the other hand, for operation Delete we could not �nd a
clear connection to quality change.
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1 Introduction

Software quality plays a crucial role in modern development projects. There is
an ever-increasing amount of software systems in maintenance phase, and it is a
well-known fact that software systems are eroding [14], meaning that in general
their quality is continuously decreasing due to the ever-ongoing modi�cations in
their source code, unless explicit e�orts are spent on improvements [3]. Our aim
is to check the connection between the developers' interactions and the quality
change, in order to identify which patterns typically increase, and which decrease
code maintainability.

Our longer term plan is to discover as much of these patterns as possible. In
the beginning we focus only on the data found in the version control systems.
Later we plan to include other available data, especially micro interactions per-
formed within the IDE during development, and data found in issue tracking
systems. Based on the results, we can hopefully formulate advices to software
developers on how to avoid the maintainability decrease. Furthermore, this could
also help to better allocate e�orts spent on increasing quality.

In this research we focus on the version control operations. Speci�cally, we
check the e�ects of �le additions, updates and deletions on the maintainability
of the source code. We checked how the higher number or higher proportion



of a version control operation within a commit typically a�ects maintainability.
Basically, we assumed that �le additions have positive impact, as they introduce
new, clean, reasoned code. Initially we expected the same result also for �le
deletions, as this operation is typically used during code refactoring, which is
an explicit step towards better maintainability. On the other hand, we expected
that �le updates tend to decrease maintainability.

To summarize our goals, we formulated the following research questions:
RQ1: Does the amount of �le additions, updates and deletions within a com-

mit impact the maintainability of the source code?
RQ2: Are there any di�erences between checks considering the absolute num-

ber of operations (Add, Update, Delete) and checks investigating the relative pro-
portion of the same operation within commits?

The paper is organized as follows. Section 2 introduces works that are re-
lated to ours. Then, in Section 3 we present the methodology used to test the
underlying relationship between version control operations and maintainability
changes. Section 4 discusses the results of the performed statistical tests and
summarizes our �ndings. In Section 5 we list the possible threats to the validity
of the results, while Section 6 concludes the paper.

2 Related Work

As a particular software quality related activity, refactoring is a widely researched
�eld. Lots of works build models for predicting refactorings based on version con-
trol history analysis [18�20]. Moser et al. developed an algorithm for distinguish-
ing commits resulted by refactorings from those of other types of changes [13].
Peters and Zaidman investigated the lifespan of code smells and the refactoring
behavior of developers by mining the software repository of seven open-source
systems [15]. The results of their study indicate that engineers are aware of code
smells, but are not really concerned by their impact, given the low refactoring
activity.

There are works which focus on the e�ect of software processes on product
quality [11]. Hindle et al. deal with understanding the rationale behind large
commits. They contrast large commits against small commits and show that
large commits are more perfective, while small commits are more corrective [8].
Bachmann and Bernstein explore among others if the process quality, as mea-
sured by the process data, has an in�uence on the product quality. They showed
that product quality � measured by number of bugs reported � is a�ected by
process data quality measures [4].

Another group of papers focus on estimating some properties of maintenance
activities (e.g. the e�ort needed to make changes in the source code, compre-
hension of maintenance activities, complexity of modi�cation) [7, 12, 21]. Tóth
et al. showed that the cumulative e�ort to implement a series of changes is
larger than the e�ort that would be needed to make the same modi�cation in
only one step [21]. The work of Gall et al. focuses on detecting logical couplings
from CVS release history data. They argue that the dependencies and interre-
lations between classes and modules that can be extracted from version control



operations a�ect the maintainability of object-oriented systems [6]. Fluri et al.
examine the co-evolution of code and comments as a vital part of code compre-
hension. They found that newly added code � despite its growth rate � barely
gets commented; class and method declarations are commented most frequently,
but e.g. method calls are far less; and that 97% of comment changes are done in
the same revision as the associated source code change [5]. Unlike these works,
we do not use the version control data to predict refactorings or software quality
attributes, but to directly analyze the e�ect of the way version control operations
are performed on software maintainability.

Atkins et al. use the version control data to evaluate the impact of software
tools on software maintainability [1]. They explore how to quantify the e�ects
of a software tool once it has been deployed in a development environment and
present an e�ort-analysis method that derives tool usage statistics and developer
actions from a project's change history (version control system). We also try
to evaluate the maintainability changes through version control data; however,
we investigate the general e�ect of version control operations regardless of tool
usage.

Pratap et al. in their work [16] present a fuzzy logic approach for estimating
the maintainability, while in this research we use a probabilistic quality model.

3 Methodology

In this section we summarize the kind of data we collected and how we elaborated
on them to gain the results.

3.1 Version Control Operations

We take the version control operations as predictors of source code maintain-
ability. In this work we investigated the number of the version control operation
types: we only checked how many Adds, Updates and Deletes existed in the
examined commit. These three numbers of every commit formed the predictor
input of the analysis. E.g., if a certain commit contains 2 �le additions, 5 �le
updates and 1 �le deletion, then the input related to that commit would be
(2, 5, 1). The fourth version control operation � Rename � was not considered,
because there were hardly any commits containing this operation.

As the used quality model handles Java �les only, we removed the non-Java
source related statistics. E.g., if a commit contained 3 updates, 2 of Java �les
and one of an XML �le, then we simply treated this as a commit of 2 updates.

3.2 The Applied Quality Model

The dependent variable of the research was the quality of the source code. This
was estimated by the ColumbusQM probabilistic software quality model [2],
which is based on the ISO/IEC 9126 standard [10].

The model calculates a composite measure of source code metrics like logical
lines of code, complexity, number of coding rule violations etc. The calculation
is based on expert weights and a statistical aggregation algorithm that uses a so-
called benchmark as the basis of the quali�cation. The resulting maintainability



value is expressed by a real number between 0.0 and 1.0. The higher number
indicates better maintainability. See the work of Bakota et al. [2] for further
details about the model.

3.3 Maintainability Change

The system's maintainability change can be calculated as the di�erence of the
maintainability values of the current revision and the previous one. However, a
simple subtraction is not su�cient for two reasons:

� The quality model provides the quality value based on a distribution func-
tion. The absolute di�erence between e.g. 0.58 and 0.54 is not the same as
between 0.98 and 0.94. The latter di�erence is bigger as improving a soft-
ware with already high quality is harder than improving a medium quality
system.

� The same amount of maintainability change (e.g. committing 10 serious cod-
ing rule violations into the source code) has a much bigger e�ect on a small
system than on a large one.

To overcome these shortcomings, we applied the following transformations:

� We used the quantile function of the standard normal distribution to cal-
culate the original absolute value from the goodness value. This is feasi-
ble because the goodness value is derived from a probability function with
normal distribution. We performed this transformation with the qnorm() R
function [17]. The transformed values served as the basis of the subtractions.

� We multiplied the results of the subtractions (the maintainability value dif-
ferences) by the current size of the system, more speci�cally, the current total
logical lines of code (TLLOC, number of non-comment non-empty lines of
code).

Figure 1 illustrates why the quantile conversion is necessary. The same di�erence
on the y axis is not the same after quantile conversion (x axis), as expected.

We de�ned the quality change of the �rst commit to be 0.0.

3.4 Two-Sample Wilcoxon Rank Tests

For investigating RQ1 and RQ2, two subsets of the commits were de�ned in
several ways detailed below. The partitioning was performed based only on the
version control operations in each case. After the partitioning we examined the
maintainability changes of the commits belonging to these subsets. To check if
the di�erences are signi�cant or not, we used the two-sample Wilcoxon rank test
(also known as Mann-Whitney U test) [9]. The Wilcoxon rank test is a so-called
paired di�erence test, which checks if the population mean ranks di�er in two
data sets. Unlike mean this is not sensitive to the extreme values.

The tests were performed by the wilcox.test() function in R [17]. The
result of the test is practically the p-value, which tells us the probability of
the result being at least as extreme as the actual one, provided that the null-
hypothesis is true. In every case the null-hypothesis was that there is no di�erence
between the distribution of the maintainability change values in the two commit
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Fig. 1: Illustration why quantile conversion is necessary

sets. The alternative hypothesis was the following: the elements (maintainability
di�erences) in one subset are less or greater than those in the other subsets.

Instead of executing a two directionWilcoxon rank test (which would consider
only the absolute magnitude of the di�erence, and not the direction � i.e. which
one is greater), we executed the one direction test twice: �rst considering that
the values in the �rst subset are less than those in the second, and in the second
case we checked the opposite direction. We chose this approach as we needed
the direction as well (we were not satis�ed with the answer that the values are
di�erent in one subset compared the other, we also wanted to know which of
them are less and which are greater).

As we performed the test twice each time, two p-values resulted. Let us
denote them with p1 (in case of values in the �rst set are less than those in the
second one) and p2 (the opposite direction). E.g., in case of a concrete division
it turned out that the p-value is 0.0046 being numbers in one subset greater
than those in the other, which also means that the p-value of having smaller
values in the �rst set is 0.9954. Please note that the sum of these p-values are
always 1.0, i.e. 100%. From the two p-values we consider the better one, noting
the direction this result was executed with. Therefore the result is practically
always exactly twice as good as it would be in case of a two direction test. E.g.,
in case of comparing two exactly same datasets, the resulting p-value is 0.5. This
is considered when analyzing the results.

In order to be able to publish the results in a concise format, we introduced an
approximate approach: we calculated the number of zeros between the decimal
point and the �rst non-zero digit of the p-value. More formally, if the canonical
form of the p-value is (a ·10b), the transformed value is the absolute value of the
exponent minus one (i.e. |b|−1). E.g., if the p-value is 0.0046, then the canonical
form is 4.6 · 10−3, so the absolute value of the exponent is 3, minus 1 yields 2.



Please note that at least one of the two exponents is 0. Therefore for an even
more compact interpretation, the non-null value is taken with appropriate sign
(positive if the values in the second dataset are greater than in the �rst one,
and negative in the opposite case), which can be calculated as the di�erence of
the two p-values. Formally, this transformation was calculated by the following
function:

f = ⌊log
1

p1
⌋−⌊log

1

p2
⌋ (1)

3.5 Divisions

This section describes how the two subsets of the whole commit set were de�ned.
All of the below mentioned partitions were performed for every version control
operation type (Add, Update and Delete).

First we de�ne the notion of main dataset which can be one of the following:

� The whole dataset, including all the revisions.
� The subset of the commits where the examined commit operation type occurs
at least once.

� The subset of the commits where all the commit operations are of the same
type.

We partitioned the main dataset into two parts (�rst dataset and second dataset)
in the following ways:

� Divide the main dataset into two, based on the median of the absolute num-
ber of the examined operations. The greater values go into the �rst dataset,
the second dataset is the complementary of the �rst one considering the main
dataset.

� Divide the main dataset into two based on the median of the proportion of
the examined operations, with similar division.

� Take the main dataset as the �rst dataset, and the second dataset as its
complementary considering the whole dataset. This division can be de�ned
only if the main dataset is not the whole dataset.

After eliminating those combinations which are not relevant, we ended up
with seven combinations for dataset division per commit operation type. All of
these are illustrated with the example of operation Add and the assumption that
the presence of this operation has positive impact on the maintainability.

DIV1: Take all commits, divide them into two based on the absolute median of
the examined operation. It checks if commits containing high number of operation
Add have better e�ect on maintainability than those containing low number of
operation Add.
DIV2: Take all commits, divide them into two based on the relative median
of the examined operation. It checks if the commits in which the proportion of
operation Add is high have better e�ect on maintainability compared to those
where the proportion of operation Add is low. To illustrate the di�erence between
DIV1 and DIV2 consider a commit containing 100 operations, 10 of them are
Addition (the absolute number is high but the proportion is low) and a commit
containing 3 operations, 2 of them are Additions (the absolute number is low,
but the proportion is high).



DIV3: The �rst subset consists of those commits which contain at least one of
the examined operations, and the second one consists of the commits without
the examined operation. It checks if commits containing �le addition have better
e�ect on the maintainability than those containing no �le additions at all.
DIV4: Considering only those commits where at least one examined operation
exists, divide them into two based on the absolute median of the examined op-
eration. This is similar to DIV1 with the exception that those commits which
does not contain any Add operation are not considered. This kind of division is
especially useful for operation Add, as this operation is relatively rare compared
to �le modi�cation, therefore this provides a �ner grained comparison.
DIV5: Considering only those commits where at least one examined operation
exists, divide them into two based on the relative median of the examined oper-
ation. Similar to DIV2; see the previous explanation.
DIV6: The �rst subset consists of those commits which contain the examined
operation only, and the second one consists of the commits with at least one
another type of operation. This checks if commits containing �le additions exclu-
sively have better e�ect on the maintainability compared to those containing at
least one non-addition operation. This division is also especially useful in case
of �le updates.
DIV7: Considering only those commits where all the operations are of the ex-
amined type, divide them into two based on the absolute median of the examined
operation. This division is used to �nd out if it is true that commits which contain
more �le additions result better maintainability compared to those containing
less number of additions. It is especially useful in case of �le updates, as most
of the commits contain exclusively that operation.

Please note that 2 of the theoretically possible 9 divisions were eliminated
because they always yield trivial divisions (100% - 0%):

� All commits and its complementary. The complementary of all commits is
always empty.

� Relative median division of commits containing the examined operation only.
In these cases the proportion of the examined operation is always 100%,
therefore one of the 2 datasets would be empty.

Table 1 illustrates these divisions.

Table 1: Divisions

Complementary Absolute Median Relative Median

All Commits - DIV1 DIV2
Operation Exists DIV3 DIV4 DIV5
Operation Exclusive DIV6 DIV7 -

The tests were executed on all of these combinations during the experiment.
In case of median divisions, if the median was ambiguous, both cases were tested
(checking into which subset these elements should be added), and the better
division (the more balanced division) is taken. In order to present the result
in concise format the aforementioned exponent values were calculated for every



possible combination and they were summed per system and operation. The
mathematical background behind the addition is based on the exponents. If
the p-values are independent, then the root probability is the product of the
original probabilities, in which case the exponent of the resulting value would be
approximately the sum of the exponents.

As a result we get a matrix with the version control operations in the rows
and analyzed systems in the columns, and an integer value in each cell. We
stress that this is only an approximation, �st of all, because the divisions are
not independent. However, it is adequate for a quick overview, and for comparing
the results of di�erent systems. We also drill down in one case to illustrate how
the calculated numbers were aggregated.

3.6 Random Checks

To validate the results, a random analysis was performed as well in the following
way. We kept the original source control operations data and the values of the
quality changes. But we permuted randomly the order of the revisions they were
originally assigned to, just like a pack of cards (using the sample() R function).
We performed randomization several times, permuting the already permuted
series and executed the same analysis with the randomized data as with the
original to assess the signi�cance of our actual results.
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Fig. 2: Illustrating the calculated exponent values

The expected values of the exponents in random case can be derived from the
diagram in Figure 2: 80% having 0, 9−9% having -1 and 1, 0.9−0.9% having -2
and 2, 0.09 − 0.09% having -3 and 3, etc. With other words, the probability of
the absolute value of the random exponents being at least 1 is 20%, 2 is 2%, 3
is 0.2%, etc.

As we have 3*7=21 tests per project all together, statistically 21*0.2=4.2 of
them would be a non-null value, and 0.42 of them having an absolute value of at
least 2. Therefore we set the acceptance criterion for the test that the absolute
value of the exponents to be at most 2, which corresponds to the p-value 0.02.



As we checked 4 projects (see below), statistically this means that 1 or 2 of the
4*21=84 cases would be false signi�cant.

The expected absolute value in random case is about 1. Based on a check we
found that the absolute value is at least 1 in about 66% of the cases, at least 2 in
about 24%, at least 3 in about 7%, at least 4 in about 1.7%, at least 5 in about
0.35% of the cases, and so on. Based on this we accept the absolute values 4 and
higher as signi�cant.

4 Discussion

4.1 Examined Software Systems

The analysis was performed on the source code of 4 software systems. One of
them was an industrial one, of which we had all the information from the very
�rst commit. The others were open-source ones. Unfortunately, we did not �nd
any open-source project of which we had all the commits from the beginning
of the development in the same version control system. In order to gain as
adequate results as possible, we considered only those projects for which we had
at least 1,000 commits a�ecting at least one Java �le. Furthermore, the too small
code increase could also have signi�cant bias, therefore we considered only those
systems where the ratio of the maximal logical lines of code (typically the size
of the system after the last available commit) and the minimal one (which was
typically the size of the initial commit) was at least 3. We found 3 such systems
which met these requirements.

Therefore, all together we performed the analysis on the following 4 systems:

� Ant � a command line tool for building Java applications1

� Gremon � a greenhouse work-�ow monitoring system.2 It was developed by
a local company between June 2011 and March 2012.

� Struts 2 � a framework for creating enterprise-ready java web applications.3

� Tomcat � an implementation of the Java Servlet and Java Server Pages
technologies.4

Table 2 shows the basic properties of them.

Table 2: Analyzed systems

Name Min. Max. Total Java Total number of Rev. with 1+ Rev. with only

TLLOC5 Commits A U D A U D A U D

Ant 2,887 106,413 6,118 6,102 1,062 20,000 204 488 5,878 55 196 5,585 19

Gremon 23 55,282 1,653 1,158 1,071 4,034 230 304 1,101 89 42 829 8

Struts 2 39,871 152,081 2,132 1,452 1,273 4,734 308 219 1,386 94 41 1,201 12

Tomcat 13,387 46,606 1,330 1,292 797 3,807 485 104 1,236 77 32 1,141 23

1 http://ant.apache.org
2 http://www.gremonsystems.com
3 http://struts.apache.org/2.x
4 http://tomcat.apache.org
5 Total Logical Lines Of Code � Number of non-comment and non-empty lines of code



4.2 Summarized Results of the Wilcoxon Tests

The results of the methodology introduced in Section 3.4 are shown in Table 3.
The absolute number re�ects the magnitude of the impact, while the sign gives
the direction (maintainability increase or decrease). Figure 3 illustrates the same
results as follows: the upper light gray bars represent the �le additions, the lower
darker gray bars the �le updates, and the black vertical lines the �le deletions.
The �le additions are all located on the positive part, the �le updates on the
negative, and deletions are hectic, with lower absolute values.

Gremon Ant Struts 2 Tomcat
Add 5 62 20 14

Update -11 -29 -11 -3
Delete 4 -12 -6 1

Table 3: Sum of the exponents

−20

0

20

40

60

A
nt

G
re

m
on

S
tr

ut
s2

To
m

ca
t

−20

0

20

40

60 Add
Update
Delete

Fig. 3: Exponents with bars

These results cannot be interpreted on their own, they only provide a rough
overview. The divisions are not independent; furthermore, in some cases the
exactly same divisions are checked several times.

4.3 Wilcoxon Tests Details

For details on the above numbers consider Table 4. The sum of the rows are
also shown, which helps us drawing the attention on the most promising results.
We recall the probabilities in random case (see Subsection 3.6), to illustrate the
magnitude of the numbers in the �rst 3 columns.

Table 4: Exponent details

Operation Division Gremon Ant Struts 2 Tomcat
∑

Add

DIV1 1 15 6 4 26
DIV2 1 15 6 4 26
DIV3 1 15 6 4 26
DIV4 0 7 1 1 9
DIV5 1 1 0 0 2
DIV6 1 6 1 1 9
DIV7 0 3 0 0 3

Update

DIV1 -2 2 0 0 0
DIV2 -2 -11 -3 -1 -17
DIV3 -2 -4 0 -1 -7
DIV4 -1 2 0 1 2
DIV5 -1 -8 -4 -1 -14
DIV6 -2 -11 -3 -1 -17
DIV7 -1 0 -1 0 -2

Delete

DIV1 0 -1 0 0 -1
DIV2 0 -1 0 0 -1
DIV3 0 -1 0 0 -1
DIV4 0 0 -1 0 -1
DIV5 1 -2 -3 0 -4
DIV6 3 -5 -2 0 -4
DIV7 NA -2 0 1 -1



The diagrams in Figure 4 illustrate the results of the Wilcoxon rank tests
visually, where the values found in the summary column of Table 4 are illus-
trated. High absolute length of a bar means high signi�cance within the project.
Comparison is also interesting between the projects: high absolute lengths on
the same place are considered as a strong result.

In case of operation Add (left bars, light gray) all of the bars are non-negative
for every system. The bars related to DIV1, DIV2 and DIV3 are the tallest, and
in 3 out of the 4 cases the bars for DIV4, DIV5, DIV6 and DIV7 are similar.

The bars for operation Update (middle bars, dark gray) are a bit more hec-
tic; in general we can say that the height of most of the bars are negative.
Furthermore, in case of DIV2, DIV5 and DIV6 we have long negative bars.

The hectic results of operation Delete (right bars, black) are also illustrated.
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Now let us check the results in the tables.

Addition. The results in the �rst 3 divisions (DIV1, DIV2, and DIV3) are in
all cases the same, because addition exists in less than half of the commits (see
the de�nitions in Section 3). The overall result of the Wilcoxon test (26) is very
high for these divisions, the highest absolute value in the table. On 3 out of
the 4 projects the test yielded signi�cant result (exponent ≥ 2). This de�nitely
means that commits containing additions have better e�ect on the maintainability
compared to those containing no �le additions.



The result of DIV4 is also relatively high (9), however, this is caused by
a high value for one project, with less support of the others. This means that
for commits containing an addition, in some cases the higher absolute number
of addition results better maintainability, comparing with the commits of lower
number of additions. It is interesting that this is not the case if the proportion
of additions in taken (DIV5 with result of 2): higher proportion of �le addition
does not result in signi�cantly better maintainability.

DIV6 checks if commits containing exclusively �le additions have signi�cantly
di�erent e�ect on maintainability compared to those containing other operations
as well. The overall result (9) is remarkably high; however, the result is modu-
lated by the fact that in case of 3 projects the connection is weak. The reason
could be the low number of commits containing �le additions only (the p-value
is a�ected also by the number of elements: if the same result is supported by a
higher number of elements, the p-value is lower). The result of DIV7 tells that
if all �le operations are �le additions, then the connection between the number
of operations and the maintainability is weak.

Update. Unlike in case of �le addition, �le update results of the �rst 3 divisions
are quite di�erent. Based on DIV1 (�nal result is 0) there is no di�erence be-
tween the e�ects of the commits with low and high absolute number of Update
operations on maintainability. However, it contains a contradiction: besides hav-
ing 2 zeroes, the result contains a +2 (meaning that the high number of Updates
signi�cantly improves the maintainability) and a -2 (meaning it signi�cantly de-
creases). We have not found the reason of this contradiction, possibly further
investigations of other data is necessary.

On the other hand, DIV2 provides a very signi�cant result (-17), and this
is supported by every analyzed system with varying degree. This suggests that
the proportion of operation Update really matters from maintainability point
of view. In general, the higher the proportion of the operation Update within a
commit, the worse its e�ect on the maintainability. DIV7 resulted in exactly the
same values, because the divisions were the same: the commit either contains
exclusively update or contains other operations as well.

Based on DIV3 we can say that the mere existence of operation Update has
a negative e�ect on maintainability (comparing with those not containing any
Update). This was signi�cant in 3 out of the 4 systems, with no contradiction
on the 4th. DIV4 is similar to DIV1 (absolute median division of those commits
which contain at least one Update) with similar low signi�cance and small con-
tradiction. DIV5 is similar to DIV2 (relative median division of those commits
which contain at least one Update) with similar but lower exponents.

The result of DIV6 (-17) is signi�cant, which is supported by most of the
checked systems. This means that in general, the presence of operation Update
has a negative e�ect on the maintainability. DIV7 is similar to DIV1 or DIV4
(absolute median division of commits containing exclusively Update), and the
result is not signi�cant at all.



The Update operation has negative e�ect on maintainability, but the way
how it appears (alone or together with other operation) really matters. It seems
that the presence of other operations suppresses the e�ect of the update.

Delete. The e�ect of the operation Delete seems a bit contradictory. In case
of Ant and Struts 2 we have non-positive results only. In case of Gremon and
Tomcat the values are non-negative but with lower absolute values than the
others. The NA means not available; in case of Gremon there were not enough
commits which contained exclusively Delete operations and we could not perform
a division based on the number of operations so that both sets would contain
enough number of elements to be able to compare. There were 8 such commits,
and we executed the test only if at least 5 elements in both subset existed.

The highest absolute values can be found in case of DIV6, meaning that there
is a signi�cant di�erence in the e�ect on the maintainability between commits
containing exclusively Delete operations compared to those containing other op-
erations as well, but the values are very contradictory. In 2 out of the 4 cases the
results suggest that deletion signi�cantly decreases the maintainability. This is a
bit strange because it suggests that it is more likely that the more maintainable
code is removed than those harder to maintain. Deletion could typically occur
in case of refactoring, and we would expect that the hard-to-maintain code is
removed and better-to-maintain code appears instead, but it seems that this is
not the case.

On the other hand, in case of Gremon just the opposite is true with relatively
high con�dence. We have not found any explanation to this contradiction, and
we cannot be certain that the reason is the fact that Gremon is an industrial soft-
ware, implemented by paid programmers, while the others are not, implemented
by volunteers, or something entirely di�erent.

4.4 Answers to the Research Questions

RQ1: Does the amount of �le additions, updates and deletions within a commit
impact the maintainability of the source code?

Consider Table 3. For interpretation of the magnitude of these values please
consider the random probabilities in Section 3.6. In case of operation Add all the
values are positive, and all of them can be considered to be signi�cant. Therefore,
we can state that operation Add has positive impact on the maintainability.
In case of operation Update all the values are negative. The absolute value
of one of them (-3 in case of Tomcat) is relatively low which would not be
convincing in itself. However, along with the others we can state that operation
Update has negative impact on the maintainability. In case of operation Delete
we have 2 positive and 2 negative results, containing low and high absolute values
as well. Considering these data only we cannot formulate a valid statement for
this operation.

RQ2: Are there any di�erences between checks considering the absolute number
of operations (Add, Update, Delete) and checks investigating the relative propor-
tion of the same operation within commits?



Consider Table 4. The values found in DIV1 (absolute median) should be
compared with DIV2 (relative median) and those in DIV4 with DIV5. In case of
operation Add there is no di�erence between DIV1 and DIV2. In case of com-
paring DIV4 with DIV5 we �nd that the values in the sum column are 9 and 2,
respectively. This seems to be a good result at �rst glance; however, this is caused
by only one value, and all the other 7 values are not signi�cant. Therefore, based
on these values only we cannot formulate anything for operation Add. In case of
operation Update the relative median (DIV2 and DIV5) results in signi�cantly
lower values than those of absolute median (DIV1 and DIV4). Therefore, we
can state that in case of Update the high proportion of the operation causes
the maintainability decrease, rather than the absolute number of it. In case of
operation Delete we again cannot formulate any statement.

5 Threats to Validity

The facts which might potentially threaten some of the validity of the results
are the following.

The data are not fully complete, which is true for many of the researches of
course; ours is not an exception either. The commit data for the Gremon project
is complete: all the commits are available from the very beginning. On the other
hand, large amount of data in case of open-source projects are missing. E.g., in
case of every project the initial commit contained a large amount of development
which came from another version control system. To alleviate this problem we
chose projects having plenty enough code enhancements during the development.
In some cases a lot of development was done in another branch, and this appears
as a huge merge in the examined branch. This could also have signi�cant bias.

The results of the di�erent systems show similar tendency in most of the
cases; however, in some cases the results are diverging. This is especially true
for operation Delete. We have not found the reason of these divergences.

There is no de�nition to the quality of the source code expressed by a number.
The ColumbusQM tool used by us is one of several approaches, with its own
advantages and drawbacks. We �nd this model as a good, well founded one,
but we are aware that it is not perfect: it is being improved continuously. We
treat this as an external threat and hope that more and more precise information
about the software quality will support the results with higher con�dence instead
of threatening it.

6 Conclusions and Future Work

This research is part of a longer term study, aimed to identify the patterns of the
developers' behavior which causes signi�cant impact on the source code quality.

We studied the impact of version control commit operations on the main-
tainability change. Only the bare number of operations was considered, nothing
else. We received some interesting answers, which are the following.

We found that �le additions have positive, or at least better impact on main-
tainability, compared to the e�ect of those commits containing no or small num-
ber of additions.



On the other hand, the research showed that �le updates have signi�cant
negative e�ect on the maintainability.

We found no clear connection between �le deletions and maintainability.
Based on this research the net e�ect of this operation is rather negative than
positive, which contradicts with our initial assumption.

We identi�ed the similarities and the di�erences between the high number
and the high proportion of existence of a version control operation within com-
mits. Later on this fact might also be an important part of the formula which
will hopefully explain the in�uence of the developer's interactions on the source
code quality.

Answers to these any maybe many other questions might help improving the
knowledge where exactly the software erosion decreases.
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