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Abstract. Most of the runtime failures of a software system can be
revealed during test execution only, which has a very high cost. The
symbolic execution engine developed at the Software Engineering De-
partment of University of Szeged is able to detect runtime errors (such
as null pointer dereference, bad array indexing, division by zero) in Java
programs without running the program in real-life environment.
In this paper we present a constraint system building mechanism which
improves the accuracy of the runtime errors found by the symbolic ex-
ecution engine mentioned above. We extend the original principles of
symbolic execution by tracking the dependencies of the symbolic vari-
ables and substituting them with concrete values if the built constraint
system unambiguously determines their value.
The extended symbolic execution checker was tested on real-life open-
source systems as well.
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1 Introduction

Nowadays, producing great, reliable and robust software systems is quite a big
challenge in software engineering. About 40% of the total development costs go
for testing and maintenance activities, moreover, bug fixing of the system also
consumes a considerable amount of resources. The symbolic execution engine
developed at the Software Engineering Department of University of Szeged sup-
ports this phase of the software engineering lifecycle by detecting runtime errors
(such as null pointer dereference, bad array indexing, division by zero) in Java
programs without running the program in real-life environment.

According to the theory of symbolic execution [1] the program does not
run with specific input data, but the inputs are handled as symbolic variables.
When the execution of the program reaches a branching condition containing a
symbolic variable, the execution continues on both branches. At each branching
point both the affected logical expression and its negation are accumulated on
the true and false branches, thus all of the execution paths will be linked to a
unique formula over the symbolic variables.

The paper describes a constraint system construction mechanism, which im-
proves the accuracy of the runtime errors found by the symbolic execution engine



mentioned above by treating the assignments in the program as conditions too.
Thus we can track the dependencies of the symbolic variables extending the
original principles of symbolic execution. The presented method also substitutes
the symbolic variables with concrete values if the built constraint system unam-
biguously determines their value. To build and satisfy the constraint systems we
used the open-source Gecode constraint satisfaction tool-set [2].

The paper explains in detail how the algorithm is implemented that builds
the constraint system for each execution path, how it is integrated into the
symbolic execution engine of the Department of Software Engineering, and how
the algorithm enhanced the effectiveness of the engine. The extended symbolic
execution checker was tested on real-life open-source systems as well and we
compared it with our previous tool [3] based on SymbolicPathFinder.

2 Background

2.1 Symbolic Execution

During its execution, every program performs operations on the input data in
a defined order. Symbolic execution [1] is based on the idea that the program
is operated on symbolic variables instead of specific input data, and the output
will be a function of these symbolic variables. A symbolic variable is a set of the
possible values of a concrete variable in the program, thus a symbolic state is a
set of concrete states. When the execution reaches a selection control structure
(e.g. an if statement) where the logical expression contains a symbolic variable,
it cannot be evaluated, its value might be also true and false. The execution
continues on both branches accordingly. This way we can simulate all the possible
execution branches of the program.

During symbolic execution we maintain a so-called path condition (PC). The
path condition is a quantifier-free logical formula with the initial value of true,
and its variables are the symbolic variables of the program. If the execution
reaches a branching condition that depends on one or more symbolic variables,
the condition will be appended to the current PC with the logical operator AND
to indicate the true branch, and the negation of the condition to indicate the false
branch. With such an extension of the PC, each execution branch will be linked
to a unique formula over the symbolic variables. In addition to maintaining the
path condition, symbolic execution engines make use of so called constraint solver
programs. Constraint solvers are used to solve the path condition by assigning
values to the symbolic variables that satisfy the logical formula. Path condition
can be solved at any point of the symbolic execution. Practically, the solutions
serve as test inputs that can be used to run the program in such a way that the
concrete execution follows the execution path for which the PC was solved.

SymbolicChecker, the symbolic execution engine developed at the Software
Engineering Department does not aim to generate test inputs, but to find as
many true positive runtime errors in the program as possible. In accordance
with this goal we changed and extended the standard path condition building
method described above.
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Fig. 1: (a) Sample code that determines the distance of two integers on the number line
(b) Symbolic execution tree of the sample code handling variable x and y symbolically

Figure 1 (a) shows a sample code that determines the distance of two integers
x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with
the corresponding symbolic execution tree. We handle x and y symbolically, their
symbols are X and Y respectively. The initial value of the path condition is true.
Reaching the first if statement in line 3, there are two possibilities: the logical
expression can be true or false; thus the execution branches and the logical
expression and its negation is added to the PC as follows:

true ∧X > Y ⇒ X > Y, and true ∧ ¬(X > Y )⇒ X ≤ Y.

The value of variable dist will be a symbolic expression, X-Y on the true
branch and Y-X on the false one. As a result of the second if statement (line 8)
the execution branches, and the appropriate PCs are appended again. On the
true branches we get the following PCs:

X > Y ∧X − Y < 0⇒ X > Y ∧X < Y,

X ≤ Y ∧ Y −X < 0⇒ X ≤ Y ∧X > Y.

It is clear that these formulas are unsolvable, we cannot specify such X and
Y that satisfy the conditions. This means that there are no such x and y inputs
with which the program reaches the write(”Error”) statement. As long as the PC
is unsatisfiable at a state, the sub-tree starting from that state can be pruned,
there is no sense to continue the controversial execution.

2.2 SymbolicChecker, the Symbolic Execution Engine

The goal of SymbolicChecker is to detect those real runtime errors that other
audit tools cannot detect and those which mostly can be discovered by a large
amount of testing only. It is important for us that the detected errors be as
accurate as possible, so we can eliminate the false positive hits and find more
numerous true positives that helps the software developers to create a higher-
quality product and makes the maintenance tasks easier. Generating test cases
which lead to the errors is not a goal here, much more to produce a descriptive
designation of the execution path that led to a fault.

In the present paper we do not give a detailed description of the Symbolic-
Checker analysis tool, but in order to understand our new constraint building
concept, its basic understanding is needed. SymbolicChecker is written in C++,



the development is still in progress. Currently the detection of null pointer deref-
erences, array over-indexing, division by zero, and type cast errors are imple-
mented.

SymbolicChecker performs the analysis by symbolically executing each method
of the system one-by-one. The parameters of the method under execution and
the referred but not initialized variables are handled as symbols at the beginning
of the analysis. It is important that we only report an error if it is guaranteed
that during the execution the value that causes the problem can be determined
by constant propagation. For example, if a method call is guaranteed to pass a
null value, and it is guaranteed that the called method dereferences this param-
eter, we will fire an error, but if the dereferenced variable is a symbol we will
not, because its value is unknown or uncertain. To limit the size of the symbolic
execution tree, its maximum depth and the maximum number of states can be
specified.

The symbolic execution is performed using the language-dependent abstract
semantic graph (ASG) [4] of the program by interpreting the the nodes of this
graph in a defined order. The order is defined by the language-independent
control flow graph (CFG) [5]. The output of the SymbolicChecker contains the
detected errors indicating their type, the execution path from the entry point
to the exact location where the error occurred and a probability that estimates
how likely the analyzed method runs onto the detected fault.

In SymbolicChecker Definition is a comprehensive name for all the data that
appears during the symbolic execution. For example, the concrete or symbolic
variables, constants, parameters of methods, their return value, or the result
of sub-expressions are also Definitions. Actually, the symbolic execution of the
program is the propagation of these Definition objects. Basically there are two
types of Definitions: ValueDefinition and SymbolDefinition. ValueDefinition ob-
jects store specific, concrete values and SymbolDefinition instances represent the
symbolic variables.

2.3 JPF Checker

In one of our previous works [3] we used SymbolicPathFinder [6] to create a
tool named JPF Checker with the same goal as with SymbolicChecker: to detect
runtime errors in Java programs without modifying the source code and without
having to run it in a real-life environment. This SymbolicPathFinder based tool
used the conventional constraint building mechanism. In Section 4 we compare
this approach to our new concept which is implemented in SymbolicChecker.

3 Constraint Building

3.1 Principles

In this work we developed a constraint building mechanism and integrated it into
SymbolicChecker which allows us to detect runtime errors that a conventional
symbolic execution system cannot.

As we described in Section 2.2, SymbolicChecker reports errors only if the
value causing the problem becomes concrete. The tool does not fire for symbolic



variables because if a variable is a symbol it actually means that it’s value is
doubtful, not known. It may occur that during the symbolic execution of a
program most of the variables turn into symbols, which makes finding runtime
errors rather difficult.

The main idea behind the developed constraint building mechanism is that
if during the analysis the program sets up conditions (constraints) that unam-
biguously determines the value of one or more symbolic variables, then we can
convert these symbols into concrete values and the symbolic execution can be
continued on the actual path using the concreted variables. Since these variables
handled like concrete data, it is possible to detect errors that otherwise Sym-
bolicChecker could not find. The conditions we mentioned above are determined
by the conditional control structures (if, switch, while, etc.) and expressed by
the assignments of the program, including the impacts of the increment and
decrement operators (++,−−) of the Java language.

Overall, the goal of the implemented constraint building mechanism is the
concretion of as many symbols as possible, which helps to find more runtime er-
rors. In order to achieve this (1) it is necessary to build a special path condition
(PC), that contains the dependencies of the symbolic variables too determined
by the assignments of the program, and (2) if the constraints in the PC determine
the values of some symbols unambiguously, the execution has to be continued
using these concrete values on the actual path. Since such an extended path con-
dition includes – in some form – also those conditions that are in the PC built the
conventional way, as long as it is infeasible, the code parts that are unreachable
can also be skipped. Therefore, false positive defects can be eliminated.

To demonstrate the basic idea of extending the PC, consider the code snippet
in Figure 1a. In this example, the conventional path condition of the path which
passes through the true branch of the if statement in line 3, and the false branch
of if in line 8 is the following:

X > Y ∧ ¬(X − Y < 0) ⇒ X > Y ∧ X − Y ≥ 0.

According to our concept the extended PC of the same path is the following:

X > Y ∧ ¬(dist < 0) ∧ dist = X − Y.

It can be seen that variable dist is also included in the constraint system as
a symbol, on the one hand in the negation of condition in line 8 where X-Y was
not substituted, on the other hand the constraint that expresses the assignment
in line 4. As a result, the constraint system contains information about variable
dist as well that could be useful in the later stages of the execution.

In this example, the extended PC does not contain constraints which could
unambiguously determine any variable, thus the benefit of the extension is not
obvious here. The code snippet in Figure 2a shows an example where the ex-
tended PC indeed has some gains.

Executing the code symbolically in Figure 2a handling variable c as a symbol,
the following constraint system will be built in the program state at line 7:

a > 8 ∧ a = b + 9 ∧ b = 2 · c + 4 ∧ a < 10.

The constraint system above includes constraints that are introduced by the
if statements of the code and the dependencies of symbol a, i.e. those constraints



1. // c is an int symbol
2. double b = 2*c + 4;
3. int a = b + 9;
4. if (a > 8) {
5. ...
6. if (a < 10) {
7. // concretion of b
8. int p = 1/b;
9. }
10. }

(a) Sample code that provides
symbol concretion, which helps to
find runtime errors that a conven-
tional symbolic execution tool can-
not.

1. // a and b are symbols
2. if (b > 0) {
3. ...
4. if (a == 0) {
5. // concreting a?
6. ...
7. }
8. }

(b) Code snippet which points out
a path condition that has more so-
lutions, but concreted symbol a

Fig. 2

that are given by the assignments that defines variable a. After satisfying this
constraint system it can be obtained that a can only be 9, which implies that
the value of b and c symbols are unambiguous too: b = 0.0 and c = −2. In such
a situation the execution continues on that path for which the extended PC was
satisfied. In case of the considered example if the execution continues with the
b=0.0 value, at line 8 a division by zero error can be detected. As long as symbol
b would not be included in the PC, and if its unambiguous value would not be
used, the detection of division by zero would fail.

In real-life programs, quite big constraint systems are be built, which contain
lots of symbols. Easy to see that satisfying such a large set of constraints as a
whole, it has a low probability that there is only one possible solution.

Figure 2 shows a code snippet that highlights the problem in question. Con-
sidering the path that passes along the true branches of both if statements, the
path condition is b > 0 ∧ a = 0. Although there are infinite number of solutions
of this formula, because the b > 0 constraint can be satisfied by any positive
integer, the formula determines the value of symbol a unambiguously, which
would be preferred to use in later stages of the execution.

To overcome the problem we decompose the path condition into connected
components that is, to constraint sets that are independent i.e. does not contain
the same variables. The connected components can be satisfied individually and
if some of them determines a variable unambiguously then the obtained values
can be used later in the execution. Two constraints are in the same component
if they contain at least one common variable. After such a decomposition the
path condition becomes a set of constraint sets.

The essential steps of the algorithm of our constraint system building is
shown in Figure 3. This algorithm will be executed after each branching point
in the symbolic execution tree.

First of all, it is determined if the accumulation of the PC happens on the
true or on the false branch then dependent upon this the created logical expres-
sion or its negation is stored in variable constraint (lines 3-7) (the handling of
switch statement of the Java programming language is not shown in the pseudo
code). It is important to note that we build constraint exactly from that log-
ical expression that is determined in the source code, there is no substitution



1. Constraint constraint;
2. set<Constraint> actualConstraints;
3. if (onTrueBranch()) {
4. constraint = constraintBuilder.createConstraint();
5. } else if (onFalseBranch()) {
6. constraint = constraintBuilder.createNegatedConstraint();
7. }
8. actualConstraints.insert(constraint);
9. actualConstraints.union(dependenciesOfSymbolsInConstraint);

10. pathCondition.insert(actualConstraints);
11. decomposedPC = decompose(pathCondition);
12. foreach (set<Constraint> s : decomposedPC) {
13. constraintSolver.solve(s);
14. if (s.hasSolution) {
15. if (!s.hasMoreSolution) {
16. buildBackSolutions(s);
17. }
18. } else {
19. weight = 0.0;
20. break;
21. }
22. }

Fig. 3: Pseudo code of the algorithm of constraint system building

of variables like in case of variable dist in Section 2.1, in example 1. Next, the
created constraint is added to the actualConstraints constraint set (line 8), and
also the dependencies of the symbols included in this constraint are inserted
(line 9). These dependencies are defined by the assignments of the code, later
we will discuss how they are created. The next step is that the path condition of
the current execution path is extended by the actualConstraints constraint set
(line 10), then the PC will be decomposed into connected components in line
11. As long as one of the connected components cannot be satisfied the weight
of the current path is set to 0.0 indicating that there is no sense to continue
the execution because of the contradictory conditions (line 19). On the other
hand, if there is at least one solution, the algorithm examines its uniqueness
(line 13), if the solution is unique, the concrete values are built back into the
current symbolic state (line 16).

It have to be emphasized that a concreted symbol is built back into the a state
only once and only into that state for which the constraint system concreted it.

3.2 Implementation

We used the Gecode constraint solver tool-set [2] for building and satisfying
our constraint systems. Basically, we can differentiate two kinds of constraints:
(1) conditions in the conditional control structures of the program (including
the loops too) and (2) the dependencies of symbols which are included in these
conditions. In the following, we describe how did we implement the building of
the constraint system integrated into SymbolicChecker.

As we described in Section 2.2, for every kind of data that appears in a
program during the symbolic execution (e.g. variables, literals, sub-expressions,
etc.) a Definition object is created. In fact, the execution of the program is
nothing else than the proper propagation of these Definition objects. The task
is to achieve the tracking that determines what other Definitions a Definition
object is created from and what operations it uses. This is how the relations
between symbolic variables are described.



For the implementation we added a so-called constraintSolverExpression data
member to the class Definition and a dependency set too, which is a set of con-
straints. These attributes are propagated with the Definitions along the program
by the symbolic execution.

The constraintSolverExpression represents an expression object created us-
ing the Gecode constraint solver. With such an expression object Gecode can
represent the inner structure of expressions that is, which operands are they cre-
ated from using which operators. The constraintSolverExpressions is propagated
in the following way: when an operation is performed on Definition objects we
take the constraintSolverExpressions of the operands and perform the operation
on the expressions too, and the resulting compound constraintSolverExpression
will be set in the resulting Definition object. In case of operations performed on
ValueDefinitions for efficiency reasons the operation on the constraintSolverEx-
pressions is not performed, instead we simply create a new Gecode expression
which stores the calculated value.

The dependency set contains the dependencies of those symbols which are
in the constraintSolverExpression which are defined by the assignments of the
program. In case of those assignments where the right side is a SymbolDefinition,
for the variable which is on the left we create a new symbol. This new symbol will
not take over the constraintSolverExpression of the right side, but the relation
between left and right side Definitions is expressed by an equality constraint
between them. The dependency set is propagated in the following manner. After
performing an operation the dependency set of the resulting Definition will be
the union of the dependency sets of the operands. In case of an assignment which
has SymbolDefinition on the right side, the dependency set of the newly created
SymbolDefinition on the left will be the dependency set of the right side symbol
extended by the constraint which defines equality between the two sides.

1. // d is a symbol
2. int b = d + 3;
3. int c = 2*d;
4. int a = b { c;
5. if (42 == a) {
6. ...
7. }

Fig. 4: Sample code for demonstrating the propagation of dependency sets.

The branching conditions in selection control structures which defines the
branching points of the symbolic execution tree are also expressions in the pro-
gram, thus they appear as Definition objects (actually as SymbolDefinitions)
in SymbolicChecker. Variable constraint in the algorithm shown in Figure 3 is
created from the constraitnSolverExpression of such a Definition object, and
constraint set dependenciesOfSymbolsInConstraint is the dependency set of this
Definition too. Constraint set actualConstraints by which the path condition
will be extended is the union of the above mentioned constraint and dependen-
ciesOfSymbolsInConstraint.

In the followings, we demonstrate the building of the constraint system and
the propagation of dependency sets for the example code in Figure 4. Variable
d is handled as symbol, it is a SymbolDefinition which dependency set is empty



and its constraintSolverExpression is a Gecode expression which contains only
a simple unknown variable. Firstly, in line 2 a ValueDefinition is created for
literal 3, which dependency set is empty, then operation + creates the d+3
SymbolDefinition. The dependency set of d+3 is the dependency set of the left
and the right side, which is also an empty set:

SymbolDef(d+3).depset = SymbolDef(d).depset∪V alueDef(3).depset = ∅.
After the execution of the assignment the dependency set of b is:

SymbolDef(b).depset = SymbolDef(d+3).depset∪{b = d + 3} = {b = d + 3} .

Dependency set of symbol c created at line 3 is quite similar:

SymbolDef(c).depset = SymbolDef(2∗d).depset ∪ {c = 2 · d} = {c = 2 · d} .
At the left hand side of assignment at line 4, dependency set of SymbolDefi-

nition b-c is the union of dependency set of b and c:

SymbolDef(b− c).depset = SymbolDef(c).depset ∪ SymboldDef(b).depset

= {b = d + 3, c = 2 · d} .
Then the dependency set of a:

SymbolDef(a).depset = SymbolDef(b− c).depset ∪ {a = b− c}
= {b = d + 3, c = 2 · d, a = b− c}.

Dependency set of SymbolDefinition created from expression 42 == a at line
5 is the same as the dependency set of a, thus the path condition on the true
branch of if statement is the following:

PC = {42 = a} ∪ {b = d + 3, c = 2 · d, a = b− c}
= {42 = a, b = d + 3, c = 2 · d, a = b− c}.

4 Evaluation

SymbolicChecker with our constraint building mechanism was tested in a variety
of ways. This section contains the results of these tests. First of all, we demon-
strate the advantages of our algorithm through two examples emphasizing the
difference of JPF Checker and SymbolicChecker without using the constraint
building mechanism. After that, we write about the experiences got form the
tests we have performed on large, real-life systems.

In run() method of the example code shown in Figure 5 SymbolicChecker
with constraint building detects an array over-indexing fault. First of all, we
follow what is the cause of the runtime error, then we look at how the new
approach helps detecting it. Line 5 defines an array called arr with size of max.
As long as parameter n is grater than 0 (line 6), a sequence of operations will
be performed which aims to calculate two sums based on the content of the
array. This sequence of operations fills the array at first (lines 7-9), then starting
from n, summarizes the member data members of objects on every second index
into the variable sum1 (lines 11-16). Next, the code calls method gcd() with
arguments n and the 0th element of array arr (line 18) and summarizes the
elements of the array starting from the negation of the return value of gcd() (lines
20-22). Method gcd() calculates the greatest common divisor of the numbers and



1. class Example {
2.
3. public void run(int n) {
4. int max = getCharPos(’w’);
5. A[] arr = new A[max];
6. if (n > 0) {
7. for (int i = 0; i < max; ++i) {
8. arr[i] = new A(max - i);
9. }
10. int sum1 = 0;
11. while (n < max) {
12. if (n % 2 == 0) {
13. sum1 += arr[n].getMember();
14. }
15. n++;
16. }
17. System.out.println("Sum1: " + sum1);
18. int negOfGcd = -gcd(n, arr[0]);
19. int sum2 = 0;
20. while (negOfGcd < max) {
21. sum2 += arr[negOfGcd++].getMember();
22. }
23. System.out.println("Sum2: " + sum2);
24. }
25. }
26.

27. public int getCharPos(char c) {
28. return c { ’a’ + 1;
29. }
30.
31. private int gcd(int x, int y) {
32. while (y != 0) {
33. int m = x % y;
34. x = y;
35. y = m;
36. }
37. return x;
38. }
39.
40. }
41.
42. class A {
43. private int member;
44.
45. public A(int member) {
46. this.member = member;
47. }
48.
49. public int getMember() {
50. return member;
51. }
52. }

Fig. 5: Example code with the analysis of method run().

its return value must be a positive integer if the arguments are n and arr[0].
Because of this, variable negOfGcd guaranteed to be negative which causes an
ArrayIndexOutOfBoundsException runtime error that results in the halt of the
program.

When starting the analysis with method run(), variable n is the only symbol.
Variable max is concrete, array arr is also instantiated concretely and all of its
elements are concrete values too. However, the execution of the loop in line 11
depends on n. On the false branch the execution continues from line 16, on
the true branch we enter into the body of the loop, and after executing it we
will branch again depending on the condition at line 11. This operation will
continue until it reaches the maximum depth of the symbolic execution tree.
If the execution paths entered into the loop at least once and then exited, the
following constraints must be part of the extended path condition:

nprev < max ∧ n = nprev + 1 ∧ ¬(n < max)⇒

nprev < max ∧ n = nprev + 1 ∧ n >= max.

In this formula nprev means the instance of symbol n when the execution
just entered the loop. At this state the nprev < max constraint can be defined.
In line 15 as the result of the incrementation a new symbol is created and the
n = nprev + 1 constraint is built. Since in the next iteration the execution do
not enters into the loop, but continues on the false branch it is necessary to
create the ¬(n < max) constraint too. After satisfying the constraint set above,
symbol n will be determined unambiguously, and its value is equal to the value
of variable max. This means that if the execution exits the while loop, the value
of n must be max.



Building back the unambiguous value of n into the current symbolic state,
the arguments of method call gcd() are both concrete values, thus it will be
executed concretely and its return value will also be a concrete number. As we
assumed the return value must be a positive integer, this leads to a bad array
indexing in line 21.

The example detailed above highlights that a concreted symbolic variable can
make a significant part of the execution concrete. The spread of symbols can be
reduced, thus fewer variables have to be handled as unknown and uncertain
data. As a result, the analysis becomes faster, because fewer execution paths
have to be examined. In the shown example without concreting variable n we
should have explored the whole symbolic execution tree of method gcd(), which
is rather expensive because of the loop inside.

The demonstrated ArrayIndexOutOfBoundException cannot be detected nor
by the JPF Checker, nor by SymbolicChecker without constraint building.

In the second example we show a real code part from the log4j logging system.
Consider method org.apache.log4j.net.SMTPAppender.sendBuffer() in Figure 6
from log4j version 1.2.11, in which we point out that our new approach can also
eliminate false positive faults as the conventional path condition construction.

// SMTPAppender.java
public class SMTPAppender extends

AppenderSkeleton {
...
protected Layout layout;
protected CyclicBuffer cb =

new CyclicBuffer(bufferSize);
...
protected
void sendBuffer() {

...
224. int len = cb.length();
225. for(int i = 0; i < len; i++) {
226.
227. LoggingEvent event = cb.get();
228. sbuf.append(layout.format(event));
229. if(layout.ignoresThrowable()) {
230. String[] s =

event.getThrowableStrRep();
231. if (s != null) {
232. for(int j = 0; j < s.length; j++) {
233. sbuf.append(s[j]);
234. }
235. }
236. }
237. }

...
}
...

}

public class CyclicBuffer {
int numElems;
...

101. public
102. LoggingEvent get() {
103. LoggingEvent r = null;
104. if(numElems > 0) {
105. numElems--;
106. r = ea[first];
107. ea[first] = null;
108. if(++first == maxSize)
109. first = 0;
110. }
111. return r;
112. }

...
119. public
120. int length() {
121. return numElems;
122. }

...
}

public class SimpleLayout extends Layout {
...

56. public
57. String format(LoggingEvent event) {
58.
59. sbuf.setLength(0);
60. sbuf.append(event

.getLevel().toString());
61. sbuf.append(" - ");
62. sbuf.append(event

.getRenderedMessage());
63. sbuf.append(LINE_SEP);
64. return sbuf.toString();
65. }

...
}

Fig. 6: Method org.apache.log4j.net.SMTPAppender.sendBuffer() and its environment



In line 228 of method sendBuffer(), get() method of class CyclicBuffer is
called, which returns a LoggingEvent reference. First of all, method get() ini-
tializes the reference r to null (line 103), then if the numElems data member is
greater than 0, r gets a new value. However, on the false branch it returns the
null-initialized r reference. Following this false branch, in method SMTPAppen-
der.sendBuffer() variable event is initialized to null in line 227, this null value
will be propagated into method SimpleLayout.format(), which dereferences it in
line 60.

However this null dereference would be a false positive error, because in line
60 the null value never occurs. In line 224 we get the numElems member of object
cb for which the first iteration of the for loop at line 225 defines a constraint.
The PC looks like this:

0 < len ∧ len = cb.numElems.

Nevertheless, method get() called at line 227 returns null only on the false
branch where the numElems > 0 constraint is not satisfied, thus the path
condition is the following:

0 < len ∧ len = cb.numElems ∧ ¬(numElems > 0).

This formula, however, unsatisfiable, which means that the execution can not
continue on this path. Variable event will not get the null value in line 227, so
the method format() of class SimpleLayout cannot dereference it. This actually
means that the execution enters the for loop in line 225 only if the value of
variable len is at least 1, but in this case method get() cannot return null on the
false branch of the if statement in line 104.

The elimination of the discussed false positive error would fail using Sym-
bolicChecker without the constraint building mechanism, but the JPF Checker
would also eliminate it, because in this case no symbols are concreted and the
unsatisfiability of the path condition is also tested by the JPF/SPF based tool.

We have run SymbolicChecker with the presented constraint building mech-
anism on large Java systems too, however the evaluation of the results is not
entirely finished yet. Manually reviewing the reported errors is rather time-
consuming because of the difficulty of interpreting the long execution paths
from the entry point to the point where the error was detected in the source
code. Which can be seen in the results so far is that there are significantly fewer
runtime errors in the resultant report obtained by SymbolicChecker that uses
the constraint building mechanism compared to the ones that JPF Checker pro-
duces. This does not mean that the report of SymbolicChecker does not contain
false positive results, but most of them draw attention to real errors and potential
sources of errors.

Considering the duration of the analyzes, the run-time of SymbolicChecker
using the constraint building stays below the run-time of JPF Checker, but this
duration is about twice longer then the run-time of SymbolicChecker running
it without the constraint building mechanism. The analysis of the log4j logging
library took slightly less than half an hour without constraint building, and the



duration is about an hour using the new approach. Of course, we expected such
a time requirement of our constraint building algorithm because the building of
the constraint system, decomposing it to connected components and especially
its satisfaction are rather computation intensive tasks.

5 Related Work

In this section we present works that are related to our research. First, we in-
troduce some existing tools and technicques for runtime error detection mainly
in Java programs, then we show the possible applications of the symbolic exe-
cution. We also summarize the problems that have been solved successfully by
SymbolicPathFinder that we used for implementing our approach. Finally, we
present works that completed or modified the symbolic execution technique.

The work of Weimer and Necula [7] focuses on proving safe exception han-
dling in safety critical systems. They generate test cases that lead to an exception
by violating one of the rules of the language. Unlike they do not generate test
inputs based on symbolic execution but solving a global optimization problem
on the control flow graph (CFG) of the program.

The JCrasher tool [8] by Csallner and Smaragdakis takes a set of Java classes
as input. After checking the class types it creates a Java program which instan-
tiates the given classes and calls each of their public methods with random
parameters. This algorithm might detect failures that cause the termination of
the system such as runtime exceptions. The tool is capable of generating JUnit
test cases and can be integrated to the Eclipse IDE. JCrasher creates a driver
environment but it can analyze public methods only and instead of symbolic ex-
ecution it generates random data which is obviously not feasible for examining
all possible execution branches.

The DART [9] (Directed Automata Random Testing) by Godefroid et al. tries
to eliminate the shortcomings of the symbolic execution e.g. when it is unable
to handle a condition due to its unlinear nature. DART executes the program
with random or predefined input data and records the constraints defined by the
conditions on the input variables when it reaches a conditional statement. In the
next iteration taking into account the recorded constraints it runs the program
with input data that causes a different execution branch of the program. The goal
is to execute all the reachable branches of the program by generating appropriate
input data.

The idea of symbolic execution is not new, the first publications and execu-
tion engines appeared in the 1970’s. One of the earliest work is by King that lays
down the fundamentals of symbolic execution [1] and presents the EFFIGY sys-
tem that is able to execute PL/I programs symbolically. Even though EFFIGY
handles only integers symbolically, it is an interactive system with which the
user is able to examine the process of symbolic execution by placing breakpoints
and saving and restoring states.

Starting from the last decade the interest about the technique is constantly
growing, numerous programs have been developed that aim at dynamic test



input generation using symbolic execution. The EXE (EXecution generated Ex-
ecutions) [10] presented by Cadar et al. at the Stanford University is an error
checking tool made for generating input data on which the program terminates
with failure. The input generation is done by the STP built-in constraint solver
that solves the path condition of the path causing the failure. The basic differ-
ence between Symbolic Checker and EXE is that for running EXE one needs to
declare the variables to be handled symbolically.

Further description and comparison of the above mentioned and other tools
can be found in the work of Coward [11] and Cadar[12].

Song et al. applied the symbolic execution to the verification of networking
protocol implementations [13]. The SymNV tool creates network packages with
which a high coverage can be achieved in the source code of the daemon, therefore
potential rule violations can be revealed according to the protocol specifications.

The main application of the Java PathFinder [14] and its symbolic execution
extension, the SymbolicPathFinder [6] is the verification of the internal projects
in NASA. Bushnell et al. describes the application of Symbolic PathFinder in
TSAFE (Tactical Separation Assisted Flight Environment) [15] that verifies the
software components of an air control and collision detection system. The pri-
mary target is to generate useful test cases for TSAFE that simulates different
wind conditions, radar images, flight schedules, etc.

In our previous work [3] we used Symbolic PathFinder to create a tool named
JPF Checker with the same goal as we have in case of Symbolic Checker: to detect
runtime errors in Java programs without modifying the source code and without
running it in a real-lif environment. This Symbolic PathFinder based tool used
the conventional constraint building mechanism. In section 4 we compare this
approach to our new concept which implemented in Symbolic Checker.

System MIX [16] combines symbolic execution with static type checking
based techniques. It designates type and symbolic blocks in the program, which
determines which code-part should be analysed using symbolic execution and
wich one using static type checking. In the border of these blocks so-called mix-
rules are used to convey the neccessary information. MIX is intended to provide
a compromise between the precise but resource intensive symbolic execution and
the less precise but faster type checking.

Shannon and others [17] built an abstraction layer above the Java string
handling using finite state automatas. In addition to the implementation of the
java.lang.String class StringBuilder and StringBuffer classes are included. As a
result, the system is able to handle constraints that contains strings and string
operations, thus it can be applied to programs that are working on more complex
strings, such as SQL queries. Currently Symbolic Checker does not handle string
constraints, we plan to deliver this development in the future.

Durring symbolic execution it may occur that the built path condition con-
tains function calls, e. g. if(y >= f(x)). The so-called concolic (concrete-
symbolic) [18] execution provides a possible solution for this problem using a
special constraint builden mechanism. The main idea of this approach is that
two path conditions are maintained at the same time. One of them contains



those conditions witch do not includes function calls, and the other is the so-
called complex PC, in which there are conditions that includes function calls
too. First, the algorithm satisfies the simple PC and assnigs values to the in-
cluded symbols, then these values are used to execute those included functions
concretely which execution depended on those symbols which values have been
determined int the first step. This method also capitalize on turning symbols int
to concrete values, like the approach we present in this paper.

6 Summary and Future Work

The basic principles of symbolic execution has been known for decades, and
several tools were made that utilizes the possibilities offered by this technique.
SymbolicChecker which we developed at the Software Engineering Department of
University of Szeged is differing from the most of these tools because it does not
aim to generate test inputs, but to detect execution paths that lead to runtime
errors and dangerous code parts as accurately as possible. In order to reach this
goal we developed a constraint building mechanism and integrated it into Sym-
bolicChecker, which differs from the ones which are used in other systems. The
presented approach builds a constraint system for each execution path, which
includes constraints over the variables too that depends on the inputs handled as
symbolic variables and in case of unambiguity the concreted values are used in
the later stages of the analysis. As a result, runtime errors can be detected that
would not be possible using a conventional symbolic execution tool. For exam-
ple the demonstrated ArrayIndexOutOfBoundsException in Section 4 cannot be
detected nor by the JPF Checker, nor by SymbolicChecker without constraint
building. By concreting symbolic variables the size of the symbolic execution
tree can be reduced as well, which implies improvements in performance also.
The ability to eliminate false positive results is achieved by ignoring those paths
that carries contradictory constraints.

The results so far are promising and we continue the development of our
tool. First, the review and evaluation of the results we get on large systems
will take place, which will determine the future tasks. We plan to optimize the
whole symbolic execution engine included the constraint building mechanism, as
well as develop new methods and techniques that make the detection of runtime
errors even more accurate.
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