
Cumulative Code Churn: Impact on Maintainability
Csaba Faragó, Péter Hegedűs, and Rudolf Ferenc

Department of Software Engineering,
University of Szeged, Hungary

Email: {farago,hpeter,ferenc}@inf.u-szeged.hu

Abstract—It is a well-known phenomena that the source code
of software systems erodes during development, which results
in higher maintenance costs in the long term. But can we
somehow narrow down where exactly this erosion happens? Is it
possible to infer the future erosion based on past code changes?
Do modifications performed on frequently changing code have
worse effect on software maintainability than those affecting less
frequently modified code?

In this study we investigated these questions and the results
indicate that code churn indeed increases the pace of code
erosion. We calculated cumulative code churn values and main-
tainability changes for every version control commit operation
of three open-source and one proprietary software system. With
the help of Wilcoxon rank test we compared the cumulative
code churn values of the files in commits resulting maintain-
ability increase with those of decreasing the maintainability.
In the case of three systems the test showed very strong
significance and in one case it resulted in strong significance
(p-values 0.00235, 0.00436, 0.00018 and 0.03616). These results
support our preliminary assumption that modifying high-churn
code is more likely to decrease the overall maintainability of a
software system, which can be thought of as the generalization of
the already known phenomena that code churn results in higher
number of defects.

Index Terms—code churn, ISO/IEC 25010, source code main-
tainability, Wilcoxon test

I. INTRODUCTION

Software maintainability plays a crucial role in modern
development projects. It is one of the six sub-characteristics
of software quality, as defined originally in the ISO/IEC 9126
standard [1]. Software maintenance consumes huge efforts:
based on the experiences, high proportion of the total amount
of software development costs are spent on this activity.
As maintainability is in direct connection with maintenance
costs [2], our motivation is to investigate the effect of the
development process on the maintainability of the code. Our
goal is to explore typical patterns causing similar changes
in software maintainability, which could either help to avoid
software erosion, or provide information about how to better
allocate efforts spent on improving software maintainability.

In previous works we already tackled this area of research.
In a recent paper [3] we presented that there is a strong
connection between the version control operations and the
maintainability of the source code. We also performed a
study [4] that revealed the connection of the version control
operations and maintainability. It turned out that file additions
have rather positive, file updates have rather negative effect
on maintainability, while a clear effect of file deletions was
not identified. Furthermore, in a more recent work [5] we
presented the results of a variance analysis. File additions and

file deletions increase the variance of the maintainability, and
operation Update decreases it.

Up to now we considered the number of version control
operations only. In this study we dig a bit deeper: we consider
also on which file the change was performed on. Furthermore,
we “look into” the source files, and try to assess the extent
of the file changes. We analyze if historical changes have any
long term effect on files in terms of maintainability changes
caused by current modifications.

We introduce the concept of cumulative code churn and use
its value to express the gross amount of past code changes.
Khoshgoftaar et al. [6] defined code churn as “the number of
lines added to, deleted from, or modified in a source module”.
In this study we consider the total gross amount of changes
from the very beginning of the development of a software
system. The term cumulative code churn expresses the fact
that the code churn values are accumulated (summed).

Maintainability

average

variance

Version Control

operations

file name

author

date

difference

comment

sign

median

Figure 1. Overview of the research

Figure 1 demonstrates how this study fits into our long
term research of revealing the connections between patterns
in development activities and maintainability.

The left hand side rectangle indicates the information which
can be gained directly from a version control system. These are
the following, per commit: operations performed on files (e.g.
file addition, modification, deletion or rename), along with the
file names, the author, the date and the comment, and if we
dig a bit deeper, then the difference between the previous and
the current revision can also be extracted. Ellipses with dark
background and narrow border line indicate information not
used in this study (these are either analyzed in other works,
or not yet analyzed). The white one (difference) is the most

important part of this study. The ellipses with light gray color
and wide border line indicate source control information which
are implicitly used: the file name (as we calculate the historical
code churn for each file) and the date (as the order of the
commits matter).

The right hand side rectangle represents maintainability,
which is actually the absolute change of the maintainability
of the source code between the previous and current revision.
Other studies dealt with the average, the mean and the vari-
ance of subsets of maintainability changes; in this study we
considered the sign, i.e. the direction of the maintainability
change, indicating if maintainability increases or decreases.

We performed our analysis on commit basis. We collected
the historical data from the SVN source code version control
system and estimated the maintainability with the help of the
ColumbusQM probabilistic software quality model [7].

A practical use of the results could be the following. It
would be useful to show information in the integrated devel-
opment environments about cumulative code churn values (e.g.
as defined in this study, or other, similar, available and easy to
compute ones). This could warn the developers for the possible
risk of maintainability decrease if the file is to be modified.
Source code quality actions – for example, mandatory code
review with stricter rules than usual – could be applied.

The added value of this approach to simply calculating
maintainability with the ColumbusQM model is that it is
light-weight. While ColumbusQM needs the source code, a
complete benchmark and is very computation intensive, our
approach requires VCS access only.

Formally, we investigated the following research question
in this paper:

Research Question: Do commits that involve files which
were previously intensively modified have a different impact
on the maintainability of the source code, compared to those
commits affecting less intensively modified files?

Null hypothesis: The amount of the past modifications does
not have any influence on the maintainability changes caused
by future commits.

Assumed alternative hypothesis: Modifying files which
have been modified intensively in the past is more likely to
result in further maintainability decrease than modifying files
that have been less intensively modified earlier.

The null hypothesis basically claims that the maintainability
changes can take arbitrary values: positive, negative and even
zero, and the probability of being any value is independent
from the past modification. Technically speaking, the assumed
alternative hypothesis is not the perfect negation of the null-
hypothesis, but it is stronger. We constructed the statistical
tests not just to decide whether we can reject the null-
hypothesis, but also to find evidences that support the assumed
alternative hypothesis in such case.

The research question can be rephrased informally as fol-
lows: Does high cumulative code churn have a bad effect
on maintainability? In our interpretation, the high value of
cumulative code churn for a file expresses the fact that it
has been modified heavily during its lifetime. We investigated

this question by studying three open-source and an industrial
system. According to the results presented in this paper, we
could reject the null hypothesis, as the performed Wilcoxon
rank test showed significant results in all cases. This supports
the common intuition that modifying high-churn code is more
likely to cause software degradation.

The remaining of the paper is organized as follows. Sec-
tion II provides a brief overview of works that are related to
this research. In Section III we present the methodology of
how we collected the data, what kinds of tests we performed
and how we illustrated the results. In Section IV we describe
the results of the statistical tests. In Section V we list the
possible threats to the validity of the results, while Section VI
concludes the paper.

II. RELATED WORK

Analyzing the effect of code churn on source code, es-
pecially for defect prediction, is an intensively investigated
research area. We, on the other hand, studied the impact
of cumulative code churn on future maintainability changes.
Our research may be thought of as the generalization of the
already published results, as we think the number of defects
is certainly an aspect of maintainability, but not the only one.

Khoshgoftaar et al. [6] present a gross change prediction
improvement using neural networks. Their measure of quality
is the gross change of source code from the beginning of the
testing phase to the end of maintenance phase. They executed
their model on 8 software systems and concluded that their
approach with neural networks resulted in a much improved
quality prediction.

In another study, Khoshgoftaar et al. [8] assessed the
reliability of telecommunication software systems. They con-
sidered a software module as fault prone if it exceeded a
threshold of debug code churn. They defined code churn as
the number of lines added or changed due to bug fixes. We
considered the number of lines deleted as well.

In their article Munson et al. [9] presented how they
calculated the code churn values, and proved that this was
a proper fault surrogate. They synthesized the measurements,
and defined code churn (as a new measure) by comparison of
the complexity of sequential builds. They analyzed 19 builds
of a large embedded system, with about 300 thousand lines of
code, consisting of more than 3700 modules, written in C.

Ohlson et al. [10] analyzed the same phenomena as we did,
the code erosion; they used the phrase “code decay.” They
refer to code churn as the number of defect fix reports for a
component. The analysis was based on 8 releases of a legacy
software with 130 components. They were able to identify the
most fault-prone components with the help of code churn and
other metrics. We executed our tests on source code basis, and
not on component basis.

Hall et al. [11] presented their concept of code delta and
code churn compared to a baseline with the help of a real,
industrial software system. Our baseline was the first commit
of the software, which was really the very beginning in one

case, and in the other 3 cases the first commit was a migration
from another source control system.

Eick et al. [12] investigated a huge project (containing about
100 million lines) written in C++ to find evidence for code
decay. They found statistical evidence of this phenomena: the
number of files touched per change increased; parallel to this,
the modularity has been declined by changes touching multiple
modules; furthermore they dealt with fault rates and effort
prediction as well. On the other hand, they could not find
evidence if the code decay can be fatal, i.e. not possible to
change further. In our study we also analyzed how historical
changes affect the maintainability, and we performed one step
further: considering the code decay as an evidence, tried to
identify why, when and where it occurs.

Nagappan et al. [13] presented a study about a defect
prediction model, validated on the source code of Windows
Server 2003. They defined 8 relative code churn measures,
e.g. churned lines of code per total lines of code. They
showed that these measures correlate with defect density. They
also concluded that relative code churn measures are good
and absolute code churn measures are poor defect density
predictors. They found that these relative code churn measures
are good predictors of system defect density, and they can be
efficiently used to distinguish between fault-prone and non
fault-prone binaries.

The same authors present also another approach of post-
release defect prediction [14], considering software dependen-
cies and code churn. They found that this combination is a
good predictor of faults. They used a very big data set, but
they validated their concept on a single project. We, on the
other hand, targeted projects from different domains (although
smaller ones) to lower the chance of casual results.

Ajila et al. [15] performed a research on a long term soft-
ware life cycle (considering a six years period). They analyzed
the effect of code delta, code churn and rate of change on
software evolution. They found no relationship between the
size of the code added and the number of designers required
to develop and test it. In the current research we targeted the
available commits only, and did not consider information other
than the source code. However, considering other software
development interactions, like the low level IDE interactions
or the information available in issue tracking systems are in
our long term plan.

In their study Shin et al. [16] describe the result of testing if
complexity, code churn and developer activity metrics (28 all
together) obtained from source code and development history
are proper indicators of the location of software vulnerabilities.
They validated their approach on the source code of Mozilla
Firefox and Red Hat Enterprise Linux kernel.

Giger et al. [17] showed that code churn defined simply
by number of lines modified is not so good error predictor as
fine-grained source code changes defined by them. They tested
their concept on the source code of Eclipse.

Maintainability is also a very intensively investigated re-
search area, and a complete overview of this topic exceeds

the limits of this article. Therefore we just touch the surface
of the most recent results.

Fry et al. [18] present their results on the comparison of
the maintainability of human written and generated patches.
They found that human written patches are slightly more
maintainable than machine generated ones; however, they
proposed a system which augment the machine generated
patches with human readable documentation, and it changed
the original tendency.

Yamashuta et al. discuss [19] how code smell interactions
affect maintainability. They also provide evidences that code
smells found in coupled artifacts have traceable effects on
maintainability.

In their study [20], Hanenberg et al. present an experiment
investigating if static type systems improve maintainability
compared to dynamic type systems. They found that static
type systems are beneficial in understanding source code and
fixing type errors, but not in fixing semantic errors.

III. METHODOLOGY

This section describes how we performed statistical tests to
answer our research question. Section III-A provides a high
level overview about the methodology. Section III-B describes
how we cleaned the input data, and why it was necessary. In
Section III-C we describe how we calculated the maintain-
ability. Then, in Section III-D we present how we determined
the cumulative code churn values, while in Section III-E we
demonstrate that the calculated maintainability and cumulative
code churn values are independent. Section III-F describes
the statistical tests we used for comparisons. In Section III-G
we deal with the possible alternatives and describe why we
selected the chosen approach. Finally, in Section III-H we
present a method for validation cross-check.

A. Overview

We analyzed the connection between cumulative code churn
and maintainability. In order to do this we needed the follow-
ing information: cumulative code churn and maintainability
both expressed as numeric values. Neither of them is trivial to
obtain, there are no exact definitions on how to compute them.
Sections III-C and III-D describe our approach of calculating
these values.

We chose to work on a per commit basis as the maintain-
ability values used as input data in this study were available
for the revisions of the subject systems. This is a significant
constraint with inevitable loss of precision, but we think this is
the best strategy for using system level maintainability values.
We are convinced that without this trade-off the results would
be even more significant.

Technically, we were looking for a cumulative code churn
and a maintainability value for all revisions of the analyzed
software systems. The cumulative code churn values were
calculated based on the change history from SVN. Regarding
the maintainability of systems it was sufficient to have the
information whether it increased, decreased or did not consid-
erably change as a result of the commit operation in question.

As a result, we got a maintainability change sign – cumu-
lative code churn value pair for each revision. These numbers
are independent from each other extracted from different data
sources. We performed a statistical test on these input data
sets as described below.

B. Preliminary Steps

Before the actual computation we did some data cleaning.
The analyzed software systems were all written in Java. The
quality model we used (see below) considers Java source files
only. Therefore we first removed the data related to the non-
Java source files (e.g. xml files) from the input. After this step,
some of the commits became empty. So we also removed the
data about commits containing no Java source files at all. As
a result, we worked on an input commit set containing Java
source files, and each analyzed revision contained at least one
committed Java file.

C. Calculation of the Maintainability Change

We calculated the maintainability value of every revision
with the help of the ColumbusQM probabilistic software qual-
ity model [7]. This model is based on the fact that the increase
of software metrics (e.g. object-oriented metrics defined by
Chidamber and Kemerer [21]) decreases the maintainability.
Gyimóthy et al. [22] empirically validated that the increase of
some of these metrics increase the probability of faults.

The model itself considers the following metrics: logical
lines of code, the number of ancestors, the maximum nesting
level, the coupling between object classes, clone coverage,
number of parameters, McCabe’s cyclomatic complexity, num-
ber of incoming invocations, number of outgoing invocations,
and number of coding rule violations. These metrics are com-
pared with those of other systems in a benchmark, and then the
results of the comparisons are aggregated using a probabilistic
statistical algorithm utilizing also weights provided by experts.

The model was empirically validated, resulting that there
is a correlation between the calculated maintainability values
and the real development costs [2].

As a result, we get a sign (positive, zero, or negative) for
each commit.

D. Cumulative Code Churn Calculation

This section describes how we calculated the cumulative
code churn values for the revisions. First, we show how we
defined the cumulative code churn of a file, then we define
the churn value of a commit.

According to the literature [6], code churn is defined as
follows: lines added, modified or deleted in a file from one
version to another. We use a historical approach to extend
this notion from the very beginning of the available revision
history.

We initialized the cumulative code churn value for every
file to zero. At each commit we performed the following on
every file. We executed the SVN diff tool for the actual and
the previous version of the file. Besides the change itself, it
contains information where and how the changes occurred and

how many lines were affected. The lines added are indicated
with a plus (+) sign, and the removed ones are with minus (−)
sign. Updates within lines are considered as a line removed
and a line added.1

In the current work we considered the cardinality of line
changes (both line additions and line deletions). These values
are summed from the very beginning of the available version
control history; this value forms the cumulative code churn of
a file. As a result, we obtain how many lines have been added
to the source code plus how many lines were removed in the
history for every file in each commit.

As we already pointed out, the maintainability data was
available commit-wise, so it was necessary to define the
cumulative code churn value for a commit itself. A commit
related to the revision in question may contain any number
of files (to be more precise in our special case: it contains at
least one Java source file). We somehow need to define the
cumulative churn value of the commit itself.

First of all, during calculation we consider the value before
the actual commit, i.e. not considering the current modifica-
tions. This means that we tried to find evidence on the effect
of the actual commit without checking anything (except the
affected files) of that commit.

Second, it was necessary to somehow find the common root
of the calculated values, which should be a kind of an average
of them. That was the proper choice (instead of considering
for example just the maximum) because of the nature of the
already available data, i.e. the maintainability. The sign of
the maintainability change caused by a certain commit is the
common impact of all the modifications of all the affected files
of that commit, i.e. the final change is a kind of an average
of the individual changes.

Therefore we chose the most straightforward approach and
calculated the averages of the above churn values of the
affected files.

We illustrate the cumulative code churn calculation on an
artificial example. The example project contains 3 sources
and 5 revisions. Let Table I contain the number of file
modifications: lines removed and lines added to the files in
the different revisions. For example, Game.java has been
added at the third revision with 25 lines, and it was modified
at fourth revision as follows: 3 lines has been removed and 7
added.

Table I
EXAMPLE FILE MODIFICATIONS

Revision
ID File name 1 2 3 4 5

1 Main.java 0, 25 2, 3 10, 0 10, 15
2 Data.java 0, 30 0, 5 7, 23 15, 0
3 Game.java 0, 25 3, 7

1More details about the unified diff format can be found on the pages
http://en.wikipedia.org/wiki/Diff_utility#Unified_format and
https://www.gnu.org/software/diffutils/manual/html_node/Unified-
Format.html

For this case, Table II illustrates the calculated churn values
for every file and every revision. They are initialized to
0 (representing the “0th” revision). Continuing the previous
example, for Game.java this value remains 0 until it is added
with 25 lines, then at the next update 3+7=10 lines have been
modified, therefore the result in revision 4 will be 35.

Table II
EXAMPLE FILE CHURN VALUES

Revision
ID File name 0 1 2 3 4 5

1 Main.java 0 25 30 40 65
2 Data.java 0 30 35 65 80
3 Game.java 0 25 35

The commit related churn values are calculated based on the
file related churn values. These values are listed in Table III. It
contains which files were affected in each revision (Changed
source ID, e.g. 3 for Game.java), the previous churn values
and the calculated average. The average values calculated this
way form the input of the statistical tests we performed.

Table III
EXAMPLE COMMIT CHURN VALUES

Revision 1 2 3 4 5
Changed source IDs 1, 2 1 2, 3 1, 2, 3 1, 2
Prev. churns 0, 0 25 30, 0 30, 35, 25 40, 65
Average 0.0 25.0 15.0 30.0 52.5

As result, we get a non-negative number representing the
magnitude of the cumulative code churn of each commit.

E. Independence of the Values

The maintainability and the cumulative code churn values
are entirely independent from each other. On one hand, the
maintainability change for the nth revision is calculated as the
sign of difference of maintainability values of the nth and the
(n-1)th revisions (which is measured by utilizing source code
metrics). Therefore its value is solely affected by the code
change between the previous and the current revision.

On the other hand, the cumulative code churn value of
the actual commit is affected by the modifications of the 1st,
2nd, 3rd, ..., (n-1)th revisions. The last considered piece of
information in the calculation is (potentially) part of the code
delta between the n-2th and n-1th revision (only if the same
source files are affected by both commits).

Therefore the explanatory and response variables of the
performed statistical tests are totally independent.

F. Comparison Tests

At this point we have 2 pieces of information for every
commit:

• an indicator if the maintainability has been increased, did
not change, or decreased; and

• a number illustrating the cumulative churn sizes of the
source files in that commit.

We want to tell something about their connection. For that,
we divide the commits into two subsets: commits with positive

maintainability change and those of negative maintainability
change. From now on we do not consider commits with
zero maintainability change anymore. The zero maintainability
changes are typically caused by small, one line modifications.

We take the churn numbers of each subset. Therefore, at
this point, we have 2 sets of churn values: one for positive,
and one for negative maintainability change commits. Our null
hypothesis is that there is no difference in the magnitudes
of these numbers. The alternative hypothesis is that there are
significant differences in the churn values. Our assumption
is that the churn values related to positive maintainability
changes are significantly lower than those related to negative
maintainability changes.

In order to verify this, we selected the Wilcoxon rank test
(also known as Mann-Whitney U test). This is a nonparametric
statistical test of the null hypothesis that two populations
are the same, with the alternative hypothesis that one of the
populations has significantly higher values than the other. In
this case the alternative hypothesis is that commit churn values
related to maintainability decrease are higher than the churn
values related to maintainability increase.

The two major advantages of this test are the following: it
does not require any specific distribution, and it is not sensitive
to the outliers. Both constraints would be problematic in our
case. If a statistical test requires a special distribution, that is
normal distribution in most of the cases. But the defined churn
values are not of normal distribution, but rather similar to an
exponential distribution. The other problem is the presence of
outliers. The uncommon commits (like merging huge amount
of code from another branch, or renaming hundreds of files
by removing and adding them) would cause significant bias in
case of statistical tests sensitive to outliers.

There are two-tailed and one-tailed versions of this test.
The two-tailed version tells if there is a significant difference
between the values of the input data sets, regardless of its
direction. We wanted to check the direction of difference
explicitly (i.e. that values in subset A are greater than values in
subset B), therefore we selected the one-tailed test. By using
this approach, we would be able not just to reject the null-
hypothesis, but to prove the assumed alternative hypothesis as
well.

The most important result of this statistical test is the well-
known p-value, indicating the probability of the result being
at least as extreme as the observed, provided that the null-
hypothesis is true. In the results section we present these
p-values for the analyzed systems. We performed the test
by employing the wilcox.test() function in the R [23]
statistical software package.

G. Discussion

This section describes why we chose the presented approach
which might help the reader to better understand it.

In this study we treat the used quality model as a black box,
in a sense that both the theory behind it and the calculation
itself was executed before independently from this study. For
this level of abstraction it is enough to know that if all of the

metrics increase, then the maintainability decreases; if they
all decrease, then the maintainability increases; and if some
of the metrics increase and others decrease, then the direction
of the maintainability change depends on the benchmark and
the aggregation algorithm applied by the model.

The quality model analyzes a complete system, i.e. a certain
revision of a software system and calculates the result. We
have no details about the individual software components, like
source code elements. Furthermore, by comparing two subse-
quent revisions, we have no information about the individual
impact of each file participating in the commit. Therefore the
direction of the maintainability change is the compound result
of the individual files. This is the reason why it was necessary
to define a compound measure for the churn values as well.
Averaging the file churns was the most straightforward choice,
as the other part of the data series was also of averaging nature.
Other approaches, e.g. considering just the maximum, would
not be proper here because they would differ in nature from
the already available information.

The way we calculated the churn values evolved over time.
First we considered only the number of different places the
user modified the code, then the information about the number
of touched lines were taken into consideration. The next step
could be to determine if a sequental file addition and file
removal is a line modification or really a line removal and
line insertion. There are no exact methods to determine this
information from the diff files; several studies deal with this
problem. A study [24] presents such a heuristics with their
measurements of about 95% precision and recall. But based on
our previous experiences we would expect similar, somewhat
even lower p-values, therefore we decided not to implement
such a heuristic to keep the presented straightforward ap-
proach.

It was a question how to deal with the commits with no
traceable maintainability changes. We were thinking about the
possibilities like adding them to one of the subsets or to both
of them, but we rejected these ideas. We could not formulate
any ideology why we should add them to either of the subsets,
but adding to both of the subsets would effect the same result
with lower strength. We can picture the situation with the
following metaphore. We have two bottles filled with water
and the question is which one is the colder. If we pour the
same amount and same temperature water into both bottles,
the relative order based on temperature would not change, but
the difference would be lower.

It was not a trivial problem how to deal with deletions.
Should it increase or decrease the code churn or maybe have
no effect on it? Based on the way how other researchers treated
this operation we chose to handle them similar to file additions.

Somehow aggregating the source code specific code churn
values within each commit is inevitable; however, there are
other possibilities as well. Beyond using the average, another
candidate of aggregation could be the calculation of geometric
mean of the values. Furthermore, in this case it should be
taken into account that files just added (i.e. having past 0
churn value) must not to considered in the calculation (because

multiplying anything with 0 would result in 0, and the nth

root will be 0 as well). Another dimension of the possibilities
is whether the actual commit should be considered or not
in the churn value calculation. We chose the more common
average over geometric mean, and decided not to consider the
actual commit, in order to strengthen the findings; however,
we executed the tests with all the other combinations. We got
similar p-values in all cases, all of them being lower than 0.05,
and in several cases even lower than the results presented in
this paper.

H. Randomized Cross-Checks

We wanted to be sure that the results are really valid,
therefore we executed the tests on random data as well. This
was done in the following way:

• we kept the churn values in their original order, and
• we also kept the signs of the maintainability changes,

but we permuted randomly the order of the revisions they
were originally assigned to, just like a pack of cards. The
sample() R function was used to permute the order.

This way we got the same churn values and the same
maintainability change signs as in the original case, but
the connection which churn value belongs to which sign
is randomized. We performed randomization several times,
permuting the already permuted series. We executed the same
analysis with the randomized data and checked the appropriate
random results as well to be able to assess the significance of
our original results.

As a result, we get several p-values performed on random-
ized data.

IV. RESULTS

In this section the execution results of the previously de-
tailed method are presented. First, in section IV-A we intro-
duce the software systems we executed the tests on. Then in
section IV-B the actual test results are presented. Section IV-C
contains the results of the randomized data, for cross-checking
the validity of the main test. Finally, section IV-D describes
some important additional notes that help properly interpreting
the results.

A. Examined Software Systems

The analysis was performed on the source code of the
following four software systems (one of them is an industrial
one and three of them are open-source):

• Ant – a command line tool for building Java applica-
tions.2

• Gremon – a proprietary greenhouse work-flow monitor-
ing system.3

• Struts 2 – a framework for creating enterprise-ready java
web applications.4

2http://ant.apache.org
3http://www.gremonsystems.com
4http://struts.apache.org/2.x

• Tomcat – an implementation of the Java Servlet and Java
Server Pages technologies.5

These systems were selected prior to the current work, and
these are the same systems we used in other studies related to
our research series [3]–[5].

Table IV
ANALYZED SYSTEMS

Ant Gremon Struts 2 Tomcat
Maximum logical lines of code 106,413 55,282 152,081 46,606
Number of commits 6,102 1,158 1,749 1,292
Maintainability increases 1,482 456 498 269
Maintainability no change 3,051 365 710 704
Maintainability decreases 1,569 337 541 319

Table IV shows some basic properties of the systems.
Around one third to half of the commits did not show a
traceable maintainability change. It can also be observed
that the number of commits causing maintainability decrease
tend to be higher than the number of commits increasing
maintainability. Figure 2 illustrates how the maintainability
of the analyzed systems changed over time (the big ups and
downs on the diagrams are typically caused by adding the
source code of complete components to the analyzed one
developed outside the analyzed source control system).

For demonstration purposes, we show a short example for
all the 3 types of maintainability changes; all of the examples
were taken from project Tomcat. The layout of some of the
code snippets below are changed in order to fit the column
width. All the directions of changes were correctly calculated
by the used quality model.

The first example is revision 640897 of the source file
util/http/Parameters.java. Its original content was
the following:

public void processParameters(MessageBytes data,
String encoding) {

if(data==null || data.isNull() || data.getLength() <= 0)
return;

if(data.getType() == MessageBytes.T_BYTES) {
ByteChunk bc=data.getByteChunk();
processParameters(bc.getBytes(), bc.getOffset(),

bc.getLength(), encoding);
} else {
if (data.getType()!= MessageBytes.T_CHARS)

data.toChars();
CharChunk cc=data.getCharChunk();
processParameters(cc.getChars(), cc.getOffset(),

cc.getLength());
}

}

Content after modification:

public void processParameters(MessageBytes data,
String encoding) {

if(data==null || data.isNull() || data.getLength() <= 0)
return;

if(data.getType() != MessageBytes.T_BYTES) {
data.toBytes();

}
ByteChunk bc=data.getByteChunk();
processParameters(bc.getBytes(), bc.getOffset(),

bc.getLength(), encoding);
}

5http://tomcat.apache.org

The code has been obviously simplified as indicated also
by the maintainability increase calculated by ColumbusQM.

For demonstrating maintainability decrease
we selected revision 647307, where source file
util/buf/B2CConverter.java was affected as
follows:

public final void recycle() {
}

After modification:

public final void recycle() {
try {
// Must clear super’s buffer.
while (ready()) {
// InputStreamReader#skip(long)
// will allocate buffer to skip.
read();

}
} catch(IOException ioe){
}

}

Originally it was an empty (unimplemented) function. Con-
sidering that the function is only a few lines, the implemen-
tation is rather complex (compared to a typical sequential 3
lines long function), containing a coding rule violation (silently
catching an exception) as well.

B. Results of the Statistical Tests

Table V shows the results of the Wilcoxon rank test,
described in Section III-F.

Table V
RESULTS

System p-value Significance
Ant 0.00235 very strong
Gremon 0.00436 very strong
Struts 2 0.00018 very strong
Tomcat 0.03616 strong

We found three very strong (Ant, Gremon and Struts 2) and
a strong (Tomcat) evidence for rejecting the null-hypothesis
and accepting the alternative one.

Answer to the Research Question: we reject the null-
hypothesis, and accept the alternative one, that maintainability
increases are mostly related to lower cumulative code churn
values, while maintainability decreases are related to higher
cumulative code churn values.

C. Randomized Cross-Check Results

To exclude the possibility of getting the above promising
results by accident, we executed a random cross-checks 10
times for each project. Table VI contains the resulted p-values.
As it was expected, most of the p-values fall between 0.1 and
0.9, indicating either not significant or contradictory results.

These random check results ensure that the original calcu-
lation is correct, and the original results are realistic. With the
help of this cross-check we can reject the null-hypothesis with
higher confidence.

0 1000 2000 3000 4000 5000 6000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ant

Revisions

M
a

in
ta

in
a

b
ili

ty

0 200 400 600 800 1000 1200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gremon

Revisions

M
a

in
ta

in
a

b
ili

ty

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Struts2

Revisions

M
a

in
ta

in
a

b
ili

ty

0 200 400 600 800 1000 1200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tomcat

Revisions

M
a

in
ta

in
a

b
ili

ty

Figure 2. Maintainability timelines

Table VI
RESULTS OF RANDOMIZED DATA

Execution Ant Gremon Struts 2 Tomcat
1 0.651 0.339 0.336 0.567
2 0.517 0.088 0.891 0.375
3 0.506 0.591 0.549 0.856
4 0.371 0.083 0.188 0.758
5 0.106 0.754 0.577 0.114
6 0.651 0.435 0.286 0.477
7 0.230 0.829 0.459 0.077
8 0.816 0.724 0.250 0.789
9 0.116 0.881 0.838 0.935

10 0.222 0.400 0.933 0.548

D. Discussion

It is quite easy to misinterpret the results, therefore in
this subsection we present some important notes for a more
adequate interpretation.

A frivolous understanding of the results would be the
following: “the more you work the more you err”. We, on
the other hand, state that if one modifies a source file which
has been intensively modified in the past, then it is more likely
to make it even more complex, compared to modifying source
files less intensively modified earlier.

Other possible misinterpretation could be the following:
“the more a file has been changed, the more complex it will
be.” We consider this statement trivial (see Lehman’s law of

increasing complexity [25]) and this is not what we want to
express; our statement is much stronger. For example, let us
consider the McCabe cyclomatic complexity (McCC) in the
following case. There are 2 source files: A.java with a longer
modification history, having a higher cumulative code churn
value, and its current McCC value is 7; and B.java with
shorter modification history, having a lower cumulative code
churn value, with current McCC value of 3; both before the
actual commit. On this level of abstraction we state that it is
more likely that the complexity of A.java will increase to
8 due to the effect of a future commit on that file, than the
likelihood of complexity B.java being increased to 4 caused
by a future commit on that file.

Another important note, which is a significant difference
compared to the existing works, is the following. We examined
the impact of cumulative code churn on the maintainability
of the source code and not on the defects. Although we did
not check the number of defects revealed later, we considered
how the code maintainability is likely to change. The correct
interpretation of this (i.e. the notion maintainability instead of
error) would be the following: if a source code fragment has
been extensively modified in the past, the next modification
affecting it is more likely to make it even more problematic
(more complex, introduce more coding rule violations, etc.)
than those changes affecting source code that has not been
modified so extensively.

As the test was performed from the maintainability change

perspective, we should be careful when formulating the final
conclusion. Even the above conclusion is not entirely precise.
The absolutely correct conclusion can be stated as follows: if
the maintainability was increased as the result of the current
modification (e.g. the average complexity of the developed
system has been reduced), then it is more likely that the
modifications were performed on files with smaller cumulative
code churn values (i.e. files that have been less intensively
modified in the past) than churn values of files of a commit
decreasing the maintainability.

Lastly, it is not stated (and not true, of course) that all
the cumulative code churn values related to maintainability
increase are less than all the cumulative code churn values of
maintainability decrease. The correct summary of the results
is the following: the cumulative code churn values related
to maintainability decrease are significantly larger than those
related to maintainability increase. If we executed the t-test
(instead of the Wilcoxon test), which compares the averages,
we could formulate the following straightforward statement:
the average cumulative code churn values of the two subsets
differ. With the help of Wilcoxon test such an easy statement
cannot be formulated. In this case the t-test is unfortunately
not applicable, as the average operation is very sensitive to the
extreme values, furthermore, it assumes a normal distribution
of the underlying data. Therefore this trade-off resulted in a
somewhat more complicated interpretation.

V. THREATS TO VALIDITY

Although the results are promising, there are some factors
that threaten the validity of our findings.

The base hypothesis was tested on a relatively low number
of data. We used only 4 systems with available data, and
large enough number of observations. Furthermore, only two
of them had more than one thousand commits causing main-
tainability changes. Higher number of software systems having
longer revision histories could provide more accurate results.

The revision history was complete only in one case, further-
more, only the main branches were analyzed. More accurate
results could be gained if the whole revision history would be
analyzed, furthermore, even all the branches.

We eliminated the commits resulting non-traceable main-
tainability changes. The cardinality of these operations is
between one third and half of the full number of commits. This
is a relatively great amount of data excluded. An enhanced
model considering also the commits with no maintainability
change could provide slightly different results. However, we
do not expect a different final conclusion even in the case of
such a model.

The code churn calculation in case of line modifications
could be more precise. Based on our earlier experiences, with
exact code churn calculation we would expect an even slightly
lower p-values.

There are several quality models, and there is no such
unique model which is accepted by the whole industry. Using
another model could provide a different result. We know that
no quality model (including the one used by us) is perfect.

However, as most product quality models rely on a similar
source of information (i.e. source code metrics) we do not
expect that the results are so much dependent on the actual
quality model used.

This study focuses on the Java programming language only,
but according to our strong assumption the results would be
valid for other programming languages as well. However,
focusing to Java exclusively threatens the generality of the
results.

The cumulative code churn values are based on files, but
the statistical test is based on commits. Therefore we needed
a conversion from file level values to commit based values. We
selected the straightforward average value; however, one could
argue that another approach could be better (e.g. removing
the lowest and highest 10%, taking just the median etc.). We
executed tests with median and geometric mean as well, but
we got basically the same results.

VI. CONCLUSIONS AND FUTURE WORK

In this work we examined if cumulative code churn has
any connection with source code maintainability. We were
interested in the following: considering only the history of
the files which were just committed, i.e. not considering the
current modification, are we able to tell anything about the
possible outcome of the current commit from maintainability
point of view?

We divided the commits based on the sign of maintainability
changes they cause (i.e. if it was positive or negative), and
compared the cumulative code churn values of the commits
of both sets. We found that the cumulative code churn values
belonging to negative maintainability changes are significantly
higher than those of belonging to positive maintainability
changes. We executed the comparison test on 4 software
systems; all of the cases resulted in a strong correlation (3
of them was very strong).

Despite our investigation, we still cannot answer with an
absolute unambiguous yes to the thought provoking question,
if it is possible to narrow down where code erosion occurs, but
– similarly to our earlier findings – we can conclude that some
types of commits are more likely to erode the source code
than the others. Specifically in this case we found that great
amount of past code changes (expressed by cumulative code
churn) are correlated with code decay; and that modifications
performed on intensively changing code have worse effect on
software maintainability than those affecting less intensively
modified code. Therefore we can conclude that committing
files with higher cumulative code churn values (i.e. those of
longer change history) is more likely to result in negative
maintainability change, compared to those of lower cumulative
code churn values.

Note that typically the sizes of maintainability changes
caused by commits are individually not huge; rather relatively
small, but they are significant. Not a simple commit will ruin
the whole maintainability, but it decreases slowly and almost
certainly; like gaining weight. Similarly to losing weight, the
best way is to pay special attention to problems, try to avoid

the wrong tendency and try to make one step in the good
direction, but doing that persistently.

Unfortunately, a project rarely allocates resources for refac-
toring. Cumulative code churn values could help to better
allocate these: the best would be to start with files with highest
churn values.

This study is an important step of a longer term study.
We showed in a previous article [3] that connection between
version control operations and maintainability change does
exist. Then we analyzed the operations one by one in further
studies [4], [5]. Up to now we considered the number of
operations only. In this study we extended the research to other
version control data: the file name and change history.

A deeper analysis of the code churn is still open, for
example treating the deletions differently, or focusing directly
on commits causing no maintainability change. Furthermore,
the analysis of the combination of code churn and other
information (like time factor) could also be interesting.

In the next steps we plan to take even more version control
information data into consideration, like author, date, or the
comment. As a final step, we plan to aggregate the results,
and then implement a tool which identifies the hot areas of the
source code of the analyzed system. An IDE plug-in, which
visually highlights these areas could be useful for architects,
and also warn the developers automatically.

In longer term we plan to take into consideration other
software development data, like integrated development envi-
ronment interactions or data found in issue tracking systems.
Moving to other languages and comparing them with Java
could also be an interesting future research topic. For example,
the quality model used for this research was adopted to C# by
Hegedűs [26].

Our long term goal is to fine-tune the formula of code
erosion as much as possible in order to understand why it
happens, and with this information in hand we could give
hints how to avoid it with the least additional effort.

ACKNOWLEDGMENT

This research work is partially supported by the European
Union projects titled “Telemedicine-focused research activities
on the field of Mathematics, Informatics and Medical sci-
ences”, project number: TÁMOP-4.2.2.A-11/1/KONV-2012-
0073 and “REPARA – Reengineering and Enabling Perfor-
mance And poweR of Applications”, project number: 609666,
co-funded by the European Social Fund.

REFERENCES

[1] ISO/IEC, ISO/IEC 9126. Software Engineering – Product quality 6.5.
ISO/IEC, 2001.

[2] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and
T. Gyimóthy, “A cost model based on software maintainability,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 316–325.

[3] C. Faragó, P. Hegedűs, Á. Z. Végh, and R. Ferenc, “Connection between
version control operations and quality change of the source code,” Acta
Cybernetica, vol. 21, pp. 585–607, 2014.

[4] C. Faragó, P. Hegedűs, and R. Ferenc, “The impact of version control
operations on the quality change of the source code,” in Computational
Science and Its Applications (ICCSA). Springer, 2014, pp. 353–369.

[5] C. Faragó, “Variance of source code quality change caused by version
control operations,” Acta Cybernetica, vol. 22, pp. 35–56, 2015.

[6] T. M. Khoshgoftaar and R. M. Szabo, “Improving code churn predictions
during the system test and maintenance phases,” in Proceedings of the
International Conference on Software Maintenance. IEEE, 1994, pp.
58–67.

[7] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy, “A
probabilistic software quality model,” in 2011 27th IEEE International
Conference on Software Maintenance. IEEE, 2011, pp. 243–252.

[8] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan,
“Detection of software modules with high debug code churn in a very
large legacy system,” in Proceedings of the 7th International Symposium
on Software Reliability Engineering. IEEE, 1996, pp. 364–371.

[9] J. C. Munson and S. G. Elbaum, “Code churn: A measure for esti-
mating the impact of code change,” in Proceedings of the International
Conference on Software Maintenance. IEEE, 1998, pp. 24–31.

[10] M. C. Ohlsson, A. Von Mayrhauser, B. McGuire, and C. Wohlin,
“Code decay analysis of legacy software through successive releases,”
in Proceedings of the Aerospace Conference, vol. 5. IEEE, 1999, pp.
69–81.

[11] G. A. Hall and J. C. Munson, “Software evolution: code delta and code
churn,” Journal of Systems and Software, vol. 54, no. 2, pp. 111–118,
2000.

[12] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change management
data,” IEEE Transactions on Software Engineering, vol. 27, no. 1, pp.
1–12, 2001.

[13] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference onSoftware Engineering (ICSE 2005). IEEE, 2005, pp.
284–292.

[14] ——, “Using software dependencies and churn metrics to predict field
failures: An empirical case study,” in First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007).
IEEE, 2007, pp. 364–373.

[15] S. A. Ajila and R. T. Dumitrescu, “Experimental use of code delta, code
churn, and rate of change to understand software product line evolution,”
Journal of Systems and Software, vol. 80, no. 1, pp. 74–91, 2007.

[16] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[17] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained source
code changes and code churn for bug prediction,” in Proceedings of the
8th Working Conference on Mining Software Repositories. ACM, 2011,
pp. 83–92.

[18] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis. ACM, 2012, pp. 177–187.

[19] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell re-
lations on software maintainability: An empirical study,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 682–691.

[20] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik,
“An empirical study on the impact of static typing on software maintain-
ability,” Empirical Software Engineering, vol. 19, no. 5, pp. 1335–1382,
2014.

[21] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, 1994.

[22] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910,
2005.

[23] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013. [Online]. Available: http://www.R-project.org/

[24] G. Canfora, L. Cerulo, and M. Di Penta, “Identifying changed source
code lines from version repositories.” in MSR, vol. 7, 2007, p. 14.

[25] M. Lehman, “On understanding laws, evolution, and conservation in the
large-program life cycle,” Journal of Systems and Software, vol. 1, pp.
213 – 221, 1980.

[26] P. Hegedűs, “A probabilistic quality model for C# – an industrial case
study,” Acta Cybernetica, vol. 21, no. 1, pp. 135–147, 2013.

