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Highlights	
	
	
CaM	inhibitors	were	tested	in	unchallenged	and	in	LPS‐challenged	pure	microglia.	
	
CaM	inhibitors	affected	many	morphological	and	functional	aspects	of	these	cells.	
	
CaM,	Iba1	intracellular	distribution	and	actin	cytoskeleton	remodeling	were	
affected.	
	
CaM	inhibitors	differentially	affected	cell	proliferation	and	viability.	
	
The	inhibitors	differentially	altered	phagocytosis	in	cells	with	or	without	LPS.	
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Abstract	
	

The	roles	of	calmodulin	(CaM),	a	multifunctional	intracellular	calcium	receptor	

protein,	as	concerns	selected	morphological	and	functional	characteristics	of	pure	

microglial	cells	derived	from	mixed	primary	cultures	from	embryonal	forebrains	of	

rats,	were	investigated	through	use	of	the	CaM	antagonists	calmidazolium	(CALMID)	

and	trifluoperazine	(TFP).	The	intracellular	localization	of	the	CaM	protein	relative	

to	phalloidin,	a	bicyclic	heptapeptide	that	binds	only	to	filamentous	actin,	and	the	

ionized	calcium‐binding	adaptor	molecule	1	(Iba1),	a	microglia‐specific	actin‐

binding	protein,	was	determined	by	immunocytochemistry,	with	quantitative	

analysis	by	immunoblotting.	In	unchallenged	and	untreated	(control)	microglia,	high	

concentrations	of	CaM	protein	were	found	mainly	perinuclearly	in	ameboid	

microglia,	while	the	cell	cortex	had	a	smaller	CaM	content	that	diminished	

progressively	deeper	into	the	branches	in	the	ramified	microglia.	The	amounts	and	

intracellular	distributions	of	both	Iba1	and	CaM	proteins	were	altered	after	

lipopolysaccharide	(LPS)	challenge	in	activated	microglia.	CALMID	and	TFP	exerted	

different,	sometimes	opposing,	effects	on	many	morphological,	cytoskeletal	and	

functional	characteristics	of	the	microglial	cells.	They	affected	the	CaM	and	Iba1	

protein	expressions	and	their	intracellular	localizations	differently,	inhibited	cell	

proliferation,	viability	and	fluid‐phase	phagocytosis	to	different	degrees	both	in	

unchallenged	and	in	LPS‐treated	(immunologically	challenged)	cells,	and	

differentially	affected	the	reorganization	of	the	actin	cytoskeleton	in	the	microglial	

cell	cortex,	influencing	lamellipodia,	filipodia	and	podosome	formation.	In	summary,	

these	CaM	antagonists	altered	different	aspects	of	filamentous	actin‐based	cell	

morphology	and	related	functions	with	variable	efficacy,	which	could	be	important	

in	deciphering	the	roles	of	CaM	in	regulating	microglial	functions	in	health	and	

disease.	

	
Abbreviations	
	
Ca2+:	calcium	ion	

CALMID:	calmidazolium;	1‐[bis(4‐chlorophenyl)methyl]‐3‐[2‐(2,4‐dichlorophenyl)‐2‐

(2,4‐dichlorobenzyloxy)ethyl]‐1H‐imidazolium	chloride	
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CaM:	calmodulin	

CNS:	central	nervous	system	

DIV:	days	in	vitro	

DMEM:	Dulbecco's	Modified	Eagle's	Medium	

GAPDH:	glyceraldehyde	3‐phosphate	dehydrogenase	(EC	1.2.1.12)	

Iba1:	ionized	calcium	binding	adaptor	molecule	1	

Ki67:	proliferation	marker	antigen	identified	by	the	monoclonal	antibody	Ki67	

LPS:	bacterial	lipopolysaccharide	

mRNA:	messenger	ribonucleic	acid	

PBS:	phosphate‐buffered	saline	

RT:	room	temperature	

S.E.M.:	standard	error	of	mean	

subDIV:	subcloned	days	in	vitro	

TBS:	Tris‐buffered	saline	

TFP:	trifluoperazine;	10‐[3‐(4‐methylpiperazin‐1‐yl)propyl]‐2‐trifluoromethyl‐10H‐

phenothiazine	dihydrochloride	

TI:	transformation	index	

	

Keywords:	calmidazolium;	cell	viability;	ionized	calcium‐binding	adaptor	

molecule	1;	lipopolysaccharide;	phagocytosis;	phalloidin;	proliferation;	

trifluoperazine	
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1.	Introduction	
	

Microglia	originate	from	bone	marrow‐derived	myeloid	precursors	as	a	unique	class	

of	the	monocyte/macrophage	lineage	that	infiltrates	the	central	nervous	system	

(CNS)	during	its	early	development	(Ginhoux	et	al.,	2010;	Saijo	and	Glass,	2011).	

They	respond	rapidly	to	inflammatory	cues	and	injury	by	transforming	from	a	

ramified,	resting	state	to	an	activated,	phagocytic	ameboid	cell	type	(Kreutzberg,	

1996).	In	their	non‐activated	or	resting	state,	they	display	a	ramified	morphology	

and	subdued	macrophage‐like	functional	properties.	In	response	to	injury,	infection,	

inflammatory	or	other	signals,	the	microglia	become	activated	and	a	series	of	

morphological,	molecular	and	functional	changes	take	place	that	affect	proliferation,	

homing	and	adhesion	to	damaged	cells,	phagocytosis,	antigen	presentation	and	

cytotoxic	and	inflammation‐mediating	signaling	(Drew	and	Chavis,	2000;	Prinz	and	

Miller,	2014;	Saijo	and	Glass,	2011;	Streit	at	al.,	1999;	Town	et	al.,	2005).	

Microglial	functions	such	as	motility	and	phagocytosis	are	closely	

associated	with	dynamic	changes	in	the	cytoskeleton	and	related	to	intracellular	

calcium	(Ca2+)	signaling	(Greenberg,	1995;	Kalla	et	al.,	2003;	Mitchison	and	Cramer,	

1996).	The	ubiquitous	Ca2+‐binding	proteins	participate	in	Ca2+‐elicited	intracellular	

events,	either	as	Ca2+‐sensing/receptor/trigger	or	as	Ca2+‐buffering/transport	

proteins,	by	binding	intracellularly	stored	Ca2+	(Ikura,	1996).	They	contribute	to	

nearly	all	aspects	of	the	functioning	of	the	cell,	and	are	important	in	numerous	

intracellular	signaling	processes,	from	the	regulation	of	cellular	homeostasis	to	

learning	and	memory	(Berridge	et	al.,	2010;	Clapham,	2007).	Calmodulin	(CaM),	one	

of	the	most	important	intracellular	Ca2+	receptors,	exerts	its	biological	action	

through	its	heterogenous	population	of	target	proteins,	which	are	involved	in	a	

number	of	cellular	regulatory	processes	(Kennedy,	1989;	Palfi	et	al.,	2002).	

The	nervous	tissue	is	especially	abundant	in	CaM.	While	its	distribution	has	

been	characterized	in	detail	for	a	number	of	neuronal	cell	types	(Kovacs	and	Gulya,	

2002,	2003;	Palfi	et	al.,	1999,	2001,	2005),	its	localization	and	functions	in	glial	cells	

are	much	less	known.	Astrocytes	express	CaM	protein	in	low	quantities	(Kortvely	et	

al.,	2003),	but	mRNA	populations	from	all	three	CaM	genes	could	still	be	localized	

both	perinuclearly	and	in	the	astrocytic	endfeet	(Palfi	et	al.,	2005).	The	expression	of	

CaM	in	oligodendroglia	is	similarly	low	and	has	not	been	characterized	extensively,	
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albeit	the	regulatory	effects	of	this	protein	on	a	number	of	membrane‐bound	target	

proteins	such	as	the	myelin	basic	protein	(Libich	and	Harauz,	2008)	or	the	2',3'‐

cyclic	nucleotide	3'‐phosphodiesterase	(Myllykoski	et	al.,	2012)	have	been	

established.	Of	all	the	glial	components,	only	the	microglia	seem	to	have	a	

considerable	amount	of	CaM.	They	express	a	relatively	large	amount	of	CaM	when	

activated	(Casal	ez	al.,	2001;	Solá	et	al.,	1997),	and	many	aspects	of	their	Ca2+	

signaling	are	well	documented	(Färber	and	Kettelmann,	2006;	Wong	and	Schlichter,	

2014).	

CaM	immunoreactivity	or	CaM	gene‐specific	transcripts	are	often	

colocalized	with	those	of	the	target	enzymes	of	CaM	within	the	same	cytoplasmic	

compartments	(Erondu	and	Kennedy,	1985;	Sanabria	et	al.,	2008;	Seto‐Ohshima	et	

al.,	1983;	Strack	et	al.,	1996).	For	example,	actin	is	accompanied	by	CaM	in	the	cell	

cortex,	helping	to	remodel	the	actin‐based	cytoskeleton	in	accordance	with	the	

actual	(patho)physiological	signals	(Mitchison	and	Cramer,	1996;	Psatha	et	al.,	

2004).	Ionized	calcium‐binding	adaptor	molecule	1	(Iba1)	is	another	intracellular	

Ca2+‐binding	protein	with	actin‐binding	capability	that	is	expressed	in	macrophages	

and	microglia,	and	is	widely	used	to	detect	both	resting	and	activated	microglial	

phenotypes	(Imai	et	al.,	1996).	CaM	and	Iba1	proteins	share	a	number	of	molecular	

structural	variants	that	are	related	to	either	their	Ca2+	binding	or	their	target	

protein	recognition	(Yamada	et	al.,	2006).	In	contrast	with	the	wide‐ranging	

regulatory	roles	of	CaM,	Iba1	plays	a	much	more	restricted	role	in	microglial	

functions,	e.g.	remodeling	the	actin	cytoskeleton	during	migration	(Siddiqui	et	al.,	

2012;	Vincent	et	al.,	2012).	

	 	 The	modulatory	action	of	Ca2+‐bound	CaM	on	multiple	target	proteins	can	

be	regulated	by	a	number	of	compounds.	Calmidazolium	(CALMID;	1‐[bis(4‐

chlorophenyl)methyl]‐3‐[2‐(2,4‐dichlorophenyl)‐2‐(2,4‐dichlorobenzyloxy)ethyl]‐

1H‐imidazolium	chloride)	and	trifluoperazine	(TFP;	10‐[3‐(4‐methylpiperazin‐1‐

yl)propyl]‐2‐trifluoromethyl‐10H‐phenothiazine	dihydrochloride)	are	potent	

inhibitors	of	CaM‐related	cellular	activities	(Borsa	et	al.,	1986;	Sunagawa	et	al.,	

2000).	It	is	presumed	that,	apart	from	binding	to	the	CaM	protein	(Mashushima	et	

al.,	2000;	Vandonselaar	et	al.,	1994;	Vertessy	et	al.,	1998),	they	can	also	exert	their	

effects	on	some	of	the	CaM‐regulated	targets	directly	(Sunagawa	et	al.,	2000).	
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	 	 In	contrast	with	the	extensive	studies	on	the	involvement	of	CaM	in	a	

number	of	neuronal	phenomena,	only	limited	information	is	available	on	its	role	in	

the	development	and	maintenance	of	the	microglial	phenotype	and	its	specific	

functions.	Relatively	little	is	known,	for	example,	as	concerns	the	possible	

involvement	of	CaM	mediation	in	such	important	microglial	functions	as	

phagocytosis	and	the	cellular	functions	associated	with	it,	e.g.	dynamic	cytoskeletal	

reorganization.	Thus,	in	view	of	the	importance	of	CaM‐mediated	cell	functions	and	

the	paucity	of	data	on	specific	microglial	functions	related	to	and	possibly	regulated	

by	CaM,	we	set	out	to	investigate	the	localization	and	intracellular	distribution	of	

CaM	in	pure	microglial	cell	populations	derived	from	rat	primary	mixed	forebrain	

cultures	by	using	immunocytochemical	and	Western	blot	techniques.	Selected	CaM	

inhibitors	such	as	CALMID	and	TFP,	previously	reported	to	have	different	modes	of	

action	(Matsushima	et	al.,	2000;	Sunagawa	et	al.,	2000),	were	quantitatively	tested	

for	their	ability	to	modify	the	microglial	morphology,	lamellipodia,	filipodia	and	

podosome	formation,	and	specific	functions	such	as	cell	proliferation	and	survival,	

protein	expression	and	phagocytosis	in	unchallenged	(control)	and	

lipopolysaccharide	(LPS)‐challenged	cells.	Stimulation	with	LPS	was	used	to	

evaluate	the	ability	of	microglial	cells	to	respond	to	activation	(Fricker	et	al.,	2012;	

Song	et	al.,	2014;	Tokes	et	al.,	2011).	

	

2.	Material	and	methods	
	
All	animal	experiments	were	carried	out	in	strict	compliance	with	the	European	

Council	Directive	(86/609/EEC)	and	EC	regulations	(O.J.	of	EC	No.	L	358/1,	

18/12/1986)	regarding	the	care	and	use	of	laboratory	animals	for	experimental	

procedures,	and	followed	the	relevant	Hungarian	and	local	legislation	requirements.	

The	experimental	protocols	were	approved	by	the	Institutional	Animal	Welfare	

Committee	of	the	University	of	Szeged	(I‐74‐11/2009/MÁB).	The	pregnant	Sprague‐

Dawley	rats	(180‐200	g)	were	kept	under	standard	housing	conditions	and	fed	ad	

libitum.	
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2.1.	Antibodies 
 
The	antibodies	used	in	the	immunocytochemical	and	Western	blot	studies	are	listed	

in	Table	1.	For	a	thorough	characterization	of	different	microglial	phenotypes	

developed	in	vitro,	an	antibody	against	Iba1,	an	intracellular	actin‐	and	Ca2+‐binding	

protein	expressed	in	the	CNS	specifically	in	macrophages	and	microglia	(Imai	et	al.,	

1996;	Ahmed	et	al.,	2007),	was	used	in	our	immunocytochemical	and	Western	blot	

analyses.	An	anti‐CaM	monoclonal	antibody	was	used	to	detect	both	Ca2+‐bound	and	

Ca2+‐free	forms	of	the	antigen	(Sacks	et	al.,	1991).	The	anti‐Ki67	antibody	was	used	

to	detect	proliferating	cells.	Ki67	is	a	nuclear	protein	expressed	in	all	active	phases	

of	the	cell	cycle	from	the	late	G1	phase	through	the	end	of	the	M	phase	but	is	absent	

in	non‐proliferating	and	early	G1	phase	cells	(Scott	et	al.,	2004).	The	anti‐

glyceraldehyde	3‐phosphate	dehydrogenase	(GAPDH)	antibody	was	used	as	an	

internal	control	in	Western	blot	experiments	(Wu	et	al.,	2012).	Dilutions	of	primary	

and	secondary	antibodies,	and	also	incubation	times	and	blocking	conditions	for	

each	antibody	used	were	carefully	tested	for	both	immunocytochemistry	and	

Western	blot	analysis.	To	detect	the	specificities	of	the	secondary	antisera,	omission	

control	experiments	(staining	without	the	primary	antibody)	were	performed.	In	

such	cases,	no	fluorescent	or	Western	blot	signals	were	detected.	

	

2.2.	Preparation	of	primary	mixed	cortical	cell	cultures	
 

Mixed	primary	cortical	cell	cultures	were	established	from	embryonic	day	18	(E18)	

wild‐type	rat	embryos	by	the	use	of	the	methods	described	previously	(Szabo	and	

Gulya,	2013).	Briefly,	6‐8	fetal	rats	under	deep	ether	anesthesia	were	surgically	

decapitated	and	the	frontal	lobe	of	the	cerebral	cortex	was	removed,	minced	with	

scissors,	and	incubated	in	9	ml	Dulbecco's	Modified	Eagle's	Medium	(DMEM;	

Invitrogen,	Carlsbad,	CA,	USA)	containing	1	g/l	D‐glucose,	110	mg/l	Na‐pyruvate,	4	

mM	L‐glutamine,	3.7	g/l	NaHCO3,	10,000	U/ml	penicillin	G,	10	mg/ml	streptomycin	

sulfate	and	25	g/ml	amphotericin	B)	and	supplemented	with	0.25%	trypsin	

(Invitrogen)	for	10	min	at	37	C,	then	centrifuged	at	1,000g	for	10	min	at	room	

temperature	(RT).	The	pellet	was	resuspended	and	washed	twice	in	5	ml	DMEM	

containing	10%	heat‐inactivated	fetal	bovine	serum	(FBS;	Invitrogen)	and	

centrifuged	for	10	min	at	1,000g	at	RT.	The	final	pellet	was	resuspended	in	2	ml	of	
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the	same	solution	as	above,	after	which	the	cells	were	seeded	in	the	same	medium	

and	cultured	at	37	C	in	a	humidified	air	atmosphere	supplemented	with	5%	CO2	in	

one	or	other	of	the	following	ways:	1)	in	poly‐L‐lysine‐coated	coverslips	(18	x	18	

mm;	2	x	105	cells/coverslip)	for	immunocytochemistry;	2)	in	poly‐L‐lysine‐coated	

Petri	dishes	(60	mm	x	15	mm;	106	cells/dish)	for	Western	blot	analyses;	or	3)	in	a	

poly‐L‐lysine‐coated	culture	flask	(75	cm2	,	12	x	106	cells/flask)	for	the	subsequent	

generation	of	pure	microglial	cell	cultures.	The	mixed	primary	cultures	were	

maintained	up	to	28	days	(DIV1‐DIV28)	for	immunocytochemistry	and	Western	blot	

analyses,	and	for	7	days	(DIV7)	for	the	generation	of	pure	microglial	cells.	For	

culturing	periods	longer	than	3	days,	the	DMEM	was	changed	every	3	days.	

	

2.3.	Preparation	of	pure	microglial	cell	cultures 
 
Pure	microglial	cell	cultures	were	subcloned	from	mixed	primary	cultures	(DIV7)	

maintained	in	a	poly‐L‐lysine‐coated	culture	flask	(75	cm2	,	12	x	106	cells/flask)	by	

shaking	the	cultures	at	150	rpm	in	a	platform	shaker	for	20	min	at	37	C.	Microglia	

from	the	supernatant	were	collected	by	centrifugation	at	3,000g	for	10	min	at	RT	

and	resuspended	in	2	ml	of	DMEM/10%	FBS.	The	cells	were	seeded	at	a	density	of	2	

x	105	cells/Petri	dish	for	Western	blots	and	cell	viability	assays	or	105	

cells/coverslip/Petri	dish	for	immunocytochemistry,	proliferation	or	phagocytosis	

assays,	and	cultured	in	DMEM	in	a	humidified	atmosphere	supplemented	with	5%	

CO2	for	4	days	at	37	C.	The	medium	was	changed	on	the	first	day	after	seeding	

(subDIV1).	Immunocytochemistry	routinely	performed	on	the	pure	microglial	

cultures	4	days	after	seeding	(subDIV4)	consistently	detected	a	>99%	incidence	of	

Iba1‐immunopositive	microglial	cells	for	the	Hoechst	33258	dye‐labeled	cell	nuclei	

(Figure	2).	

	

2.4.	Treatment	of	pure	microglial	cells	with	LPS	and	CaM	inhibitors 
 
On	the	fourth	day	of	subcloning	(subDIV4),	the	DMEM	was	replaced	and	the	

expanded	pure	microglial	cells	were	treated	for	24	h	with	either	LPS	(100	ng/ml	in	

final	concentration,	dissolved	in	DMEM;	Sigma,	St.	Louis,	MO,	USA),	CALMID	(5	nM	

or	50	nM	in	final	concentration,	dissolved	in	dimethylsulfoxide	(DMSO);	Sigma)	or	

TFP	(10	M	or	20	M	final	concentration,	dissolved	in	DMSO;	Sigma)	alone,	or	with	
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a	combination	of	LPS	and	one	of	these	CaM	inhibitors,	and	the	effects	were	

compared	in	a	variety	of	morphological	and	functional	tests.	LPS	treatment	served	

as	an	immunochallenge.	Unchallenged	and	untreated	(control)	cultures	were	

maintained	under	identical	conditions,	but	without	these	inhibitors,	and	received	2	

l	DMSO	solution	instead.	

	

2.5.	Immunocytochemistry 
 
For	immunocytochemistry,	primary	cortical	cells	(DIV1‐DIV28)	or	pure	microglial	

cells	(subDIV4)	cultured	in	vitro	on	poly‐L‐lysine‐coated	coverslips	were	used.	At	

different	time	intervals	(DIV1,	DIV4,	DIV7,	DIV10,	DIV14,	DIV21,	DIV28),	or	after	

different	treatments	(subDIV4),	the	cultured	cells	on	the	coverslips	were	fixed	in	4%	

formaldehyde	in	0.05	M	phosphate‐buffered	saline	(PBS;	pH	7.4	at	RT)	for	5	min	and	

rinsed	in	0.05	M	PBS	for	3	x	5	min.	After	permeabilization	and	blocking	of	the	

nonspecific	sites	in	0.05	M	PBS	solution	containing	5%	normal	goat	serum	(Sigma),	

1%	heat‐inactivated	bovine	serum	albumin	(Sigma)	and	0.05%	Triton	X‐100	for	30	

min	at	37	C,	the	cells	on	the	coverslips	were	incubated	with	the	appropriate	

primary	antibody	(Table	1)	in	the	above	solution	overnight	at	4	C.	The	cultured	

cells	were	washed	for	4	x	10	min	at	RT	in	0.05	M	PBS,	then	incubated	with	the	

appropriate	Alexa	Fluor	fluorochrome‐conjugated	secondary	antibody	(Table	1)	in	

the	above	solution,	but	without	Triton	X‐100,	in	the	dark	for	3	h	at	RT.	The	cells	on	

the	coverslip	were	washed	for	4	x	10	min	in	0.05	M	PBS	at	RT.	At	this	stage,	the	cells	

were	occasionally	stained	with	rhodamine‐phalloidin	(5	l	in	200	l	PBS;	Molecular	

Probes,	Eugene,	OR,	USA)	for	30	min	at	RT,	then	washed	for	2	x	10	min	at	RT.	

Finally,	the	cell	nuclei	were	stained	in	a	0.05	M	PBS	solution	containing	1	mg/ml	

polyvinylpyrrollidone	and	0.5	l/ml	Hoechst	33258	dye	(Sigma).	The	coverslips	

were	rinsed	in	distilled	water	for	5	min,	air‐dried	and	mounted	on	microscope	slides	

in	Vectashield	mounting	medium	(Vector	Laboratories,	Burlingame,	CA,	USA).	Cells	

were	viewed	on	a	Nikon	Microphot‐FXA	epifluorescent	microscope	(Nikon	Corp.,	

Tokyo,	Japan)	and	photographed	with	a	Spot	RT	Color	CCD	camera	(SPOT	RT/ke,	

Diagnostic	Instruments,	Inc.,	Sterling	Heights,	MI,	USA).	
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2.6.	Western	blot	analysis 
 
For	Western	blots,	the	protocols	were	optimized	for	each	antibody	as	regards	

epitope	accessibility,	polyacrylamide	gel	separation,	antibody	dilution	and	

chemiluminescence	signal	intensity.	Cultured	primary	cells	(DIV1–DIV28)	or	pure	

microglial	cells	(subDIV4)	with	different	treatment	regimens	were	collected	through	

use	of	a	rubber	policeman,	homogenized	in	50	mM	Tris‐HCl	(pH	7.5)	containing	150	

mM	NaCl,	0.1%	Nonidet	P40,	0.1%	cholic	acid,	2	μg/ml	leupeptin,	1	μg/ml	pepstatin,	

2	mM	phenylmethylsulfonyl	fluoride	and	2	mM	EDTA,	and	centrifuged	at	10,000g	

for	10	min	at	4	C.	The	pellet	was	discarded	and	the	protein	concentration	of	the	

supernatant	was	determined	(Lowry	et	al.,	1951).	For	the	Western	blot	analyses	of	

Iba1,	CaM	and	GAPDH	immunoreactivities,	5‐10	g	of	heat‐denatured	protein	was	

separated	on	an	SDS	polyacrylamide	gel.	The	stacking	gel/resolving	gel	ratio	was	4‐

10%	for	Iba1	and	GAPDH,	and	4‐16%	for	CaM	immunoreactivities;	for	CaM	

Westerns,	the	stacking	gel	was	complemented	with	16%	urea	and	16%	glycerol.	

Separated	proteins	were	then	transferred	onto	Hybond‐ECL	nitrocellulose	

membrane	(Amersham	Biosciences,	Little	Chalfont,	Buckinghamshire,	England).	

Strips	of	membranes	with	the	transferred	bands	for	CaM	and	Iba1	(both	around	17	

kDa)	and	GAPDH	(37	kDa)	were	cut	and	processed	separately	for	CaM,	Iba1	or	

GAPDH	immunodetection.	The	membranes	were	blocked	for	1	h	in	5%	nonfat	dry	

milk	(for	Iba1	and	GAPDH	Westerns)	or	5%	bovine	serum	albumin	(for	CaM	

Westerns)	in	Tris‐buffered	saline	(TBS)	containing	0.1%	Tween	20,	and	incubated	

for	1	h	with	the	appropriate	primary	antibodies	(Table	1).	After	5	washes	in	0.1%	

TBS–Tween	20,	the	membranes	were	incubated	for	1	h	with	the	appropriate	

peroxidase‐conjugated	secondary	antibodies	(Table	1),	and	washed	5	times	as	

before.	The	enhanced	chemiluminescence	method	(ECL	Plus	Western	blotting	

detection	reagents;	Amersham	Biosciences)	was	used	to	reveal	immunoreactive	

bands	according	to	the	manufacturer's	protocol.	The	immunoreactive	densities	of	

equally	loaded	lanes	were	quantified,	and	all	samples	were	normalized	to	internal	

GAPDH	load	controls	run	on	the	same	gels.	
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2.7.	Cell	proliferation	and	cell	viability	assays 
 
For	the	assessment	of	CaM	inhibition	on	cell	proliferation	and	survival,	pure	

microglial	cells	(subDIV4)	were	cultured	in	DMEM	with	or	without	the	appropriate	

test	compounds	in	a	humidified	atmosphere	supplemented	with	5%	CO2	at	37	C	for	

24	h.	To	analyze	the	effects	of	these	treatments	on	cell	proliferation,	the	cultures	

were	processed	for	Ki67	immunocytochemistry.	Proliferation	index	(PI)	was	defined	

as	the	number	of	Ki67‐positive	microglial	cell	nuclei	per	1,000	analyzed	Iba1‐

positive	cells	and	usually	expressed	as	%	of	the	total	cells	analyzed	(Brownhill	et	al.,	

2014;	Yamaguchi	et	al.,	2013).	A	total	of	1,454	fields	of	view	with	55,565	Iba1‐

positive	and	783	Ki67‐positive/Iba1‐positive	microglia	were	analyzed	across	the	

groups	(mean		S.E.M.).	

To	estimate	the	surviving	microglial	cells	after	treatments,	the	cultures	

were	washed	twice	with	2	ml	of	PBS	to	remove	cell	debris	and	treated	with	0.25%	

trypsin	solution	for	10	min	at	37	C,	collected	and	counted	in	a	Burker	cell.	The	

number	of	viable	cells	was	presented	as	mean		S.E.M.	

	

2.8.	In	vitro	phagocytosis	assay 
 
The	fluid‐phase	phagocytic	capacity	of	the	microglial	cells	was	determined	via	the	

uptake	of	fluorescent	microspheres	(2	m	in	diameter;	Sigma)	using	the	general	

methods	described	by	Szabo	and	Gulya	(2013).	Unstimulated	(control)	and	LPS‐

stimulated	pure	microglial	cell	cultures	with	or	without	CaM	inhibition	were	tested	

for	24	h.	At	the	end	of	the	culturing	period	(subDIV4),	1	l	of	a	2.5%	aqueous	

suspension	of	fluorescent	microspheres	was	added	per	ml	of	the	culture,	which	was	

then	further	incubated	for	60	min	at	37	C.	The	cells	were	next	washed	5	times	with	

2	ml	of	PBS	to	remove	dish‐	or	cell	surface‐bound	residual	fluorescent	

microspheres,	and	fixed	with	4%	formalin	in	PBS.	For	measurement	of	the	

phagocytic	activity,	Iba1‐expressing	microglia	labeled	with	phagocytosed	

microbeads	were	counted.	Negative	controls	were	treated	as	above	with	the	

exception	that	microglial	cultures	with	beads	were	incubated	for	60	min	at	4	C.	At	

this	temperature,	the	number	of	beads	associated	with	cell	surface	averaged	less	

than	1	bead	per	100	Iba1‐labeled	cells.	For	the	study	of	the	effects	of	CaM	inhibitors	

on	the	number	of	phagocytosed	beads	(mean	±	S.E.M.),	a	total	of	873	bead‐labeled	
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cells	were	counted	in	three	separate	culturing	procedures	under	a	Nikon	Microphot‐

FXA	epifluorescent	microscope	with	a	10x	or	20x	objective.	

	

2.9.	Digital	image	processing	and	image	analysis 
 
Gray	scale	digital	images	of	the	Western	blots	were	acquired	by	scanning	the	

autoradiographic	films	with	a	desktop	scanner	(Epson	Perfection	V750	PRO;	Seiko	

Epson	Corp.,	Japan).	The	images	were	scanned	and	processed	at	identical	settings	to	

allow	comparisons	of	the	Western	blots	from	different	samples.	Digital	images	were	

acquired	with	a	Nikon	Microphot‐FXA	epifluorescent	microscope	(Nikon	Corp.,	

Tokyo,	Japan),	using	a	Spot	RT	Color	CCD	camera	and	Spot	RT	software	(Spot	RT/ke	

Diagnostic	Instruments).	Microglial	cell	silhouettes	were	acquired	by	transforming	

the	raw	digital	files	of	Iba1‐immunoreactive	cells	made	under	fluorescent	

microscope	light	to	binary	files,	using	the	ImageJ	software	(version	1.47;	developed	

at	the	U.S.	National	Institutes	of	Health	by	W.	Rasband,	and	available	from	the	

Internet	at	http://rsb.info.nih.gov/ij).	The	color	cell	images	were	transformed	into	

their	binary	replicas	(silhouettes)	through	automatic	thresholding	procedures	

(Szabo	and	Gulya,	2013).	After	thresholding,	values	for	cell	perimeter	(μm)	and	cell	

area	(μm2)	were	determined	from	at	least	3	separate	experiments	(at	least	2	

coverslips	in	each	experiment	for	each	culturing	time	investigated;	about	20	

randomly	selected	cells/coverslip),	and	the	transformation	index	(TI)	reflecting	the	

degree	of	process	extension	was	calculated	via	an	expression	[perimeter	of	cell	

(μm)]2/4[cell	area	(μm2)]	as	previously	described	(Fujita	et	al.,	1996).	For	the	

analysis	of	TI	values,	a	total	of	261	cells	were	quantitatively	measured	(mean	±	

S.E.M.).	Digital	image	production	was	performed	with	Adobe	Photoshop	CS5.1	

software	(Adobe	Systems,	Inc.,	San	Jose,	CA,	USA).	Color	correction	(brightness,	

contrast)	and	cropping	of	the	fluorescent	images	were	occasionally	performed	when	

individual	photomicrographs	were	assembled	to	figure	panels	for	publication.	No	

specific	feature	within	an	image	was	enhanced,	obscured,	introduced,	moved	or	

removed.	
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2.10.	Statistical	analysis 
 
All	statistical	comparisons	were	made	with	SigmaPlot	(v.	12.3,	Systat	Software	Inc.,	

Chicago,	IL,	USA).	Results	for	the	phagocytosis	and	viability	assays	and	the	cell	

silhouette	characteristics	(TI	values)	were	analyzed	with	Kruskal‐Wallis	one‐way	

analysis	of	variance,	followed	by	Dunn's	method	for	pairwise	multiple	comparison	

procedures	for	statistically	significant	differences	between	the	groups.	For	these	

studies,	values	were	presented	as	mean	±	S.E.M.	from	at	least	three	independent	

experiments	and	p<0.05	was	considered	significant.	For	Western	blots,	values	were	

presented	as	mean	±	S.E.M.	from	at	least	three	blots,	each	representing	independent	

experiments	for	each	time	period	examined.	For	the	determination	of	the	

homogeneity	of	the	subcloned	microglial	cells,	Iba1‐positive	cells	and	Hoechst	

33258	dye‐positive	cell	nuclei	from	at	least	50	randomly	sampled	microscope	fields	

from	2‐3	coverslips	for	each	subcloned	culture	were	counted	and	the	results	are	

presented	as	mean		S.E.M.	

	

3.	Results	

	

3.1.	CaM	is	differentially	localized	in	ameboid	and	ramified	microglia	both	in	

mixed	and	pure	cultures 

 

The	quantity	and	cell	type‐specific	localization	of	the	CaM	protein	was	first	

established	in	mixed	primary	cultures	under	unstimulated	and	untreated	(control)	

conditions.	Fluorescent	immunocytochemistry	(Figure	1A‐P)	and	Western	blot	

analysis	(Figure	1Q,	R)	demonstrated	that	a	high	concentration	of	CaM	protein	was	

characteristic	of	the	mixed	cultures	throughout	culturing.	In	young	cultures	(DIV1‐

DIV7),	when	only	a	few	cells	double‐positive	for	the	Iba1	(Figure	1A,	E)	and	CaM	

(Figure	1B,	F)	antigens	existed	(Figure	1A‐H),	most	of	the	CaM	immunoreactivity	

was	associated	with	non‐microglial,	e.g.	mainly	neuronal,	cell	forms,	as	

demonstrated	earlier	(Szabo	and	Gulya,	2013).	From	DIV14	(up	to	DIV28),	as	more	

Iba1‐positive	microglia	populated	the	cultures	(Figure	1I,	M),	the	proportion	of	CaM	

immunoreactivity	associated	with	the	microglia	(Figure	1J,	N)	also	grew	steadily.	

Both	ameboid	(Figure	1A,	E)	and	ramified	microglia	(a	few	cells	in	Figure	1I,	M)	

expressed	CaM	immunoreactivity.	As	the	cultures	aged,	the	CaM	immunoreactivity	
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localized	to	microglia	became	predominant	(compare	Figure	1I,	M	with	Figure	1K,	

O).	Similarly,	Western	blot	studies	confirmed	the	increase	in	Iba1	immunoreactivity	

during	culturing	(Figure	1Q),	during	which	time	the	CaM	content	of	the	cultures	

remained	unchanged	(Figure	1R).	Thus,	by	DIV14,	the	microglia	had	become	the	

main	CaM‐expressing	cell	type	in	the	mixed	primary	forebrain	culture.	

Subsequent	experiments	were	performed	on	pure	microglial	cultures	

(subDIV4;	Figure	2).	In	these	microglial	cells	the	Iba1	immunoreactivity	was	most	

intense	in	the	lamellipodia	of	the	ameboid	forms	(Figure	3A,	D,	G),	followed	by	the	

perinuclear	region	(Figure	3D,	G).	The	strongest	CaM	immunoreactivity	was	always	

observed	in	the	ameboid	microglia,	where	the	cell	somata,	and	especially	the	

perinuclear	area,	were	the	most	intensely	labeled	(Figure	3B,	E,	H).	In	ameboid	

microglia,	the	CaM	and	Iba1	immunoreactivities	were	distributed	in	a	

complementary	manner,	as	the	Iba1	protein	tending	to	localize	in	the	cell	cortex	and	

lamellipodia	(Figure	3A,	B,	C).	The	ramified	microglia	displayed	an	almost	

homogenous	cytoplasmic	Iba1	distribution	(Figure	3J)	with	a	considerably	lower	

CaM	content	typically	localized	around	the	nucleus;	the	branches	had	only	traces	of	

CaM	immunoreactivity	(Figure	3K,	L).	

	

3.2.	CALMID	and	TFP	differentially	affect	microglial	proliferation	and	cell	

survival 

 

When	CaM	inhibitors	were	tested	on	cell	proliferation	and	cell	viability,	CALMID	and	

TFP,	either	alone	or	in	combination	with	LPS,	had	different	effects	(Figure	4A,	B).	

Proliferation	was	measured	as	a	function	of	Ki67‐immunopositivity	of	the	microglial	

cells	(PI).	Unstimulated	(control)	microglia	(subDIV4)	had	an	average	PI	value	of	

2.5%	(25.22	±	8.9	Ki67‐positive	microglia/1,000	analyzed	microglia	in	the	culture;	

Figure	4A).	LPS	challenge	inhibited	cell	proliferation,	albeit	without	reaching	

significance	(PI	=	0.41;	16.2%	of	the	control	value).	According	to	Ki67	

immunocytochemistry,	TFP10	significantly	decreased	microglial	cell	proliferation	

both	in	unchallenged	and	LPS‐challenged	microglia	with	PI	values	of	0.21%	and	

0.12%,	respectively	(Figure	4A).	While	CALMID50	treatment	alone	had	no	effect	on	

the	proliferation	of	unchallenged	microglia,	LPS‐challenged	cells	treated	with	

CALMID50	showed	some	but	not	significant	inhibition.	
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Cell	viability	was	also	investigated	in	pure	microglial	cultures	(Figure	4B).	

In	contrast	with	the	ineffectivity	of	CALMID50	on	cell	survival	in	unchallenged	and	

in	LPS‐challenged	microglial	populations,	TFP10	was	highly	effective	in	these	

cultures.	In	unchallenged	cells,	TFP10	significantly	decreased	cell	viability	to	

62.47%	of	the	control	value.	Similarly,	when	the	microglial	cells	were	challenged	by	

LPS	treatment	(100	ng/ml),	TFP10	effectively	decreased	the	number	of	surviving	

cells	to	71.28%	of	the	control	(Figure	4B).	

	

3.3.	CaM	inhibition	affects	cell	morphology	and	actin	cytoskeleton	

reorganization 

 
The	microglial	morphology	in	the	control	and	experimental	groups	was	analyzed	

through	binary	silhouettes	(Figure	5).	The	quantitative	analysis	was	based	on	the	

area,	perimeter	and	TI,	the	latter	being	a	dimensionless	number	that	is	an	indicator	

for	the	degree	of	process	extension	of	a	cell.	Throughout	the	experiments,	microglial	

cells	with	TI	<	3	were	considered	ameboid.	The	unchallenged,	untreated	4‐day‐old	

pure	microglia	culture	(subDIV4)	consisted	mainly	of	ameboid	cells	(Figure	5,	

control	row;	see	also	controls	in	Figures	7,	8,	10)	with	an	average	area	of	412.91		

27.2	m2,	perimeter	of	100.73		5.4	m	and	a	TI	of	2.02		0.1	(Figure	6).	When	

administered	alone,	CALMID	and	TFP	affected	TI	and	the	microglial	cell	surface	area	

and	perimeter	differently.	For	example,	both	CALMID5	and	CALMID50	resulted	in	

increased	area,	perimeter	and	TI,	whereas	TFP	alone	strongly	inhibited	these	

characteristics.	When	challenged	with	LPS,	the	microglia	became	enlarged	and	

acquired	significantly	larger	perimeter	and	TI	(A	=	777.23		40.1	m2,	P	=	238.97		

8.6	m,	TI	=	6.14		0.4),	consistent	with	these	cells	becoming	activated	(Figures	5,	6	

and	Figure	7D‐F).	Interestingly,	CALMID5	or	CALMID50	alone	was	not	effective	but	

when	used	in	combination	with	LPS,	they	significantly	increased	the	cell	surface	

area,	perimeter	and	TI	(Figure	5,	Figure	6A,	C,	E,	Figure	7G‐I).	TFP	sigificantly	

inhibited	the	expansion	of	cell	surface	area	and	perimeter	both	in	unchallenged	and	

LPS‐challenged	cells	(Figure	6B,	D).	As	an	example,	the	cell	surface	area	was	

decreased	substantially	after	TFP	or	LPS+TFP	treatment,	to	46.4	or	44.5%	of	the	

unchallenged	or	LPS‐challenged	control	value,	respectively.	TFP	treatment	was	also	

very	effective	in	decreasing	TI,	to	25.53%	of	the	LPS‐challenged	value	(Figures	5,	6).	



	 17

CaM	inhibition	affected	the	microglial	morphology	through	reorganization	

of	the	actin	cytoskeleton	(Figure	7).	In	unchallenged	and	untreated	(control)	

cultures,	the	Iba1‐	and	phalloidin‐related	fluorescence	signals	largely	overlapped	in	

the	cell	cortex	of	the	mainly	ameboid	microglia,	often	in	lamellipodia	(Figure	7A‐C)	

as	expected,	since	they	both	bind	to	the	actin	cytoskeleton.	When	treated	with	LPS,	

the	microglia	that	became	activated	and	enlarged	displayed	a	phalloidin	distribution	

much	fuzzier	than	that	in	the	case	of	Iba1,	probably	due	to	the	rapid	association	of	

fibrous	actin,	to	which	phalloidin	preferentially	binds	(Figure	7D‐F).	However,	spot‐

like	concentrations	of	phalloidin	fluorescence	resembling	podosomes	were	often	

visible	in	LPS‐treated	cells	(Figure	7E,	arrow).	CaM	inhibitors	affected	the	Iba1	and	

phalloidin	distributions	in	different	ways.	CALMID50	treatment	resulted	in	

phalloidin	fluorescence	that	was	clearly	distributed	in	two	distinct	concentric	rings	

in	the	cytoplasm,	one	ring	in	the	cell	cortex,	and	the	other	as	a	perinuclearly	

localized	cytoplasmic	streaming	of	freshly	synthesized	fibrous	actin	(Figure	7H,	K,	

arrows).	Phalloidin‐containing	filipodia	were	also	obvious	in	these	cells.	Similar,	

albeit	less	dense,	Iba1	distribution	was	observed	after	CALMID50	treatments	

(Figure	7G).	TFP	treatment	resulted	in	an	overlapping	and	almost	homogenous	

distribution	of	both	Iba1	immunoreactivity	and	phalloidin	fluorescence	(Figure	7M‐

O)	in	the	surviving	cells.	While	the	Iba1	immunoreactivity	remained	relatively	intact	

(Figure	7M),	most	of	the	phalloidin	fluorescence	intensity	was	lost	in	TFP‐treated	

microglia	(Figure	7N)	indicating	that	TFP	affected	actin	polymerization.	

	

3.4.	CaM	inhibitors	differentially	alter	the	intracellular	localization	of	CaM,	

and	affect	the	Iba1	and	CaM	protein	expressions 

 

CaM	inhibitors	altered	the	intracellular	localization	of	CaM	protein	(Figure	8).	Both	

unchallenged	and	untreated	cells	(Figure	8A‐C)	and	LPS‐challenged	cells	(Figure	8D‐

F)	displayed	high	CaM	content	primarily	localized	in	the	perinuclear	compartment	

and	to	a	much	lesser	extent	with	that	in	the	cell	cortex	(Figure	8A,	B).	Some	of	the	

cells	with	larger	TI	had	CaM	immunoreactivity	that	progressively	diminished	

toward	the	cell	cortex	(Figure	8C).	Interestingly,	cells	treated	with	CALMID50	alone	

displayed	a	more	heterogenously	translocated	CaM	immunoreactivity	often	

cortically	localized	in	lamellipodia	(Figure	8J‐L,	arrowheads).	In	TFP10‐treated	cells,	
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the	CaM	immunoreactivity	was	very	weak	and	homogenously	distributed	in	the	

cytoplasm	(Figure	8M‐O).	

CaM	antagonists	inhibited	Iba1	and	CaM	protein	expressions	with	different	

efficacies	(Figure	9).	In	general,	CALMID	was	less	potent	than	TFP	in	affecting	Iba1	

and	CAM	protein	expressions.	CALMID,	either	alone	or	in	combination	with	LPS,	was	

not	able	to	alter	the	Iba1	expression	significantly	(Figure	9A).	TFP	was	more	potent	

as	TFP10	and	TFP20	inhibited	Iba1	protein	expression	in	a	dose‐dependent	manner	

both	in	unchallenged	and	LPS‐challenged	cells	(Figure	9C).	Similarly	to	their	effects	

on	the	Iba1	expression,	CALMID	and	TFP	antagonized	the	CaM	protein	expression	

with	different	efficacy	(Figure	9B,	D).	When	CALMID	was	used,	the	CaM	

immunoreactivity	was	observed	to	decrease	somewhat	dose‐dependently	in	the	

unchallenged	microglia	as	CALMID50	significantly	inhibited	the	CaM	protein	

expression	to	38.6%	of	the	control	level	(Figure	9B).	Again,	TFP20	had	a	more	

profound	effect	on	the	CaM	protein	expression	(Figure	9D),	as	it	exhibited	a	strong	

inhibition	both	in	the	unchallenged	and	in	the	LPS‐activated	microglia	(20.8%	and	

23.4%	of	the	control	value,	respectively).	

	

3.5.	CaM	inhibition	impairs	phagocytosis	in	activated	microglia 

 

Cultured	microglia	readily	phagocytosed	fluorescently	labeled	beads	(Figure	10,	11).	

On	average,	unchallenged	and	untreated	microglia	had	3.13		0.1	phagocytosed	

microbeads	per	cell	(Figure	10A‐C	and	Figure	11).	LPS‐challenged	microglia	

displayed	a	large	(about	2.8‐fold)	increase	in	phagocytotic	activity	(8.78		0.3;	

Figure	10D‐F	and	Figure	11).	CaM	inhibitors	affected	phagocytosis	similarly	but	

with	different	degrees	of	potency.	CALMID	dose‐dependently	inhibited	phagocytosis	

both	in	unchallenged	and	LPS‐challenged	microglia	(Figure	10G‐I	and	Figure	11A).	

TFP	proved	to	be	a	very	strong	inhibitor	of	phagocytosis	both	in	unchallenged	and	

LPS‐challenged	microglia	(Figure	10M‐O	and	Figure	11B)	as	it	reduced	the	number	

of	phagocytosed	microbeads	by	almost	90%	(to	0.33		0.2;	10.6%	of	the	control	

value)	in	unchallenged,	and	by	76.5%	(to	0.75		0.3;	23.5%	of	the	control	value)	in	

LPS‐challenged	cells.	
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4.	Discussion 

 

One	of	the	most	ubiquitous	Ca2+‐sensing	proteins	is	CaM.	Its	distributions	in	the	

developing	and	the	adult	rodent	brain	have	been	well	documented	(Caceres	et	al.,	

1983;	Seto‐Ohshima	et	al.,	1983).	It	is	encoded	by	three	different	genes	in	mammals	

(Palfi	et	al.,	2002;	Toutenhoofd	and	Strehler,	2000).	The	expression	patterns	

corresponding	to	the	three	CaM	genes	display	a	broad	differential	distribution	in	the	

developing	(Kortvely	et	al.,	2002)	and	the	adult	rat	CNS	under	both	physiological	

(Kovacs	and	Gulya,	2002,	2003;	Palfi	et	al.,	1999;	Solá	et	al.,	1996)	and	

pathophysiological	conditions	(Palfi	et	al.,	2001;	Palfi	and	Gulya,	1999;	Vizi	et	al.,	

2000).	Quantitative	analysis	of	the	expression	patterns	of	these	genes	indicated	a	

differential	dendritic	targeting	of	the	CaM	mRNAs	(Kortvely	et	al.,	2003;	Palfi	et	al.,	

1999,	2005);	differential	intracellular	targeting	of	selected	CaM	mRNA	populations	

could	serve	for	the	local	translation	of	the	necessary	CaM	proteins	that	regulate	the	

numerous	target	proteins	in	that	particular	cytoplasmic	compartment	(Kortvely	and	

Gulya,	2004).	

	 CaM	expression	could	be	regulated	by	a	number	of	different	physiological	

and	pathophysiological	cues.	Although	its	gene	expression	is	generally	very	stable	

(Kortvely	and	Gulya,	2004;	Palfi	et	al.,	2002),	we	have	identified	many	factors	that	

could	differentially	affect	the	expressions	of	the	individual	CaM	genes	in	neurons	

with	distinct	phenotypes	from	different	brain	regions	(Orojan	et	al.,	2006;	Palfi	et	al.,	

1999,	2002;	Bakota	et	al.,	2005),	e.g.	inflammation	(Orojan	et	al.,	2008),	ischemia	

(Palfi	et	al.,	2001),	dehydration	(Palfi	and	Gulya,	1999),	and	chronic	ethanol	

treatment	and	withdrawal	(Vizi	et	al.,	2000).	Apart	from	the	neurons,	the	microglia	

display	a	considerable	amount	of	CaM.	This	CaM	expression,	however,	is	strongly	

dependent	on	the	phenotype.	After	a	kainic	acid	challenge,	CaM	immunoreactivity	

was	earlier	demonstrated	in	reactive	microglia	of	the	hippocampus	(Solá	et	al.,	

1997),	where	the	thickened	and	shortened	microglial	processes	accumulated	CaM	

protein.	

In	our	studies,	CaM	was	localized	both	in	developing	microglial	cells	of	

primary	cortical	cultures	established	from	E18	wild‐type	rat	embryos	maintained	

for	up	to	28	days	(DIV1‐28)	and	in	pure	microglial	cells	subcultured	from	DIV7	

cultures	for	4	days	(subDIV4).	Moreover,	the	presence	of	CaM	protein	was	
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demonstrated	not	only	in	reactive	microglia	(treated	with	LPS	alone	or	in	

combination	with	one	of	the	CaM	inhibitors),	but	also,	at	a	lower	protein	level,	in	

unchallenged	proliferating	ameboid	or	even	ramified,	microglial	cells.	We	observed	

morphologically	and	functionally	different	microglial	populations	within	the	range	

from	weak	to	strong	levels	of	CaM	expression	during	culturing,	as	evidenced	by	their	

quantitative	assessment	by	fluorescent	immunocytochemical	and	Western	blotting	

methods.	In	mixed	primary	cortical	cultures,	ameboid	microglia,	the	predominant	

form	in	the	early	stages	but	always	present	(in	much	smaller	numbers)	during	

culturing	(Szabo	and	Gulya,	2013),	expressed	strong	CaM	immunoreactivity	

throughout	the	cytoplasm,	while	ramified	microglia,	the	typical	form	in	the	later	

stages	of	microglial	development,	showed	a	weaker	and	more	evenly	distributed	

CaM	immunoreactivity.	A	similar	intracellular	distribution	of	CaM	protein	

expression	was	observed	in	pure	microglial	cultures.	In	unchallenged	and	LPS‐

challenged	cultures,	most	of	the	microglia	was	ameboid	and	had	strong	CaM	

immunoreactivity	throughout	the	cytoplasm.	Treatments	with	CaM	inhibitors,	both	

in	unchallenged	and	LPS	challenged	cells,	resulted	in	a	weaker	and	more	

homogenously	localized	CaM	immunoreactivity.	

	 	 We	found	that	the	intracellular	localization	of	CaM	immunoreactivity	

described	above	was	closely	related,	and	typically	complementary,	to	the	

filamentous	actin	cytoskeleton,	comprised	mainly	of	branched	F‐actin	(Rotty	et	al.,	

2013).	F‐actin	was	visualized	in	our	studies	by	the	distributions	of	an	actin‐binding	

protein,	Iba1,	and	phalloidin,	a	bicyclic	heptapeptide	that	recognizes	F‐actin	only,	

e.g.	the	form	that	possesses	cellular	functionality.	Iba1	is	an	intracellular	Ca2+‐

binding	protein	that	plays	an	important	role	in	regulation	of	the	intracellular	actin	

dynamics	through	the	direct	binding	of	actin,	enhances	membrane	ruffling	and	

participates	in	phagocytosis	and	cell	motility	(Ohsawa	et	al.,	2000,	2004),	functions	

that	require	large	amounts	of	cortical	F‐actin.	Our	immunocytochemical	

observations	showed	that	ramified	cells	(characterized	by	larger	TI	values)	that	

displayed	minimal	or	no	ruffling	at	all	had	only	modest	quantities	of	CaM	proteins	in	

the	cell	cortex	as	compared	with	ameboid	or	reactive	microglia.	Coincidentally,	the	

amount	of	cortical	F‐actin	was	likewise	less	in	ramified	microglia,	and	the	

reorganization	of	the	actin	cytoskeleton	determined	the	intracellular	distribution	of	

CaM.	Concomitantly	increased	levels	of	Iba1	and	CaM	protein	expression,	however,	
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were	evident	both	in	unchallenged	ameboid	and	in	LPS‐	or	LPS	and	CaM	inhibitor‐

challenged,	e.g.	activated/reactive	microglia.	Our	observations	relating	to	the	

intracellularly	redistributed	CaM	vs.	F‐actin	are	consistent	with	the	findings	in	mast	

cells	in	previous	studies.	For	example,	Sullivan	et	al.	(2000)	demonstrated	that	CaM	

promoted	the	disassembly	of	cortical	F‐actin,	while	Psatha	et	al.	(2004)	found	that	

the	disassembly	of	the	actin	cytoskeleton	eliminated	CaM	localization.	

LPS	activation	renders	microglia	ameboid,	induces	several	pro‐	and	anti‐

inflammatory	signaling	molecules	(Lim	et	al.,	2015;	Zhu	et	al.,	2014)	and	neurotoxic	

substances	through	binding	to	the	CD14/MD‐2/Toll‐like	receptor	4‐complex	

(Fricker	et	al.,	2012;	Tokes	et	al.,	2011),	and	gives	rise,	among	others,	to	cell	

spreading	by	interfering	with	the	organization	of	the	actin	cytoskeleton	through	the	

alteration	of	integrin	clustering	(Abram	and	Lowell,	2009).	Microglia	activation	was	

shown	to	involve	the	signaling	pathways	nuclear	factor	B	and	p38	mitogen‐

activated	protein	kinase	(Bachstetter	et	al.,	2007;	Cao	et	al.,	2014;	Kaushal	et	al.,	

2007).	It	must	be	noted,	however,	that	the	activation	of	microglial	cells	by	LPS	is	not	

proliferative	(Suzumura	et	al.,	1991).	

In	our	studies,	LPS	challenge	did	not	display	a	significant	effect	on	microglial	

cell	survival	or	CaM	and	Iba1	protein	expression,	but	resulted	in	significant	cell	

spreading,	documented	in	increases	in	cell	surface,	perimeter	and	TI,	and	in	a	

repositioning	of	intracellular	actin	filaments	toward	podosome	and	filipodia	

formation.	In	spite	of	this	lack	of	interaction	between	the	LPS	challenge	and	CaM	

protein	expression,	some	of	the	effects	of	LPS	are	mediated	through	CaM‐related	

phenomena	in	macrophages	(Sweet	and	Hume,	1996).	An	LPS	challenge,	for	

example,	elevated	the	intracellular	Ca2+	concentration	in	brain	macrophages	via	the	

activation	of	phosphatidylinositol	(3,4,5)‐trisphosphate‐sensitive	stores	that,	in	

turn,	activated	the	actin	cytoskeleton	(Bader	et	al.,	1994).	Such	an	inflammatory	

response	was	recently	identified	as	one	developed	through	the	activation	of	CaM‐

dependent	kinase	kinase	2	via	Toll‐like	receptors	(Racioppi	et	al.,	2012).	Thus,	the	

effects	of	LPS	could	be	attributed,	at	least	in	part,	to	CaM‐related	phenomena	

regulating	the	actin	cytoskeleton	without	directly	affecting	the	CaM	protein	

expression.	In	another	study,	CaM	was	involved	in	spontaneous	microglial	

ramification	and	the	activation	of	proliferation	from	quiescence	as	it	inhibited	the	

spontaneous	ramification	and	decreased	the	proliferation	of	these	cells	(Casal	et	al.,	
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2001).	The	loss	of	ramification	was	reported	to	be	induced	by	the	elevation	of	

intracellular	Ca2+	via	direct	or	indirect	routes	(Kalla	et	al.,	2003)	that	eventually	

resulted	in	CaM	activation	and/or	accumulation	in	the	cell	cortex.	

A	number	of	studies	demonstrated	that	cell	cycle	and	proliferation	could	be	

regulated	by	CaM	inhibitors	(Berchtold	et	al.,	2014;	Borsa	et	al.,	1986;	Sunagawa	et	

al.,	2000).	Borsa	et	al.	(1986)	compared	the	effects	of	CALMID	and	TFP	in	cycling	

and	non‐cycling	cells	and	demonstrated	that	they	were	both	preferentially	cytotoxic	

for	cycling	cells.	Cell	proliferation	studies	on	the	osteosarcoma	cell	line	(Tseng	et	al.,	

2004),	pancreatic	beta‐cell	line	cells	(Hügl	and	Merger,	2007)	and	human	lung	

cancer	stem‐like	cells	(Yeh	et	al.,	2012)	demonstrated	that	CaM	inhibitors	effectively	

inhibited	cell	division.	TFP	inhibited	cancer	stem	cell	tumor	formation	and	growth	

through	Wnt/beta‐catenin	signaling	(Yeh	et	al.,	2012)	and	cell	migration	(Finlayson	

and	Freeman,	2009;	Linxweiler	et	al.,	2013),	and	was	shown	to	induce	apoptosis	in	

human	lung	adenocarcinoma	cell	lines	(Chen	et	al.,	2009).	In	our	proliferation	

studies,	unstimulated	microglia	(subDIV4)	exhibited	a	low	PI	value	(2.5%)	

indicating	the	presence	of	only	a	few	mitotically	active	cells.	This	value	would	not	be	

considered	a	prognostic	feature	in	a	number	of	human	cancer	types	(Brownhill	et	

al.,	2014;	Yamaguchi	et	al.,	2013).	Proliferation	was	strongly	inhibited	by	LPS	and	

TFP	as	they	reduced	the	number	of	Ki67‐positive	microglia	very	effectively.	

CALMID,	however,	had	no	effect	on	cell	proliferation	in	unchallenged	cultures,	albeit	

it	did	have	some	inhibitory	effect	in	LPS‐treated	cells.	Cell	viability	was	also	

similarly	differentially	affected	as	TFP	was	more	effective	than	CALMID	in	inhibiting	

the	survival	of	pure	microglial	cells.	

Both	CALMID	and	TFP	were	previously	shown	to	inhibit	CaM	activity	

primarily	by	binding	directly	to	the	protein	(Matsushima	et	al.,	2000;	Sunagawa	et	

al.,	2000).	However,	CALMID	and	TFP	probably	exert	many	of	their	actions	not	only	

via	their	binding	to	CaM,	but	also	by	interfering	directly	with	a	number	of	upstream	

(Qin	et	al.,	2009)	or	downstream	targets	of	CaM	signaling	(James	et	al.,	2009;	

Sunagawa	et	al.,	2000).	For	example,	the	Rho	family	GTPases,	e.g.	Cdc42,	Rac	and	

Rho,	are	known	to	be	intracellular	switches	that	regulate	remodeling	of	the	actin	

cytoskeleton	(Hall,	1998).	They	participate	in	membrane	ruffling,	lamellipodia	and	

podosome	formation	and	phagocytosis	(Dovas	et	al.,	2009;	Kanazawa	et	al.,	2002;	

Seasholtz	et	al.,	2004).	As	recent	studies	led	to	the	consculsion	that	CaM	can	regulate	
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the	activation	of	both	Rac1	and	Cdc42	in	megakaryocytes	and	platelets	(Elsaraj	and	

Bhullar,	2008;	Xu	and	Bhullar,	2011;	Xu	et	al.,	2012),	a	direct	involvement	of	CaM	in	

cytoskeleton	remodeling	was	established.	By	acting	on	a	number	of	proteins	

simultaneously,	these	CaM	antagonists	could	therefore	have	more	complex	effects,	

which	differ	from	each	other	and	may	involve	several	signaling	pathways,	thereby	

further	impairing	a	number	of	cellular	functions.	Taken	together,	these	features	

could	explain	the	differences	seen	in	the	efficacies	of	these	CaM	inhibitors	as	

concerns	various	aspects	of	microglial	morphology	and	function.	

The	ability	of	CaM	to	activate	many	target	proteins	depends	on	its	highly	

flexible	conformation,	enabling	it	to	interact	with	a	wide	variety	of	proteins	

(Yamniuk	and	Vogel,	2004).	We	hypothesize	that	this	conformational	flexibility	is	

limited	to	different	degrees	when	CaM	inhibitors	are	applied;	consequently,	many	of	

the	CaM‐regulated	effects	will	be	differentially	affected	by	CaM	inhibition.	Thus,	

given	the	number	of	CaM‐interacting	target	proteins	and	their	participation	in	the	

various	intracellular	signaling	pathways	involved	in,	for	example,	the	remodeling	of	

the	actin	cytoskeleton	during	lamellipodia,	filipodia	or	podosome	formation	(Evans	

et	al.,	2003;	Murphy	and	Courtneidge,	2011;	Sunagawa	et	al.,	2000;	Vincent	et	al.,	

2012),	cell	migration	or	phagocytosis	(Sierra	et	al.,	2013),	it	is	difficult	at	present	to	

give	an	accurate	explanation	as	to	how	different	CaM	antagonists	might	interfere	

with	the	outcome	of	the	signaling	processes.	It	seems	clear,	however,	that	CaM	

inhibition	interferes	strongly	with	both	morphological	and	functional	aspects	of	the	

microglial	cells.	Future	experiments	may	shed	light	on	whether	the	effects	of	CaM	

inhibition	seen	in	selected	morphological	and	functional	properties	of	microglia	are	

uniquely	characteristic	of	these	cells	or	may	perhaps	be	typical	of	other	cell	types	

too,	and	may	promote	an	understanding	of	the	cell	type‐specific	roles	of	CaM.	

	

5.	Conclusion	

	

CaM	is	a	key	factor	in	the	regulation	of	a	number	of	morphological	aspects	of	the	

microglia	through	the	modulation	of	the	actin	cytoskeleton	that	affects	the	

formation	and	maintenance	of	lamellipodia,	filipodia	and	podosomes	of	these	cells.	

Acting	on	many	target	proteins,	among	which	actin	is	of	paramount	importance,	it	

regulates	several	cellular	functions	such	as	phagocytosis,	cell	proliferation	and	
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survival.	CALMID	and	TFP,	two	prototypical	CaM	antagonists	acting	through	

different	molecular	mechanisms	on	the	CaM	protein,	have	differential	effects	on	

these	morphological	and	fuctional	aspects,	including	Iba1	and	CaM	protein	

expression,	when	tested	both	in	unchallenged	and	LPS‐challenged	pure	microglial	

cells.	In	general,	TFP	was	more	potent	in	provoking	these	structural	alterations	and	

functional	changes.	Dechipering	the	roles	of	CaM	in	microglial	functions,	perhaps	

through	use	of	different	CaM‐specific	inhibitors,	could	be	important	in	

understanding	the	roles	and	modes	of	action	of	microglia	in	health	and	disease.	

	

Acknowledgements 

 

We	thank	Mrs.	Susan	Ambrus	for	excellent	technical	help	and	Ms.	Diana	Kata	for	

helpful	discussions.	This	work	was	supported	by	program	project	grants	to	the	

University	of	Szeged	from	the	Hungarian	Ministry	of	National	Resources	(TÁMOP‐

4.2.1.B‐09/1/KONV‐2010‐0005	and	TÁMOP‐4.2.2.A‐11/1/KONV‐2012‐0052)	

through	the	European	Union	Cohesion	Fund	to	KG.	The	funders	had	no	role	in	the	

study	design,	the	data	collection	and	analysis,	the	decision	to	publish,	or	the	

preparation	of	the	manuscript.	

	

Author	Contributions 

 

Conceived	and	designed	the	experiments:	KG,	MS.	Performed	the	experiments:	MS,	

KD.	Analyzed	the	data:	MS,	KD.	Contributed	reagents/materials/analysis	tools:	KG.	

Wrote	the	paper:	KG,	MS.	Edited	the	paper:	KG.	

	
	

Conflict	of	interest 

 

The	authors	have	declared	that	no	competing	interests	exist.	

	 	



	 25

References 

Abram,	C.L.,	and	Lowell,	C.A.	(2009).	The	ins	and	outs	of	leukocyte	integrin	signaling.	

Annu.	Rev.	Immunol.	27,	339–362.	

Ahmed,	Z.,	Shaw,	G.,	Sharma,	V.P.,	Yang,	C.,	McGowan,	E.,	and	Dickson,	D.W.	(2007).	

Actin‐binding	proteins	coronin‐1a	and	IBA‐1	are	effective	microglial	markers	

for	immunohistochemistry.	J.	Histochem.	Cytochem.	55,	687‐700.	

Bachstetter,	A.D.,	Xing,	B.,	de	Almeida,	L.,	Dimayuga,	E.R.,	Watterson,	D.M.,	Van	Eldik,	

L.J.	(2011).	Microglial	p38α	MAPK	is	a	key	regulator	of	proinflammatory	

cytokine	up‐regulation	induced	by	toll‐like	receptor	(TLR)	ligands	or	beta‐

amyloid	(Aβ).	J.	Neuroinflammation	8,	79.	

Bader,	M.F.,	Taupenot,	L.,	Ulrich,	G.,	Aunis,	D.,	and	Ciesielski‐Traska,	J.	(1994).	

Bacterial	endotoxin	induces	[Ca2+]i	transients	and	changes	the	organization	of	

actin	in	microglia.	Glia	11,	336–344.	

Bakota,	L.,	Orojan,	I.,	and	Gulya,	K.	(2005)	Intranuclear	differences	in	calmodulin	

gene	expression	in	the	trigeminal	nuclei	of	the	rat.	Acta	Biol.	Szeged.	49,	9‐14.	

Berchtold,	M.W.,	and	Villalobo,	A.	(2014).	The	many	faces	of	calmodulin	in	cell	

proliferation,	programmed	cell	death,	autophagy,	and	cancer.	Biochim.	

Biophys.	Acta	1843,	398‐435.	

Berridge,	M.J.,	Lipp,	P.,	and	Bootman,	M.D.	(2000).	The	versatility	and	universality	of	

calcium	signalling.	Nature	Rev.	Mol.	Cell.	Biol.	1,	11‐21.	

Borsa,	J.,	Einspenner,	M.,	Sargent,	M.D.,	and	Hickie,	R.A.	(1986).	Selective	cytotoxicity	

of	calmidazolium	and	trifluoperazine	for	cycling	versus	noncycling	

C3H10T1/2	cells	in	vitro.	Cancer	Res.	46,	133‐136.	

Brownhill,	S.,	Cohen,	D.,	and	Burchill,	S.	(2014).	Proliferation	index:	A	continuous	

model	to	predict	prognosis	in	patients	with	tumours	of	the	Ewing's	sarcoma	

family.	PLoS	One	9,	e104106.	

Caceres,	A.,	Bender,	P.,	Snavely,	L.,	Rebhun,	L.I.,	and	Steward,	O.	(1983).	Distribution	

and	subcellular	localization	of	calmodulin	in	adult	and	developing	brain	tissue.	

Neuroscience	10,	449‐461.	



	 26

Cao,	H.,	Zang,	K.K.,	Han,	M.,	Zhao,	Z.Q.,	Wu,	G.C.,	Zhang,	Y.Q.	(2014).	Inhibition	of	p38	

mitogen‐activated	protein	kinase	activation	in	the	rostral	anterior	cingulate	

cortex	attenuates	pain‐related	negative	emotion	in	rats.	Brain	Res.	Bull.	107,	

79‐88.	

Casal,	C.,	Tusell,	J.M.,	and	Serratosa,	J.	(2001).	Role	of	calmodulin	in	the	

differentiation/activation	of	microglial	cells.	Brain	Res.	902,	101‐107.	

Chen,	Q.Y.,	Wu,	L.J.,	Wu,	Y.Q.,	Lu,	G.H.,	Jiang,	Z.Y.,	Zhan,	J.W.,	Jie,	Y.,	and	Zhou,	J.Y.	

(2009).	Molecular	mechanism	of	trifluoperazine	induces	apoptosis	in	human	

A549	lung	adenocarcinoma	cell	lines.	Mol.	Med.	Report	2,	811–817.	

Clapham,	D.E.	(2007).	Calcium	signaling.	Cell	131,	1047‐1058.	

Dovas,	A.,	Gevrey,	J.C.,	Grossi,	A.,	Park,	H.,	Abou‐Kheir,	W.,	and	Cox,	D.	(2009).	

Regulation	of	podosome	dynamics	by	WASp	phosphorylation:	implication	in	

matrix	degradation	and	chemotaxis	in	macrophages.	J.	Cell	Sci.	122,	3873‐

3882.	

Drew,	P.D.,	and	Chavis,	J.A.	(2000).	Inhibition	of	microglial	cell	activation	by	cortisol.	

Brain	Res.	Bull.	52,	391‐396.	

Elsaraj,	S.M.,	and	Bhullar,	R.P.	(2008).	Regulation	of	platelet	Rac1	and	Cdc42	

activation	through	interaction	with	calmodulin.	Biochim.	Biophys.	Acta	1783,	

770‐778.	

Erondu,	N.E.,	and	Kennedy,	M.B.	(1985).	Regional	distribution	of	type	II	

Ca2+/calmodulin‐dependent	protein	kinase	in	rat	brain.	J.	Neurosci.	5,	3270‐

3277.	

Evans,	J.G.,	Correia,	I.,	Krasavina,	O.,	Watson,	N.,	and	Matsudaira,	P.	(2003).	

Macrophage	podosomes	assemble	at	the	leading	lamella	by	growth	and	

fragmentation.	J.	Cell	Biol.	161,	697‐705.	

Färber,	K.,	and	Kettenmann,	H.	(2006).	Functional	role	of	calcium	signals	for	

microglial	function.	Glia	54,	656‐665.	

Finlayson,	A.E.,	and	Freeman,	K.W.	(2009).	A	cell	motility	screen	reveals	role	for	

MARCKS‐related	protein	in	adherens	junction	formation	and	tumorigenesis.	

PLoS	One	4,	e7833.	



	 27

Fricker,	M.,	Oliva‐Martín,	M.J.,	and	Brown,	G.C.	(2012).	Primary	phagocytosis	of	

viable	neurons	by	microglia	activated	with	LPS	or	Aβ	is	dependent	on	

calreticulin/LRP	phagocytic	signalling.	J.	Neuroinflammation	9,	196.	

Fujita,	H.,	Tanaka,	J.,	Toku,	K.,	Tateishi,	N.,	Suzuki,	Y.,	Matsuda	S,	Sakanaka	M,	and	

Maeda	N.	(1996).	Effects	of	GM‐CSF	and	ordinary	supplements	on	the	

ramification	of	microglia	in	culture:	A	morphometrical	study.	Glia	18,	269‐281.	

Ginhoux,	F.,	Greter,	M.,	Leboeuf,	M.,	Nandi,	S.,	See,	P.,	Gokhan	S,	Mehler	MF,	Conway	

SJ,	Ng	LG,	Stanley	ER,	Samokhvalov	IM,	and	Merad	M.	(2010).	Fate	mapping	

analysis	reveals	that	adult	microglia	derive	from	primitive	macrophages.	

Science	330,	841‐845.	

Greenberg,	S.	(1995).	Signal	transduction	of	phagocytosis.	Trends	Cell	Biol.	5,	93‐99.	

Hall,	A.	(1998).	Rho	GTPases	and	the	actin	cytoskeleton.	Science	279,	509‐514.	

Hügl,	S.R.,	and	Merger,	M.	(2007).	Prolactin	stimulates	proliferation	of	the	glucose‐

dependent	beta‐cell	line	INS‐1	via	different	IRS‐proteins.	J.	Pancreas	8,	739‐

752.	

Ikura,	M.	(1996).	Calcium	binding	and	conformational	response	in	EF‐hand	proteins.	

Trends	Biochem.	21,	14‐17.	

Imai,	Y.,	Ibata,	I.,	Ito,	D.,	Ohsawa,	K.,	and	Kohsaka,	S.	(1996).	A	novel	gene	iba1	in	the	

major	histocompatibility	complex	class	III	region	encoding	an	EF	hand	protein	

expressed	in	a	monocytic	lineage.	Biophys.	Biochem.	Res.	Commun.	224,	855‐

862.	

James,	L.R.,	Griffiths,	C.H.,	Garthwaite,	J.,	and	Bellamy,	T.C.	(2009).	Inhibition	of	nitric	

oxide‐activated	guanylyl	cyclase	by	calmodulin	antagonists.	Br.	J.	Pharmacol.	

158,	1454‐1464.	

Kalla,	R.,	Bohatschek,	M.,	Kloss,	C.U.,	Krol,	J.,	Von	Maltzan,	X.,	and	Raivich	G.	(2003).	

Loss	of	microglial	ramification	in	microglia‐astrocyte	cocultures:	involvement	

of	adenylate	cyclase,	calcium,	phosphatase,	and	Gi‐protein	systems.	Glia	41,	50‐

63.	

Kanazawa,	H.,	Ohsawa,	K.,	Sasaki,	Y.,	Kohsaka,	S.,	and	Imai,	Y.	(2002).		

Macrophage/microglia‐specific	protein	Iba1	enhances	membrane	ruffling	and	



	 28

Rac	activation	via	phospholipase	C‐gamma	‐dependent	pathway.	J	Biol.	Chem.	

277,	20026‐20032.	

Kaushal,	V.,	Koeberle,	P.D.,	Wang,	Y.,	Schlichter,	L.C.	(2007).	The	Ca2+‐activated	K+	

channel	KCNN4/KCa3.1	contributes	to	microglia	activation	and	nitric	oxide‐

dependent	neurodegeneration.	J.	Neurosci.	27,	234‐244.	

Kennedy,	M.B.	(1989).	Regulation	of	neuronal	function	by	calcium.	Trends	Neurosci.	

12,	417‐420.	

Kortvely,	E.,	and	Gulya,	K.	(2004).	Calmodulin,	and	various	ways	to	regulate	its	

activity.	Life	Sci.	74,	1065‐1070.	

Kortvely,	E.,	Palfi,	A.,	Bakota,	L.,	and	Gulya,	K.	(2002).	Ontogeny	of	calmodulin	gene	

expression	in	rat	brain.	Neuroscience	114,	301‐316.	

Kortvely,	E.,	Varszegi,	S.,	Palfi,	A.,	and	Gulya,	K.	(2003).	Intracellular	targeting	of	

calmodulin	mRNAs	in	primary	hippocampal	cells.	J.	Histochem.	Cytochem.	51,	

541‐544.	

Kovacs,	B.,	and	Gulya,	K.	(2002).	Differential	expression	of	multiple	calmodulin	

genes	in	cells	of	the	white	matter	of	the	rat	spinal	cord.	Mol.	Brain	Res.	102,	28‐

34.	

Kovacs,	B.,	and	Gulya,	K.	(2003).	Calmodulin	gene	expression	in	the	neural	retina	of	

the	adult	rat.	Life	Sci.	73,	3213‐3224.	

Kreutzberg,	G.W.	(1996).	Microglia:	A	sensor	for	pathological	events	in	the	CNS.	

Trends	Neurosci.	19,	312‐318.	

Libich,	D.S.,	and	Harauz,	G.	(2008).	Backbone	dynamics	of	the	18.5	kDa	isoform	of	

myelin	basic	protein	reveals	transient	alpha‐helices	and	a	calmodulin‐binding	

site.	Biophys.	J.	94,	4847‐4866.	

Lim,	H.W.,	Park,	J.I.,	More,	S.V.,	Park,	J.Y.,	Kim,	B.W.,	Jeon,	S.B.,	Yun,	Y.S.,	Park,	E.J.,	

Yoon,	S.H.,	Choi,	D.K.	(2015).	Anti‐neuroinflammatory	effects	of	DPTP,	a	novel	

synthetic	clovamide	derivative	in	in	vitro	and	in	vivo	model	of	

neuroinflammation.	Brain	Res.	Bull.	112,	25‐34.	

Linxweiler,	M.,	Schorr,	S.,	Schäuble,	N.,	Jung,	M.,	Linxweiler,	J.,	Langer	F,	Schäfers	HJ,	

Cavalié	A,	Zimmermann	R,	and	Greiner	M.	(2013).	Targeting	cell	migration	and	



	 29

the	endoplasmic	reticulum	stress	response	with	calmodulin	antagonists:	a	

clinically	tested	small	molecule	phenocopy	of	SEC62	gene	silencing	in	human	

tumor	cells.	BMC	Cancer	13,	574.	

Lowry,	O.H.,	Rosebrough,	N.J.,	Farr,	A.L.,	and	Randall,	R.J.	(1951).	Protein	

measurement	with	the	Folin	phenol	reagent.	J.	Biol.	Chem.	193,	265‐275.	

Matsushima,	N.,	Hayashi,	N.,	Jinbo,	Y.,	and	Izumi,	Y.	(2000).	Ca2+‐bound	calmodulin	

forms	a	compact	globular	structure	on	binding	four	trifluoperazine	molecules	

in	solution.	Biochem.	J.	347,	211‐215.	

Mitchison,	T.J.,	and	Cramer,	L.P.	(1996).	Actin‐based	cell	motility	and	cell	

locomotion.	Cell	84,	371‐379.	

Murphy,	D.A.,	and	Courtneidge,	S.A.	(2011).	The	'ins'	and	'outs'	of	podosomes	and	

invadopodia:	characteristics,	formation	and	function.	Nature	Rev.	Mol.	Cell	

Biol.	12,	413‐426.	

Myllykoski,	M.,	Itoh,	K.,	Kangas,	S.M.,	Heape,	A.M.,	Kang,	S.U.,	Lubec	G,	Kursula	I,	and	

Kursula	P.	(2012).	The	N‐terminal	domain	of	the	myelin	enzyme	2',3'‐cyclic	

nucleotide	3'‐phosphodiesterase:	direct	molecular	interaction	with	the	

calcium	sensor	calmodulin.	J.	Neurochem.	123,	515‐524.	

Ohsawa,	K.,	Imai,	Y.,	Kanazawa,	H.,	Sasaki,	Y.,	and	Kohsaka,	S.	(2000).	Involvement	of	

Iba1	in	membrane	ruffling	and	phagocytosis	of	macrophages/microglia.	J.	Cell	

Sci.	113,	3073‐3084.	

Ohsawa,	K.,	Imai,	Y.,	Sasaki,	Y.,	and	Kohsaka,	S.	(2004).	Microglia/macrophage‐

specific	protein	Iba1	binds	to	fimbrin	and	enhances	its	actin‐bundling	activity.	

J.	Neurochem.	88,	844‐856.	

Orojan,	I.,	Bakota,	L.,	and	Gulya,	K.	(2006).	Differential	calmodulin	gene	expression	

in	the	nuclei	of	the	rat	midbrain‐brain	stem	region.	Acta	Histochem.	108,	455‐

462.	

Orojan,	I.,	Bakota,	L.,	and	Gulya,	K.	(2008).	Trans‐synaptic	regulation	of	calmodulin	

gene	expression	after	experimentally	induced	orofacial	inflammation	and	

subsequent	corticosteroid	treatment	in	the	principal	sensory	and	motor	

trigeminal	nuclei	of	the	rat.	Neurochem.	Int.	52,	265‐271.	



	 30

Palfi,	A.,	and	Gulya,	K.	(1999).	Water	deprivation	upregulates	the	three	calmodulin	

genes	in	exclusively	the	supraoptic	nucleus	of	the	rat	brain.	Mol.	Brain	Res.	74,	

111‐116.	

Palfi,	A.	Kortvely,	E.,	Fekete,	E.,	and	Gulya,	K.	(2005).	Multiple	calmodulin	mRNAs	are	

selectively	transported	to	functionally	different	neuronal	and	glial	

compartments	in	the	rat	hippocampus.	An	electron	microscopic	in	situ	

hybridization	study.	Life	Sci.	77,	1405‐1415.	

Palfi,	A.,	Kortvely,	E.,	Fekete,	E.,	Kovacs,	B.,	Varszegi,	S.,	and	Gulya,	K.	(2002).	

Differential	calmodulin	gene	expression	in	the	rodent	brain.	Life	Sci.	70,	2829‐

2855.	

Palfi,	A.,	Simonka,	J.A.,	Pataricza,	M.,	Tekulics,	P.,	Lepran,	I.,	Papp	G,	and	Gulya	K.	

(2001).	Postischemic	calmodulin	gene	expression	in	the	rat	hippocampus.	Life	

Sci.	68,	2373‐2381.	

Palfi,	A.,	Vizi,	S.,	and	Gulya,	K.	(1999).	Differential	distribution	and	intracellular	

targeting	of	mRNAs	corresponding	to	the	three	calmodulin	genes	in	rat	brain:	

a	quantitative	in	situ	hybridization	study.	J.	Histochem.	Cytochem.	47,	583‐600.	

Prinz,	M.,	and	Priller,	J	(2014).	Microglia	and	brain	macrophages	in	the	molecular	

age:	from	origin	to	neuropsychiatric	disease.	Nature	Rev.	Neurosci.	15,	300‐

312.	

Psatha,	M.,	Koffer,	A.,	Erent,	M.,	Moss,	S.E.,	and	Bolsover,	S.	(2004).	

Calmodulin	spatial	dynamics	in	RBL‐2H3	mast	cells.	Cell	Calcium	36,	51‐59.	

Qin,	J.,	Zima,	A.V.,	Porta,	M.,	Blatter,	L.A.,	and	Fill,	M	(2009).	Trifluoperazine:	a	

ryanodine	receptor	agonist.	Pflugers	Arch.	458,	643‐651.	

Racioppi,	L.,	Noeldner,	P.K.,	Lin,	F.,	Arvai,	S.,	and	Means,	A.R.	(2012).	

Calcium/calmodulin‐dependent	protein	kinase	kinase	2	regulates	

macrophage‐mediated	inflammatory	responses.	J.	Biol.	Chem.	287,	11579‐

11591.	

Rotty,	J.D.,	Wu,	C.,	and	Bear,	J.E.	(2013).	New	insights	into	the	regulation	and	cellular	

functions	of	the	ARP2/3	complex.	Nature	Rev.	Mol.	Cell	Biol.	14,	7‐12.	



	 31

Sacks,	D.B.,	Porter,	S.E.,	Ladenson,	J.H.,	and	McDonald,	J.M.	(1991).	Monoclonal	

antibody	to	calmodulin:	development,	characterization,	and	comparison	with	

polyclonal	anti‐calmodulin	antibodies.	Anal.	Biochem.	194,	369‐377.	

Saijo,	K.,	and	Glass,	C.K.	(2011).	Microglial	cell	origin	and	phenotypes	in	health	and	

disease.	Nature	Rev.	Immunol.	11	775‐787.	

Sanabria,	H.,	Digman,	M.A.,	Gratton,	E.,	and	Waxham,	M.N.	(2008).	Spatial	diffusivity	

and	availability	of	intracellular	calmodulin.	Biophys.	J.	95,	6002‐6015.	

Scott,	I.S.,	Heath,	T.M.,	Morris,	L.S.,	Rushbrook,	S.M.,	Bird,	K.,	Vowler,	S.L.,	Arends,	

M.J.,	and	Coleman,	N.	(2004).	A	novel	immunohistochemical	method	for	

estimating	cell	cycle	phase	distribution	in	ovarian	serous	neoplasms:	

implications	for	the	histopathological	assessment	of	paraffin‐embedded	

specimens.	Br.	J.	Cancer	90,	1583‐1590.	

Seasholtz	TM,	Radeff‐Huang	J,	Sagi	SA,	Matteo	R,	Weems	JM,	Cohen	AS,	Feramisco	JR,	

and	Brown	JH.	(2004).	Rho‐mediated	cytoskeletal	rearrangement	in	response	

to	LPA	is	functionally	antagonized	by	Rac1	and	PIP2.	J.	Neurochem.	91,	501‐

512.	

Seto‐Ohshima,	A.,	Kitajima,	S.,	Sano,	M.,	Kato,	K.,	and	Mizutani,	A.	(1983).	

Immunohistochemical	localization	of	calmodulin	in	mouse	brain.	

Histochemistry	79,	251‐257.	

Siddiqui,	T.A.,	Lively,	S.,	Vincent,	C.,	and	Schlichter,	L.C.	(2012).	Regulation	of	

podosome	formation,	microglial	migration	and	invasion	by	Ca(2+)‐signaling	

molecules	expressed	in	podosomes.	J.	Neuroinflammation	9,	250.	

Sierra,	A.,	Abiega,	O.,	Shahraz,	A.,	and	Neumann,	H.	(2013).	Janus‐faced	microglia:	

beneficial	and	detrimental	consequences	of	microglial	phagocytosis.	Front.	

Cell.	Neurosci.	7,	6.	

Solá,	C.,	Tusell,	J.M.,	and	Serratosa,	J.	(1996).	Comparative	study	of	the	pattern	of	

expression	of	calmodulin	messenger	RNAs	in	the	mouse	brain.	Neuroscience	

75,	245‐256.	



	 32

Solá,	C.,	Tusell,	J.M.,	and	Serratosa,	J.	(1997).	Calmodulin	is	expressed	by	reactive	

microglia	in	the	hippocampus	of	kainic	acid‐treated	mice.	Neuroscience	81,	

699‐705.	

Song,	X.Y.,	Hu,	J.F.,	Sun,	M.N.,	Li,	Z.P.,	Zhu,	Z.X.,	Song,	L.K.,	Yuan,	Y.H.,	Liu,	G.,	Chen,	N,H.	

(2014).	IMM‐H004,	a	novel	coumarin	derivative	compound,	attenuates	the	

production	of	inflammatory	mediatory	mediators	in	lipopolysaccharide‐

activated	BV2	microglia.	Brain	Res.	Bull.	106,	30‐38.	

Strack,	S.,	Wadzinski,	B.E.,	and	Ebner,	F.F.	(1996).	Localization	of	the	

calcium/calmodulin‐dependent	protein	phosphatase,	calcineurin,	in	the	

hindbrain	and	spinal	cord	of	the	rat.	J.	Comp.	Neurol.	375,	66‐76.	

Streit,	W.J.,	Walter,	S.A.,	and	Pennel,	N.A.	(1999).	Reactive	microgliosis.	Progr.	

Neurobiol.	57,	563‐581.	

Sullivan,	R.,	Burnham,	M.,	Török,	K.,	and	Koffer,	A.	(2000).	Calmodulin	regulates	the	

disassembly	of	cortical	F‐actin	in	mast	cells	but	is	not	required	for	secretion.	

Cell	Calcium	28,	33‐46.	

Sunagawa,	M.,	Kosugi,	T.,	Nakamura,	M.,	and	Sperelakis,	N	(2000).	Pharmacological	

actions	of	calmidazolium,	a	calmodulin	antagonist,	in	cardiovascular	system.	

Cardiovasc.	Drug	Rev.	18,	211‐221.	

Suzumura,	A.,	Marunouchi,	T.,	and	Yamamoto,	H	(1991).	Morphological	

transformation	of	microglia	in	vitro.	Brain	Res.	545,	301–306.	

Sweet,	M.J.,	and	Hume,	D.A.	(1996).	Endotoxin	signal	transduction	in	macrophages.	J.	

Leukoc.	Biol.	60,	8‐26.	

Szabo,	M.,	and	Gulya,	K.	(2013).	Development	of	the	microglial	phenotype	in	culture.	

Neuroscience	241,	280‐295.	

Tokes,	T.,	Eros,	G.,	Bebes,	A.,	Hartmann,	P.,	Várszegi,	S.,	Varga,	G.,	Kaszaki,	J.,	Gulya,	K.,	

Ghyczy,	M.,	and	Boros,	M.	(2011).	Protective	effects	of	a	phosphatidylcholine‐

enriched	diet	in	lipopolysaccharide‐induced	experimental	neuroinflammation	

in	the	rat.	Shock	36,	458‐465.	



	 33

Toutenhoofd,	S.L.,	and	Strehler,	E.E.	(2000).	The	calmodulin	multigene	family	as	a	

unique	case	of	genetic	redundancy:	multiple	levels	of	regulation	to	provide	

spatial	and	temporal	control	of	calmodulin	pools?	Cell	Calcium	28,	83‐96.	

Town,	T.,	Nikolic,	V.,	and	Tan,	J.	(2005).	The	microglial	"activation"	continuum:	from	

innate	to	adaptive	responses.	J.	Neuroinflammation	2,	24.	

Tseng,	L.L.,	Huang,	C.J.,	Hsu,	S.S.,	Chen,	J.S.,	Cheng,	H.H.,	Chang	HT,	Jiann	BP,	and	Jan	

C.R.	(2004).	Effect	of	calmidazolium	on	Ca(2+)	movement	and	proliferation	in	

human	osteosarcoma	cells.	Clin.	Exp.	Pharmacol.	Physiol.	31,	732‐737.	

Vandonselaar,	M.,	Hickie,	R.A.,	Quail,	J.W.,	and	Delbaere,	L.T.	(1994).	Trifluoperazine‐

induced	conformational	change	in	Ca(2+)‐calmodulin.	Nature	Struct.	Biol.	1,	

795‐801.	

Vertessy,	B.G.,	Harmat,	V.,	Bocskei,	Z.,	Naray‐Szabo,	G.,	Orosz.	F.,	and	Ovadi,	J.	(1998).	

Simultaneous	binding	of	drugs	with	different	chemical	structures	to	Ca2+‐

calmodulin:	crystallographic	and	spectroscopic	studies.	Biochemistry	37,	

15300‐15310.	

Vincent,	C.,	Siddiqui,	T.A.,	and	Schlichter,	L.C.	(2012).	Podosomes	in	migrating	

microglia:	components	and	matrix	degradation.	J.	Neuroinflammation	9,	190.	

Vizi,	S.,	Palfi,	A.,	and	Gulya,	K.	(2000).	Multiple	calmodulin	genes	exhibit	

systematically	differential	responses	to	chronic	ethanol	treatment	and	

withdrawal	in	several	regions	of	the	rat	brain.	Mol.	Brain	Res.	83,	63‐71.	

Wong,	R.,	Schlichter,	L.C.	(2014).	PKA	reduces	the	rat	and	human	KCa3.1	current,	

CaM	binding,	and	Ca2+	signaling,	which	requires	Ser332/334	in	the	CaM‐

binding	C	terminus.	J.	Neurosci.	34,	13371‐13383.	

Wu,	Y.,	Wu,	M.,	He,	G.,	Zhang,	X.,	Li,	W.,	Gao,	Y.,	Li,	Z.,	Wang,	Z.,	and	Zhang,	C.	(2012).	

Glyceraldehyde‐3‐phosphate	dehydrogenase:	a	universal	internal	control	for	

Western	blots	in	prokaryotic	and	eukaryotic	cells.	Anal.	Biochem.	423,	15‐22.	

Xu,	B.,	and	Bhullar,	R.P.	(2011).	Regulation	of	Rac1	and	Cdc42	activation	in	

thrombin‐	and	collagen‐stimulated	CHRF‐288‐11	cells.	Mol.	Cell.	Biochem.	353,	

73‐79.	



	 34

Xu,	B.,	Chelikani,	P.,	and	Bhullar,	R.P.	(2012).	Characterization	and	functional	

analysis	of	the	calmodulin‐binding	domain	of	Rac1	GTPase.	PLoS	One	7,	

e42975.	

Yamada,	M.,	Ohsawa,	K.,	Imai,	Y.,	Kohsaka,	S.,	and	Kamitori,	S.	(2006).	X‐ray	

structures	of	the	microglia/macrophage‐specific	protein	Iba1	from	human	and	

mouse	demonstrate	novel	molecular	conformation	change	induced	by	calcium	

binding.	J.	Mol.	Biol.	364,	449‐457.	

Yamaguchi,	T.,	Fujimori,	T.,	Tomita,	S.,	Ichikawa,	K.,	Mitomi,	H.,	Ohno,	K.,	Shida,	Y.,	

and	Kato,	H.	(2013).	Clinical	validation	of	the	gastrointestinal	NET	grading	

system:	Ki67	index	criteria	of	the	WHO	2010	classification	is	appropriate	to	

predict	metastasis	or	recurrence.	Diagn.	Pathol.	8,	65.	

Yamniuk,	A.P.,	and	Vogel,	H.J.	(2004).	Calmodulin’s	flexibility	allows	for	promiscuity	

in	its	interactions	with	target	protein	and	peptides.	Mol.	Biotechnol.	27,	33–57.	

Yeh,	C.T.,	Wu,	A.T.,	Chang,	P.M.,	Chen,	K.Y.,	Yang,	C.N.,	Yang	SC,	Ho	CC,	Chen	CC,	Kuo	

YL,	Lee	PY,	Liu	YW,	Yen	CC,	Hsiao	M,	Lu	PJ,	Lai	JM,	Wang	LS,	Wu	CH,	Chiou	JF,	

Yang	PC,	and	Huang	CY.	(2012).	Trifluoperazine,	an	antipsychotic	agent,	

inhibits	cancer	stem	cell	growth	and	overcomes	drug	resistance	of	lung	cancer.	

Am.	J.	Respir.	Crit.	Care	Med.	186,	1180‐1108.	

Zhu,	M.D.,	Zhao,	L.X.,	Wang,	X.T.,	Gao,	Y.J.,	Zhang,	Z.J.	(2014).	Ligustilide	inhibits	

microglia‐mediated	proinflammatory	cytokines	production	and	inflammatory	

pain.	Brain	Res.	Bull.	109,	54‐60.	



	 35

Figure	Captions	
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Figure	1.	Development	of	Iba1	and	CaM	immunoreactivities	in	primary	mixed	

cortical	cultures	(DIV1‐DIV28).	At	early	culturing	times	(DIV1	(A‐D)	and	DIV7	(E‐

H)),	all	seeded	cells	displayed	CaM	immunoreactivity	(green),	but	only	a	few	of	them	

were	Iba1‐positive	microglia	(red).	The	cell	nuclei	(blue)	were	labeled	with	Hoechst	

33258.	Since	most	of	the	cells	present	early	in	the	culturing	are	neurons	[48],	most	

of	the	CaM	immunoreactivity	seen	at	DIV1‐DIV7	is	of	neuronal	origin.	At	DIV14	(I‐

L),	a	large	number	of	Iba1‐positive	cells	showed	CaM	positivity,	a	number	of	them	

were	ramified.	At	DIV28	(M‐P),	the	predominant	cell	type	in	the	culture	was	the	

CaM‐positive	microglia.	Note	the	visibly	different	Iba1	(M)	and	CaM	contents	(N)	of	

the	ameboid	and	ramified	microglia	at	this	culturing	time.	The	merged	pictures	

show	cells	double‐positive	for	Iba1	and	CaM	(D,	H,	L,	P).	The	development	of	Iba1	

(Q)	and	CaM	(R)	immunoreactivities	during	culturing	(DIV1‐DIV28)	was	

quantitatively	analyzed	on	Western	blots.	Protein	samples	from	primary	cultures	

were	separated	by	gel	electrophoresis,	transferred	to	nitrocellulose	membranes	and	

probed	with	either	the	Iba1	(Q)	or	CaM	(R)	antibody.	Gray	scale	digital	images	of	the	

immunoblots	were	acquired	by	scanning	the	autoradiographic	films	with	a	desktop	

scanner.	The	images	were	scanned	and	processed	at	identical	settings	to	allow	

comparisons	between	the	Western	blots	from	different	samples.	Error	bars	indicate	

integrated	optical	density	values	(mean		S.E.M.).	Representative	Western	blot	

pictures	are	shown	below	the	graphs.	During	culturing	(DIV1‐DIV28),	a	massive	

increase	in	the	number	of	cells	with	microglial	phenotype	was	observed	in	the	

mixed	primary	cultures,	while	the	CaM	content	of	the	cultures	remained	constant.	

Most	of	the	gain	in	Iba1	content	occurred	between	DIV10	and	DIV14.	Culturing	

times	are	indicated	at	the	upper	right	corners	(A,	E,	I,	M).	Scale	bar	in	A	for	all	

pictures:	50	μm.	
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Figure	2.	Localization	of	Iba1	immunoreactivity	in	pure	microglial	cell	

cultures	(subDIV4).	Representative	photomicrograph	of	Iba1	imunoreactive	

microglial	cells	in	culture.	The	purity	of	this	culture	is	close	to	100%,	since	every	

Hoechst	33258‐labeled	cell	nuclei	(blue)	is	surrounded	by	Iba1	immunopositive	

cytoplasm	(green).	Scale	bar:	100	μm.	
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Figure	3.	Distribution	of	Iba1	and	CaM	immunoreactivities	in	pure	microglial	

cells	(subDIV4).	In	pure	microglial	cultures	(subDIV4),	the	majority	of	the	

unchallenged	cells	were	ameboid	or	slightly	ramified.	While	the	Iba1	

immunoreactivity	(red)	could	be	localized	into	two	subcellular	compartments,	the	

perinuclear	and	the	cell	cortex	domains	(A,	D,	G,	J),	the	CaM	immunoreactivity	

(green)	was	largely	confined	to	the	perinuclear	region	(B,	E,	H,	K),	with	the	cell	

cortex	having	a	considerably	smaller	CaM	content,	which	progressively	diminished	

deeper	into	the	branches.	Merged	pictures	(C,	F,	I,	L)	show	the	cell	nuclei	(blue)	and	

the	overlapping	Iba1	and	CaM	immunoreactivities	predominantly	localized	to	the	

perinuclear	area.	Ameboid	microglia	have	predominantly	cortically	localized	Iba1	

immunoreactivity	in	the	leading	edges	of	large	lamellipodia	(A,	arrows),	a	

cytoplasmic	domain	largely	devoid	of	CaM	immunoreactivity	(B).	Arrowheads	(D,	

G)	point	to	large	lamellipodia.	Scale	bar	in	A	for	all	pictures:	10	μm.	
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Figure	4.	Effects	of	CaM	inhibitors	on	microglia	proliferation	and	viability	in	

pure	microglial	cell	cultures.	The	number	of	Ki67‐positive	microglia	(A)	and	the	

viable	cells	(B)	were	quantitatively	analyzed	in	challenged	and	untreated	(control),	

LPS‐challenged	and	LPS‐challenged	and	treated	cells.	CALMID	and	TFP	were	tested	

at	50	nM	and	10	M,	respectively,	either	alone	or	in	combination	with	100	ng/ml	

LPS.	TFP,	either	alone	or	in	combination	with	LPS,	significantly	decreased	both	

microglia	proliferation	(A)	and	the	number	of	viable	cells	(B)	in	the	cultures	

(subDIV4).	Interestingly,	while	the	combined	treatment	of	CALMID50	and	LPS	led	to	

some	(but	not	significant)	inhibition	on	microglia	proliferation,	it	was	without	any	

effect	on	cell	viability.	For	proliferation	studies,	data	(mean		S.E.M.)	were	collected	

from	at	least	4	independently	established	cultures,	each	involving	plating	on	at	least	

3	Petri	dishes.	Mean	PI	values	(%)	were	established	as	follows:	control	=	2.52%,	

CALMID50	=	2.48%,	TFP10	=	0.22%,	LPS	=	0.41%,	LPS+CALMID50	=	0.20%,	

LPS+TFP10	=	0.12%.	For	viability	studies,	data	(mean		S.E.M.)	were	collected	from	

at	least	3	separate	culturings,	each	involving	plating	on	at	least	6	Petri	dishes.	Data	

were	analyzed	with	Kruskal‐Wallis	one‐way	ANOVA	on	ranks,	followed	by	pairwise	

multiple	comparisons	(Dunn’s	method).	*Statistically	significant	from	control	

(p<0.05);	#statistically	significant	from	LPS‐treated	cells	(p<0.05).	LPS:	100	ng/ml;	

CALMID50:	50	nM	CALMID;	TFP10:	10	M	TFP.	
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Figure	5.	Representative	binary	silhouettes	from	pure	microglial	cultures	

after	different	treatment	regimens.	Iba1‐positive	microglial	cells	from	pure	

microglial	cultures	(subDIV4)	were	photographed,	digitized	and	quantitatively	

analyzed	according	to	their	morphological	characteristics.	Five	representative	

binary	silhouettes	are	shown	at	each	culturing	time.	CALMID50,	in	either	control	or	

LPS‐challenged	microglia,	increased	the	number	of	filipodia,	while	the	complete	

absence	of	filipodia	was	seen	both	in	TFP10	and	in	LPS+TFP10‐treated	microglia.	

Area	(A)	in	μm2,	perimeter	(P)	in	μm,	and	TI	values	(calculated	as	[perimeter	of	cell	

(μm)]2/4[cell	area	(μm2)])	are	indicated	for	each	digitized	cell.	LPS:	100	ng/ml;	

CALMID50:	50	nM	CALMID;	TFP10:	10	M	TFP.	Scale	bar	for	all	silhouettes:	50	μm.	
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Figure	6.	Effects	of	CaM	inhibitors	on	selected	morphological	parameters	of	

pure	microglial	cells.	Surface	area	(A,	B)	in	μm2,	perimeter	(C,	D)	in	μm,	and	TI	

values	(E,	F)	of	the	microglia	for	CALMID	(A,	C,	E)	and	TFP	(B,	D,	F)	were	analyzed	

in	pure	unchallenged	and	LPS‐challenged	microglial	cell	cultures.	All	statistical	

comparisons	were	made	by	using	SigmaPlot	(v.	12.3,	Systat	Software	Inc.,	Chicago,	

IL,	USA)	and	analyzed	with	Kruskal‐Wallis	one‐way	analysis	of	variance,	followed	by	

Dunn's	method	for	pairwise	multiple	comparison	procedures	for	statistically	

significant	differences	between	the	groups.	Values	(mean	±	S.E.M.)	were	computed	

from	at	least	three	independent	culturing	experiments.	*Statistically	significant	from	

control	(p<0.05);	#statistically	significant	from	LPS‐treated	cells.	LPS:	100	ng/ml;	

CALMID5:	5	nM	CALMID;	CALMID50:	50	nM	CALMID;	TFP10:	M	TFP.	
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Figure	7.	Immunocytochemical	localization	of	actin‐binding	proteins	in	pure	

microglial	cells.	Iba1	immunoreactivity	(A,	D,	G,	J,	M;	shown	here	in	green)	and	

phalloidin	fluorescence	(B,	E,	H,	K,	N;	shown	in	red)	were	colocalized	in	

unchallenged	and	untreated	(control)	cells	and	in	microglia	treated	with	LPS	or	CaM	

inhibitors	in	pure	microglial	cultures	(subDIV4).	Merged	pictures	(C,	F,	I,	L,	O)	show	

the	Hoechst	33258‐labeled	cell	nuclei	(blue)	and	the	colocalization	of	Iba1	

immunoreactivity	and	phalloidin	fluorescence.	Filamentous	actin	often	forms	

continuous	ring‐like	lamellipodia	in	unchallenged	microglia	(B).	In	LPS‐challenged	

microglial	cells,	lamellipodia	were	less	dominant,	but	the	toxin	stimulated	podocyte	

formation,	as	indicated	by	several	puncta	delineated	by	phalloidin	fluorescence	

(arrow,	E).	When	CALMID50	was	used,	strong	lamellipodia	formation	was	observed,	

often	accompanied	by	a	perinuclear	cytoplasmic	streaming	of	filamentous	actin	

(arrows,	H,	K),	giving	a	double‐ringed	appearance	of	these	cells.	TFP	treatment	

abolished	the	formation	of	filamentous	actin	bundles	as	detected	by	phalloidin	

fluorescence	microscopy	(N).	LPS:	100	ng/ml;	CALMID50:	50	nM	CALMID;	TFP10:	

10	M	TFP.	Scale	bar	in	panel	A	for	all	pictures:	50	μm.	
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Figure	8.	Effects	of	CaM	inhibitors	on	the	intracellular	localization	of	CaM	

immunoreactivity	in	pure	microglial	cells.	Representative	immunocytochemical	

pictures	showing	the	intracellular	distribution	of	CaM	immunopositivity	(red)	in	

pure	microglia	cells	(subDIV4).	The	merged	pictures	show	the	cell	nuclei	(blue)	that	

were	stained	with	Hoechst	33258.	The	unchallenged	and	untreated	(control)	

microglia	(A‐C)	and	LPS‐challenged	cells	(D‐F)	showed	mainly	perinuclearly	

localized	CaM	immunoreactivity.	LPS‐challenged	and	treated	cells	(G‐I),	and	more	

typically	CALMID50‐treated	microglia	(J‐L)	displayed	CaM	distribution	often	more	

targeted	to	the	cell	cortex	and	developing	lamellipodia	(arrowheads).	TFP	treatment	

resulted	in	a	significant	cell	death	(see	Figure	4)	and	a	homogenous	cytoplasmic	

distribution	of	CaM	immunoreactivity	in	the	surviving	microglia	(M‐O).	LPS:	100	

ng/ml;	CALMID50:	50	nM	CALMID;	TFP10:	10	M	TFP.	Scale	bar	in	panel	A	for	all	

pictures:	50	μm.	
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Figure	9.	Effects	of	CaM	inhibitors	on	Iba1	and	CaM	protein	expression	in	pure	

microglial	cells,	as	detected	by	Western	blot	analysis.	Quantitative	Western	blot	

analysis	of	Iba1	(A,	C)	and	CaM	(B,	D)	immunoreactivities	in	pure	microglial	cell	

cultures	(subDIV4).	Representative	Western	blot	pictures	of	the	respective	

immunoreactivities	are	shown	below	the	graphs	together	with	the	GAPDH	

immunoreactive	bands	that	served	as	inner	standards	in	the	same	gel.	Protein	

samples	were	collected	from	3	separate	culturings,	each	involving	plating	on	at	least	

6	Petri	dishes,	electrophoresed	and	quantitatively	analyzed	as	described	in	the	

Materials	and	methods	section.	The	integrated	optical	density	data	(mean		S.E.M.),	

normalized	to	GAPDH	immunoreactivities,	were	analyzed	with	Kruskal‐Wallis	one‐

way	ANOVA	on	ranks,	followed	by	pairwise	multiple	comparisons	(Dunn’s	method).	

*Statistically	significant	from	control	(p<0.05);	#statistically	significant	from	LPS‐

treated	cells.	Iba1:	ionized	calcium‐binding	adaptor	molecule	1;	CaM:	calmodulin;	

LPS:	100	ng/ml;	CALMID5	and	CALMID50:	5	and	50	nM	CALMID;	TFP10	and	TFP20:	

10	and	20	M	TFP;	GAPDH:	glyceraldehyde	3‐phosphate	dehydrogenase.	
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Figure	10.	Effects	of	CaM	inhibitors	on	the	phagocytic	activity	of	microglial	

cells	in	pure	microglial	cultures.	Distribution	of	phagocytosed	microbeads	in	pure	

microglial	cultures.	Representative	pictures	showing	Iba1‐immunopositive	

microglia	demonstrate	that	the	unstimulated	and	untreated	(control)	(A‐C),	LPS‐

challenged	(D‐F),	LPS	+	CALMID50‐treated	(G‐I),	CALMID50‐treated	(J‐L)	and	

TFP10‐treated	(M‐O)	microglia	displayed	different	degrees	of	phagocytosis,	as	

evidenced	by	the	number	of	phagocytosed	microbeads.	Fluorescent	dye‐coated	latex	

microbeads	(d	=	2	μm)	(green)	were	added	to	the	media	and	phagocytosed	by	

microglial	cells.	After	exposure	to	the	fluorospheres,	the	culture	was	rinsed,	the	cells	

were	formalin‐fixed,	labeled	first	with	anti‐Iba1	antibody	(red),	and	then	with	Alexa	

Fluor	fluorochrome‐conjugated	secondary	antibody,	and	the	cell	nuclei	(blue)	were	

stained	with	Hoechst	33258.	LPS:	100	ng/ml;	CALMID50:	50	nM	CALMID;	TFP10:	10	

M	TFP.	Scale	bar	in	panel	A	for	all	pictures:	50	μm.	
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Figure	11.	Effects	of	CaM	inhibitors	on	the	phagocytic	activity	of	microglial	

cells	in	pure	microglial	cultures.	Quantitative	analysis	of	the	number	of	

phagocytosed	microbeads	after	treatment	with	CALMID	(A)	or	TFP	(B)	in	

unchallenged	and	in	LPS‐challenged	microglial	cells.	For	the	study	of	the	effects	of	

CaM	inhibitors	on	the	number	of	phagocytosed	beads	(mean	±	S.E.M.),	a	total	of	873	

bead‐labeled	cells	were	counted	in	three	separate	culturing	procedures.	Data	were	

analyzed	with	Kruskal‐Wallis	one‐way	ANOVA	on	ranks,	followed	by	pairwise	

multiple	comparisons	(Dunn’s	method).	*Statistically	significant	from	control	

(p<0.05);	#statistically	significant	from	LPS‐treated	cells.	LPS:	100	ng/ml;	CALMID5:	

5	nM	CALMID;	CALMID50:	50	nM	CALMID;	TFP10:	10	M	TFP.	
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Tables	

Table	1.	Antibodies	used	in	immunocytochemistry	and	Western	blot	analyses	

	
Antibodies	used	in	immunocytochemistry	
	
Primary	
antibody,	
abbrev.	
name	

Full	name	 Final	
dilution	

Company	
name	

Secondary	
antibody	with	
fluorochrome	

Final	
dilution	

Iba1	 Rabbit	anti‐Iba1	
monocl.	ab.	

1/300	 Wako,	Osaka,	
Japan	

Alexa	Fluor	568	
goat	anti‐rabbit,	
Invitrogen,	
Carlsbad,	CA,	USA	

1/1,000	

Iba1	 Rabbit	anti‐Iba1	
monocl.	ab.	

1/300	 Wako,	Osaka,	
Japan	

Alexa	Fluor	488	
goat	anti‐rabbit,	
Invitrogen,	
Carlsbad,	CA,	USA	

1/1,000	

CaM	 Mouse	anti‐CaM,	
monocl.	ab.	

1/100	 Millipore	 Alexa	Fluor	488	
goat	anti‐mouse,	
Invitrogen,	
Carlsbad,	CA,	USA	

1/1,000	

CaM	 Rabbit	anti‐CaM,	
monocl.	ab.,	
clone	EP799Y	

1/100	 Abcam,	
Cambridge,	UK

Alexa	Fluor	568	
goat	anti‐rabbit,	
Invitrogen,	
Carlsbad,	CA,	USA	

1/1,000	

Ki67	 Rabbit	anti‐
Ki67,	monocl.	
ab.,	clone	SP6	

1/100	 Thermo	
Scientific,	
Fremont,	CA,	
USA	

Alexa	Fluor	488	
goat	anti‐rabbit,	
Invitrogen,	
Carlsbad,	CA,	USA	

1/1,000	

	
Antibodies	used	in	Western	studies	
	
Primary	
antibody,	
abbrev.	
name	

Full	name	 Final	
dilution	

Company	
name	

Secondary	
antibody	

Final	
dilution	

Iba1	 Rabbit	anti‐Iba1	
monocl.	ab.	

1/1,000	 Wako,	Osaka,	
Japan	

Anti‐rabbit	IGG,	
peroxidase	conjug.,	
Sigma,	St.	Louis,	
MO,	USA	

1/2,000	

CaM	 Rabbit	anti‐CaM,	
monocl.	ab.,	
clone	EP799Y	

1/2,000	 Abcam,	
Cambridge,	
UK	

Anti‐rabbit	IGG,	
peroxidase	conjug.,	
Sigma,	St.	Louis,	
MO,	USA	

1/2,000	

GAPDH	
	

Mouse	anti‐
GAPDH,	monocl.	
ab.,	clone	
GAPDH‐71.1	

1/20,000 Sigma,	St.	Louis,
MO,	USA	

Anti‐mouse	IGG,	
peroxidase	conjug.,	
Sigma,	St.	Louis,	
MO,	USA	

1/3,000	


