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Abstract

We study the randomized k-server problem on metric spaces consisting of widely
separated subspaces. We give a method which extends existing algorithms to larger
spaces with the growth rate of the competitive quotients being at most O(log k).
This method yields o(k)-competitive algorithms solving the randomized k-server
problem for some special underlying metric spaces, e.g. HSTs of “small” height
(but unbounded degree). HSTs are important tools for probabilistic approximation
of metric spaces.
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1 Introduction

In the theory of designing efficient virtual memory-management algorithms,
the well studied paging problem plays a central role. Even the earliest oper-
ation systems contained some heuristics to minimize the amount of copying
memory pages, which is an expensive operation. A generalization of the paging
problem, called the k-server problem was introduced by Manasse, McGeoch
and Sleator in [16], where the first important results were also achieved. The
problem can be formulated as follows. Given a metric space with k mobile
servers that occupy distinct points of the space and a sequence of requests
(points), each of the requests has to be served, by moving a server from its
current position to the requested point. The goal is to minimize the total cost,
that is the sum of the distances covered by the k servers; the optimal cost for
a given sequence % is denoted opt(k, %).

An algorithm is online if it serves each request immediately when it arrives
(without any prior knowledge about the future requests).
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Definition 1 An online algorithm A is c-competitive if for any initial config-
uration C0 and request sequence % it holds that

cost(A(C0, %)) ≤ c · opt(k, %) + I(C0),

where I is a non-negative constant depending only on C0.

The competitive ratio of a given online algorithm A is the infimum of the
values c with A being c-competitive. The k-server conjecture (see [16]) states
that there exists an algorithm A that is k-competitive for any metric space.
Manasse et al. proved that k is a lower bound [16], and Koutsoupias and
Papadimitriou showed 2k − 1 is an upper bound for any metric space [14].

In the randomized online case (sometimes this model is called the oblivious
adversary model [7]) the competitive ratio can be defined in terms of the
expected value as follows:

Definition 2 A randomized online algorithm R is c-competitive if for any
initial configuration C0 and request sequence % we have

E[cost(R(C0, %))] ≤ c · opt(k, %) + I(C0),

where I is a non-negative constant depending only on C0 and E[cost(R(%))]
denotes the expected value of cost(R(C0, %)).

The competitive ratio of the above randomized algorithm is defined analo-
gously.

In the randomized version there are more problems that are still open. The ran-
domized k-server conjecture states that there exists a randomized algorithm
with a competitive ratio Θ(log k) in any metric space. The best known lower
bound is Ω(log k/ log log k) which follows from the results of [6] (see also [4]).
A natural upper bound is the bound 2k + 1 given for the deterministic case.
By restricting our attention to metric spaces with a special structure, better
bounds can be achieved: for uniform metric spaces, Fiat et al. [12] proved a
lower bound Hk =

∑k
i=0 i

−1 ≈ log k (and an upper bound 2Hk), while Mc-
Geoch and Sleator [15] showed that their algorithm PARTITION guarantees
the upper bound Hk.

In this paper we also consider a restriction of the problem, namely we seek for
an efficient randomized online algorithm for metric spaces that are “µ-HST
spaces” [4] and defined as follows:

Definition 3 For µ ≥ 1, a µ-hierarchically well-separated tree (µ-HST) is a
metric space defined on the leaves of a rooted tree T . To each vertex u ∈ T
there is associated a label Λ(u) ≥ 0 such that Λ(u) = 0 if and only if u is
a leaf of T . The labels are such that if a vertex u is a child of a vertex v
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then Λ(u) ≤ Λ(v)/µ. The distance between two leaves x, y ∈ T is defined as
Λ(lca(x, y)), where lca(x, y) is the least common ancestor of x and y in T .

The µ-HST spaces play an important role in the probabilistic embedding tech-
nique developed by Alon et al. [1] and Bartal [3]. Fakcharoenphol et al [13]
proved that every metric space on n points can be α-probabilistically approxi-
mated by a set of µ-HSTs, for an arbitrary µ > 1 where α = O(µ log n/ log µ).

Seiden [17] proved the existence of an O(polylog k)-competitive algorithm
for Ω(k log k)-decomposable spaces, where the space can be partitioned into
O(log k) uniform blocks, each having diameter 1, and where the distance of
any two blocks is at least c·k·log k. In his work he also showed that for binary
HST’s (where each non-leaf node has exactly two children) there exists an
O(log3 k)-competitive algorithm, provided the parameter µ of the HST is suf-
ficiently large. Very recently Coté et al. [8] designed a randomized algorithm
on binary trees with competitive ratio logaritmic in the diameter of the metric
(but independent of k).

We study decomposable spaces too, but unlike the above results our spaces
consist of an arbitrary number of (not necessarily uniform) blocks with large
distance between them. By slightly modifying the approach of Csaba and
Lodha [9] and Bartal and Mendel [5] 1 we show that there exists a polylog k-
competitive algorithm for any µ-HST that has a small depth and arbitrary
maximum degree t, given µ ≥ k. Our algorithm heavily relies on the technical
notion of demand (Definition 5), which plays a central role in the description
and the analysis of the algorithm.

2 Notation

In [17], µ-decomposable spaces have been introduced. We consider a special
case of this notion as follows:

Definition 4 LetM be a metric space. We callM uniformly µ-decomposable
for some µ > 1 if its points can be partitioned into t ≥ 2 blocks, B1, . . . , Bt

such that the following conditions both hold:

(1) whenever x, y ∈ M are belonging to different blocks, their distance is
exactly ∆, the diameter of M;

(2) the diameter of each Bi is at most ∆/µ.

1 Although the publication has been withdrawn (see
http://arxiv.org/abs/cs.DS/0406033), the approach itself is still valuable.
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For example, a µ-HST with at least two points is an uniformly µ-decomposable
metric space.

For the rest of the paper we fix a uniformly µ-decomposable metric space
M having a diameter ∆, consisting of the blocks B1, . . . , Bt, with maximal
diameter δ such that µ = ∆/δ.

For a given request sequence % we denote its ith member by %i, and the prefix
of % of length i by %≤i. The length of the sequence is denoted |%|.

Given a block Bs, a request sequence % and an initial configuration C in
Bs, let cost(As(C, %)) denote the cost computed by the algorithm A for the
subsequence of % consisting of the requests arriving to Bs. these inputs. For
any number ` of servers, let cost(As(`, %)) stand for max

|C|=`
cost(As(C, %)), where

C runs over all the initial configurations in Bs consisting of ` servers. Also,
let opts(C, %) denote the optimal cost for the subsequence of % consisting of
the requests arriving to Bs, starting from configuration C and let opts(`, %) =
min
|C|=`

opts(C, %). Thus, if % is nonempty, opts(0, %) is defined to be infinite.

Definition 5 The demand of the block Bs for the request sequence % is

Ds(%) := min{` | opts(`, %) + `∆ = min
j
{opts(j, %) + j∆}},

if % is nonempty, otherwise it is 0.

Intuitively, Ds(%) denotes the least number of servers to be moved into the
initially empty block Bs to achieve the optimal cost for the sequence %. Observe
that Ds(%) is finite since it is a nonnegative integer bounded by e.g. |%|.

In the rest of the paper, the notion of demand of the blocks will play a crucial
role. We now state a conjecture which would simplify the ensuing calculations,
if it happened to be verified; however, we did not succeed to prove or disprove
it yet.

Conjecture 6 For any block Bs and request sequence % inside Bs and index
0 < i < |%|, the difference Ds(%≤i+1)−Ds(%≤i) is either 0 or 1.

A weaker, but still open question is that whether the sequence (Ds(%≤i))
|%|
i=1 is

monotone for every % and Bs.

We also introduce a technical notion.

Definition 7 Suppose N is a metric space, A is a randomized online algo-
rithm, f is a real function and µ > 0 satisfying the following conditions:

(1) f(`)/ log ` is monotone non-decreasing;
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(2) for any 0 < ` ≤ µ and request sequence % in N ,

E[cost(A(`, %))] ≤ f(`) · opt(`, %) +
f(`) · ` · diam(N )

log `
. (1)

Then we call A an (f, µ)-efficient algorithm on N .

Observe that if A is (f, µ)-efficient on N , then A is f(k)-competitive for the
k-server problem on N for any 0 < k < µ.

3 Results

Our aim is to prove the following theorem:

Theorem 8 Suppose M is a uniformly µ-decomposable space and A is an
(f, µ)-efficient algorithm on each block of M. Then there exists an (f ′, µ)-
efficient algorithm on M, where f ′(x) is defined as c · f(x) log x for some
absolute constant c > 0.

For the rest of the paper we now fix an algorithm A and a real function f
such that A is an (f, µ)-efficient algorithm on each block of (the already fixed)
M. In the next subsection we define the algorithm which will be proven to
be (f ′, µ)-efficient on M. In the rest of the paper we suppose that k ≤ µ
arbitrary.

3.1 Algorithm X

The algorithm uses A as a subroutine and it works in phases. Let %(p) denote
the sequence of the pth phase. In this phase the algorithm works as follows:

Initially we mark the blocks that contain no servers.
When %

(p)
i , the ith request of this phase arrives to block Bs, we compute

the demand Ds(%
(p)
≤i ) and the maximal demand

D∗s(%
(p)
i ) = max{Ds(%

(p)
≤j)|j ≤ i}

for this block (note that these values do not change in the other blocks).

– If D∗s(%
(p)
i ) is less than the number of servers in Bs at that moment,

then the request is served by Algorithm A, with respect to the block Bs.
– IfD∗s(%

(p)
i ) becomes equal to the number of servers in Bs at that moment,

then the request is served by Algorithm A, with respect to the block Bs and
we mark the block Bs.
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– If D∗s(%
(p)
i ) is greater than the number of servers in Bs at that moment,

we mark the block Bs and perform the following steps until we have D∗s(%
(p)
i )

servers in that block or we cannot execute the steps (this happens when all
the blocks become marked):
• Choose an unmarked block Bs′ randomly uniformly, and a server from this

block also randomly. We move this chosen server to the block Bs (such a
move is called a jump), either to the requested point, or, if there is already
a server occupying that point, to a randomly chosen unoccupied point of
Bs. If the number of servers in Bs′ becomes D∗s′(%

(p)
i ) via this move, we

mark that block. In both Bs and Bs′ we restart algorithm A from the
current configuration of the block.
If we cannot raise the number of servers in block Bs to D∗s(%

(p)
i ) by re-

peating the above steps (all the blocks became marked), then Phase p + 1
is starting and the last request is belonging to this new phase.

Intuitively, Algorithm X consists of the following parts: the server movements
inside a block are handled by the inner Algorithm A, while the “jumps” from a
block to another are determined by an online matching algorithm (introduced
by Csaba and Pluhár [10]); its requests are induced by the demands.

For any phase p of Algorithm X we can associate a matching problem MX.
We recall from [10] that an online matching problem is defined similarly to
the online k-server problem with the following two differences:

(1) Each of the servers can move only once;
(2) The number of the requests is at most k, the number of the servers.

The underlying metric space of MX is a finite uniform metric space that has
the blocks Bs as points and a distance ∆ between any two different points. Let
D̂s(p) denote the number of servers that are in the block Bs just at the end of
phase p. Now in the associated matching problem we have D̂s(p − 1) servers
originally occupying the point Bs. During phase p, if some value D∗s increases,
we make a number of requests in point Bs for the associated matching problem:
we make the same number of requests that the value D∗s has been increased
with. Each of these requests have to be served by a server, moreover, one
server can handle only one request (during the whole phase).

We also associate an auxiliary matching algorithm (AMA) on this structure
as follows. While there exists a server in the block Bs which have not served
any request yet, let this server serve the request arriving to Bs. Otherwise,
D∗s increases at some time, causing jumps. These jumps are corresponding to
requests of the associated matching problem; AMA satisfies these requests by
the servers that are corresponding to those involved in these jumps.
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For convenience we modify the request sequence % in a way that does not
increase the optimal cost and does not decrease the cost of any online algo-
rithm, hence the bounds we get for this modified sequence will hold also in the
general case. The modification is defined as follows: we extend the sequence
by repeatedly requesting the points of the halting configuration of a (fixed)

optimal solution. We do this till
∑t
s=1 D

∗
s(%

(u)
≤i ) becomes k. Observe that the

optimal cost does not change via this transformation, and any online algo-
rithm works the same way in the original part of the sequence (hence online),
so the cost computed by any online algorithm is at least the original computed
cost.

In the following two subsections we will give an upper bound for the cost of
Algorithm X and several lower bounds for the optimal cost in an arbitrary
phase. Theorem 8 easily follows from these.

We remark that the number t of blocks do not appear in the statement of
Theorem 8, which is not surprising, since in each phase, at most 2k blocks of
M can be involved. This comes from the fact that each server jumps at most
once during one phase (since if a server jumps into a block, that block has to
be a marked one, thus the server is not allowed to jump out from that block
during the same phase).

4 Upper bound

In the first step we prove an auxiliary result.

If p is not the last phase, let %(p)+ denote the request sequence we get by
adding the first request of phase p+ 1 to %(p). Now we have

D∗s(%
(p)) ≤ D̂s(p) ≤ D∗s(%

(p)+) (2)

and in all block but at most one we have equalities there (this is the block
that causes termination of the pth phase).

Denote

mp :=
t∑

s=1

max{0, D̂s(p)− D̂s(p− 1)}. (3)

Since the auxiliary metric space is uniform, the optimal cost is mp ·∆.

From Lemma 6 of [10] we immediately get the following:

Lemma 9 The expected cost of AMA is at most log k ·mp∆.

A lemma similar in nature to the above was also presented in [9].
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Lemma 10 The expected cost of Algorithm X in the pth phase is at most

f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)) +

(
t∑

s=1

Ds(%
(p)+)− k

)
∆

)

+
(
f(k) log k + f(k) + log k

)
mp∆ +

f(k)

log k
∆.

PROOF. Consider the pth phase of an execution of Algorithm X on the
request sequence %. We fix a possible associated execution τ of AMA (which
satisfies the request sequence induced by %); let Eτ denote the event that
the execution of AMA is this τ . We will give an upper bound to the overall
expected cost of Algorithm X during phase p assuming τ . After that, we get
the expected cost appearing in Lemma 10 as a weighted sum.

Let Bs be a block in which some request arrives during this phase. For the sake
of convenience we will omit the subscript s when it is clear from the context.
While the block Bs is unmarked, only jump-outs can happen from this block
(in phase p); let d− be the number of these jump-outs. After Bs has been
marked, only jump-ins happen into this block; let d+ be the number of these
jump-ins and let d = d− + d+ denote the total number of jumps involving Bs

during phase p.

Also, for any 1 ≤ i ≤ d− let ri be the index of the request in %(p) which causes
the ith jump-out from Bs, and for any 1 ≤ i ≤ d+ let rd−+i be the index of
the request which causes the ith jump-in to Bs.

Denote σi = %(p)
ri
. . . %

(p)
ri+1−1, where %(p)

r0
is the first request of the phase and

%
(p)
rd+1−1 is the last request of the phase. (In other words, σi is the ith maximal

segment of %(p) between two jumps. Table 1 shows an illustration.)

It is clear that the number of servers inside Bs does not change between two
jumps; for each 0 ≤ i ≤ d, let ki denote the number of servers inside Bs

during σi. Finally, let `i = Ds(%
(p)
<ri+1

) (the demand of Bs for the sequence

%
(p)
<ri+1

). Observe that `i ≤ k for each i, moreover Ds(%
(p)
≤ri) is exactly ki, when

i > d−, and is strictly less than ki, when i < d−.

jump outs outs ins ins

σ0 ↓ σ1 ↓ σ2 ↓ σ3 ↓ σ4

%
(p)
j :

︷ ︸︸ ︷
. . . %

(p)
r1−1

︷ ︸︸ ︷
%(p)
r1 . . . %

(p)
r2−1

︷ ︸︸ ︷
%(p)
r2 . . . %

(p)
r3−1

︷ ︸︸ ︷
%(p)
r3 . . . %

(p)
r4−1

︷ ︸︸ ︷
%(p)
r4 . . .

Table 1
Partitioning of a phase. Here d− = d+ = 2.
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A jump-in to the block satisfies the last request, hence there is no server
movement inside the block during a jump. The expected cost of non-jump
movements in this block (this is called the inner cost) is, applying (1), at
most

d∑
i=0

E[As(ki, σi)| Eτ ] ≤
d∑
i=0

(
f(ki)opts(ki, σi) +

ki · f(ki)

log ki
δ
)

≤ f(k)
d∑
i=0

opts(ki, σi) + δ
d∑
i=0

ki · f(ki)

log ki
. (4)

Recall that Eτ is the random event that τ is the associated run of AMA.

We bound the right hand side of (4) piecewise. In the first step we bound the
inner costs till the (d− − 1)th jump (which is still a jump-out):

d−−1∑
i=0

opts(ki, σi) ≤
d−−1∑
i=0

opts(kd− , σi) ≤ opts(kd− , %
(p)
≤rd−

). (5)

From the last jump-out till the last jump-in:

d−1∑
i=d−

opts(ki, σi)≤
d−1∑
i=d−

opts(`i, σi)

=
d−1∑
i=d−

(
opts(`i, σi) + opts(`i, %

(p)
≤ri)− opts(`i, %

(p)
≤ri)

)

≤
d−1∑
i=d−

(
opts(`i, %

(p)
<ri+1

)− opts(`i, %
(p)
≤ri)

)

≤
d−1∑
i=d−

((
opts(ki+1, %

(p)
<ri+1

) + (ki+1 − `i)∆
)

−
(
opts(ki, %

(p)
≤ri) + (ki − `i)∆

))
(6)

≤
d−1∑
i=d−

(
opts(ki+1, %

(p)
≤ri+1

)− opts(ki, %
(p)
≤ri) + (ki+1 − ki)∆

)
= opts(kd, %

(p)
≤rd)− opts(kd− , %

(p)
≤rd−

) + (kd − kd−)∆. (7)

Inequality (6) follows from Definition 5, since the demand of Bs for %
(p)
<ri+1

is

`i and the demand of Bs for %
(p)
≤ri is ki.

Since kd ≥ Ds(%
(p)), analogously we get
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opts(kd, σd)≤ opts(Ds(%
(p)), σd)

≤ opts(Ds(%
(p)), %(p))− opts(Ds(%

(p)), %
(p)
≤rd)

≤ opts(Ds(%
(p)+), %(p)) + (Ds(%

(p)+)−Ds(%
(p)))∆

− opts(kd, %
(p)
≤rd)− (kd −Ds(%

(p)))∆ (8)

= opts(Ds(%
(p)+), %(p))− opts(kd, %

(p)
≤rd)

+(Ds(%
(p)+)− kd)∆. (9)

Again, (8) follows from Definition 5, since the demand of Bs for %(p) is Ds(%
(p))

and the demand of Bs for %
(p)+
≤rd is kd. Note that if the first request of the

p+ 1th phase arrives to block Bs, then Ds(%
(p)) < D(%

(p)+), otherwise the two
demands are equal.

Summing up the right hand sides of (5), (7) and (9) we get

d∑
i=0

opts(ki, σi) ≤ opts(Ds(%
(p)+), %(p)) + (Ds(%

(p)+)− kd−)∆, (10)

and substituting this to the right hand side of (4) we get that the expected
inner cost in Bs is at most

f(k)
(
opts(Ds(%

(p)+), %(p)) + (Ds(%
(p)+)− kd−)∆

)
+

d∑
i=0

ki · f(ki)

log ki
δ. (11)

On the other hand,

Ds(%
(p)+)− kd− = (DS(%(p)+)− D̂s(p)) + (D̂s(p)− kd−), (12)

where we know that (D̂s(p)− kd−) is the number of jump-ins into this block.

From Definition 7,
d∑
i=0

ki·f(ki)
log ki

δ ≤ f(k)
log k

δ
d∑
i=0

ki (since ki ≤ k). Recall that by

definition ki denotes the number of servers in Bs, after the ith jump involving
block s. Summing these values for every block and for every jump, we get
(|τ |+ 1)k as an upper bound, where |τ | is the total number of jumps. Hence,

the sum of the expressions of the form ki·f(ki)
log ki

δ can be bounded by

(|τ |+ 1)
f(k)

log k
kδ. (13)

We also remark that

|τ | ≤ k, (14)

since any server can jump at most once: after a server jumps into a block, the
block has to be marked, thus no server can jump out from that given block in
this phase.
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Now we bound the cost of the jumps. Let T be the set of the potential as-
sociated runs of AMA and let η be the random variable Eτ 7→ |τ |, for each
τ ∈ T . Applying Lemma 9 we get that the expected value of the total number
of jumps is

E[η] =
∑
τ∈T

Pr(Eτ )|τ | ≤ log k ·mp (15)

Summing up the results (11), (12), (13) and (15) for all the blocks we get the
following bound for the expected cost of Algorithm X:

t∑
s=1

d−s +d+s∑
i=0

E[As(ki, σi) + η∆] (16)

=
∑
τ∈T

Pr(Eτ )
t∑

s=1

d−s +d+s∑
i=0

E[As(ki, σi)| Eτ ]

+ E[η]∆

≤
∑
τ∈T

Pr(Eτ )
(
f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)+)

+
t∑

s=1

(
Ds(%

(p)+)− D̂s(p)
)
∆ + |τ |∆

)
+ (|τ |+ 1)

f(k)

log k
kδ

)
+ log k ·mp ·∆

≤
∑
τ∈T

Pr(Eτ )f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)+) +

t∑
s=1

Ds(%
(p)+)∆− k∆

)
(17)

+
∑
τ∈T

Pr(Eτ )|τ |
(
f(k)∆ +

f(k)

log k
kδ

)
+
f(k)

log k
kδ + log k ·mp ·∆ (18)

≤ f(k)

(
t∑

s=1

opts(Ds(%
(p)+), %(p)+) +

t∑
s=1

Ds(%
(p)+)∆− k∆ + log k ·mp∆

)

+

(
f(k)

log k
mp log k +

f(k)

log k
+mp log k

)
∆,

if we apply
∑
τ∈T Pr(Eτ ) = 1 in (17) and kδ ≤ ∆ in (18). 2

5 Analyzing the optimal cost

Consider an optimal solution of the k-server problem. Let C∗s (%) be the maxi-
mal number of servers in Bs of this optimal solution during % and let Cs(%) be
the number of servers in Bs of the optimal solution at the end %. We modify %
as follows: we extend each phase (except the last one) with a copy of the first
request of the next phase, and consider %(p)+ instead of %(p). In this section
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we bound the optimal cost for this modified sequence. It is obvious that the
optimal cost of these sequences is the same.

Observe that for any s and p, C∗s (%(p)+) ≥ Cs(%
(p−1)+)), since each (modified)

phase p begins with the last configuration of phase p−1. Then,
∑t
s=1(C∗s (%(p)+)−

Cs(%
(p−1)+)) is clearly a lower bound for the number of jumps of the optimal

solution during (the modified) phase p. Thus, the cost of the optimal solution
during %(p)+ (which has Cs(%

(p−1)+, s = 1, . . . , t as the initial configuration)
can be bounded by

opt(k, %(p)+) ≥
t∑

s=1

(C∗s (%(p)+)−Cs(%(p−1)+))∆+
t∑

s=1

opts(C
∗
s (%(p)+), %(p)+), (19)

i.e., ∆ times a lower bound for the number of jumps, plus a lower bound for
the inner cost, where we treat each block as if we had the maximal number of
servers during the whole phase.

Lemma 11

opt(k, %(p)+) ≥
t∑

s=1

opts(Ds(%
(p)+), %(p)+) +

(
t∑

s=1

Ds(%
(p)+)− k

)
∆.

PROOF. From Definition 5 we have

t∑
s=1

(
opts(C

∗
s (%(p)+), %(p)+) + (C∗s (%(p)+)− Cs(%(p−1)+))∆

)

≥
t∑

s=1

(
opts(Ds(%

(p)+), %(p)+) + (Ds(%
(p)+)− Cs(%(p−1)+))∆

)
.

Since
∑t
s=1Cs(%

(p−1)+) = k, the statement follows by (19). 2

Proposition 12 For any s and p,

opts(C
∗
s (%(p)+), %(p)+) + (C∗s (%(p)+)− Cs(%(p−1)+))∆

≥max{0, D∗s(%(p)+)− Cs(%(p−1)+)}∆.

PROOF. Let %(p)∗ be the subsequence of %(p) which we get by omitting each
request that arrives to a block Bs after the demand of that block reaches
D∗s(%

(p)+) (note that %(p)∗ is not neccessarily a prefix of %(p)). Now we have two
cases: first, if D∗s(%

(p)+) > Cs(%
(p−1)+), then by Definition 5

12



opts(C
∗
s (%(p)+), %(p)+) + (C∗s (%(p)+)− Cs(%(p−1)+))∆

≥ opts(C
∗
s (%(p)+), %(p)∗) + (C∗s (%(p)+)− Cs(%(p−1)+))∆

≥ (opts(D
∗
s(%

(p)+), %(p)∗) +
(
D∗s(%

(p)+)− Cs(%(p−1)+))
)

∆

≥max{0, D∗s(%(p)+)− Cs(%(p−1)+))}∆.

Otherwise it holds that

max{0, D∗s(%(p)+)− Cs(%(p−1)+))} = 0,

and also obviously

opts(C
∗
s (%(p)+), %(p)+) + (C∗s (%(p)+)− Cs(%(p−1)+))∆ ≥ 0.

2

Lemma 13 The optimal cost is at least

1

6

∑
p>1

mp ·∆.

PROOF. Since
t∑

s=1
D̂s(p) =

t∑
s=1

Cs(%
(p−1)+) = k, it holds that

t∑
s=1

max{0, D̂s(p)− Cs(%(p−1)+)}∆

=
t∑

s=1

1

2
|D̂s(p)− Cs(%(p−1)+)|∆. (20)

Summing up the cost of the jumps performed by the optimal solution we get

t∑
s=1

|Cs(%(p)+)− Cs(%(p−1)+)|∆ ≤ 2 · opt(k, %(p)+). (21)

Note that the factor of 2 comes from the fact that each jump appears twice
on the left hand side. Applying to (19) the statement of Proposition 12 and
(20), using D∗s(%

(p)+) ≥ D̂s(p) we get

2 · opt(k, %(p)+)

≥
t∑

s=1

(
|D̂s(p)− Cs(%(p−1)+)|

)
∆ (22)

Now summing (22) and (21) and applying the triangle inequality we get

13



4 · opt(k, %(p)+)

≥
t∑

s=1

(
|D̂s(p)− Cs(%(p−1)+))|+ |Cs(%(p)+)− Cs(%(p−1)+)|

)
∆

≥
t∑

s=1

|D̂s(p)− Cs(%(p)+))|∆. (23)

Also, from summing (22) and (23), the latter relativized to phase p − 1, and
applying again the triangle inequality,

2 · opt(k, %(p)+) + 4 · opt(k, %(p−1)+)

≥
t∑

s=1

(
|D̂s(p)− Cs(%(p−1)+))|+ |D̂s(p− 1)− Cs(%(p−1)+))|

)
∆

≥
t∑

s=1

|D̂s(p)− D̂s(p− 1)|∆ = mp ·∆, (24)

and the statement follows. 2

6 Proof of Theorem 8

Now we are able to prove the theorem about competitiveness of Algorithm X.

PROOF. [Theorem 8] The first term in the right hand of the formula in
Lemma 10 can be bounded by f(k)opt(k, %(p)+) by Lemma 11. Furthermore
if p = 1 we can write k instead of m1 log k by (14), otherwise applying 13 we
get that

∑
pmp∆ can be bounded by ∆·k

log k
+ 6 · opt(k, %). Summing up

E(cost(X(%)))≤ f(k)opt(k, %)

+

(
∆ · k
log k

+ 6 · opt(k, %)

)(
f(k) log k + f(k) + log k

)

+
f(k)

log k
∆,

= opt(k, %)
(
6f(k) log k + 7f(k) + 6 log k

)
+
f(k) log k + f(k) + log k + f(k)/ log k

log k
· k ·∆

hence Algorithm X is (f ′, µ)-efficient on M with f ′(k) = O(f(k) log k). 2
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7 Conclusions

Starting from the PARTITION algorithm [15] and iterating Theorem 8 we get
the following result:

Corollary 14 There exists a (c1 log k)h-competitve randomized online algo-
rithm on any µ-HST of height h (here µ ≥ k), where c1 is a constant. Conse-
quently, when h < log k

log c1+log log k
, this algorithm is o(k)-competitive.

In [11] a model has been investigated, where one does not have a fixed number
of servers but they can be bought. The expression min`{opts(`, %) + `∆} can
be seen as the optimal cost in a model where one has to buy the servers,
for a cost of ∆ each. This problem on uniform spaces was studied in [11].
In this case Ds(%) is the number of servers bought in an optimal solution.
Considering the sequence %i, the behavior of the associated sequence Ds(%i)
is not well understood at the moment, see Conjecture 6: the proofs would be
substantially simpler, if this conjecture happened to be verified.

Another interesting question is that whether the log k factor in the competitive
ratio per level of the HST is unavoidable, or an overall competitive ratio of
Θ(log k) holds for any HST. It is a bit more natural to require ∆ ≥ δM to
hold, where M is the size of the greatest block. If additionally M < k holds, we
maybe get a better competitive ratio. It may be an another genuine advance
to combine this this approach with other [8] and [17] to obtain improved
randomized algorithms for the k-server problem.
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