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Kepler equation for inspiralling compact binaries
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Compact binaries consisting of neutron stars/black holes on eccentric orbit undergo a perturbed
Keplerian motion. The perturbations are either of relativistic origin or are related to the spin, mass
quadrupole, and magnetic dipole moments of the binary components. The post-Newtonian motion of such
systems decouples into radial and angular parts. We present here for the first time the radial motion of such
a binary encoded in a generalized Kepler equation, with the inclusion of all above-mentioned contribu-
tions, up to linear order in the perturbations. Together with suitably introduced parametrizations, the radial
motion is solved completely.
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I. INTRODUCTION

The worldwide effort to capture gravitational wave sig-
nals emitted by astrophysical sources is under way. A
network of interferometric gravitational wave detectors
[1–4] is either already operational, or close to completion.
Compact binaries consisting on neutron stars/black holes
are among the best candidates to emit gravitational radia-
tion in the bandwidth of these detectors. Upper limits on
the gravitational radiation emitted by such binaries were
already found [5,6] from the S2 scientific run of LIGO.

The evolution of such a binary system can be divided
into three phases: inspiral, merger and ringdown. The
merger phase can be understood only by numeric simula-
tions. Even in the last part of the inspiral a numerical
treatment seems adequate due to the intermediate binary
black hole (IBBH) problem [7], studied also in [8]. Earlier,
in the inspiral phase a post-Newtonian (PN) description of
high accuracy provides satisfactory results. The PN cor-
rections of relativistic nature are known to 3PN orders [9].
However there are other contributions to be taken into
account, related to various physical characteristics of the
binary components as well.

For compact binaries, there is the spin-orbit (SO) inter-
action appearing at 1.5 PN orders. At this accuracy both the
spin vectors Si and the orbital angular momentum L
undergo a precessional motion about the total angular
momentum J [10]. This is a novel feature in the post-
Newtonian evolution of the system. Such an effect was
recently claimed [11] to be observable for the J0737-
3039A/B double pulsar [12], [13].

The precessional motion of the spin(s) is called simple
precession, whenever the two masses are equal, or one of
the spins can be neglected, say S2 � 0 [14]. These two
cases were studied in [15], where among other results, the
Kepler equation was derived up to 3PN orders with the
inclusion of the SO contributions. As a related result, the
evolution of the relativistic periastron advance parameter
was recently computed [16]. The tilt angle of the spin with
respect to L was estimated to be smaller than ’ 60� from
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generic astrophysical considerations on the evolution of
compact binaries [17].

The SO interaction gives corrections to the losses of
energy and magnitude of angular momentum of the system
occurring due to gravitational radiation. For eccentric or-
bits these were given by [18,19]. An other work relying on
the use of the effective one-body approach [20], [21], has
employed the SO contribution in the study of the inspiral to
plunge phase of the coalescence [22].

Moreover, in the two cases of simple precession detec-
tion template families have been worked out both contain-
ing a set of phenomenological parameters [23] or physical
parameters [24]. The latter would allow for determining
the angle �1 and the magnitude of the single spin (in fact of
� � S1=m

2
1) from the study of gravitational radiation.

At 2PN another set of new effects related to various
physical characteristics of the compact binary emerge. The
losses of energy and magnitude of angular momentum of
the system on eccentric orbit, due to gravitational radiation
were derived in [25] for the spin-spin interaction, in [26]
for the mass quadrupole-monopole interaction and in [27]
for the interaction of magnetic dipoles.

Thus at 2PN physical quantities like the mass quadru-
pole and magnetic dipole moments, as well as angular
variables characterizing the spins and moments appear in
the formalism. Neither detection templates, nor methods to
find out these new physical parameters have been worked
out so far. We note that in principle, the observation of the
evolution of gravitational wave frequency [28] allows to
impose constraints on a combination of these parameters,
but does not allow to predict their individual values. There
is still much to do until a complete understanding of the
complicated motion the system, occurring when all these
interactions are taken into account, will be achieved. Our
present work fills an important gap in the description of
compact binaries with the enlisted physical characteristics.

In Sec. II we describe the post-Newtonian motion of
such a binary system. The radial part of the motion decou-
ples and defines a radial orbit. We give the generic ex-
pressions of the turning points of the radial motion which
-1 © 2005 The American Physical Society
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allows for the introduction of the semimajor axis ar and
radial eccentricity er. We define the generalized true anom-
aly � and eccentric anomaly � parameters. Our generalized
true anomaly parameter is different from the one employed
in the Damour-Deruelle formalism and we establish their
relation. In Sec. III we derive the main result of the paper,
which is the generalized Kepler equation

n�t� t0� � �� et sin�� ft sin��� 2� 0 �  ��

�
X2

i�1

fit sin��� 2� 0 �  i��: (1)

The explicit expressions of the orbital elements n, et, ft,
and fit are given in Sec. IV, together with all contributions
to ar and er. They contain the relativistic contributions (PN
terms), together with the SO, SS, DD and QM terms, all to
linear order. One of the consequences of taking into ac-
count the physical characteristics of the binary, like the
spins, mass quadrupole and magnetic dipole moments is
the emergence of novel angle variables in the Kepler
equation (1). The angles  i are the azimuthal angles of
the spins and 2 �  1 �  2. (For more details on the
104022
notations see [19].) The angle  0 is the argument of the
periastron (defined here as the angle subtended by the
periastron and the intersection line of the planes perpen-
dicular to the total and orbital angular momenta,
respectively).

We emphasize that in the description of the SO interac-
tion several spin-supplementary conditions (SSC) can be
used. In order to simplify the formalism, in this paper we
use the noncovariant SSC of Pryce [29] and Newton and
Wigner [30]. In this SSC the Lagrangian is not acceleration
dependent and the radial equation is simpler than in the
covariant SSC [29] employed earlier in [19].
II. GENERALIZED TRUE AND ECCENTRIC
ANOMALY PARAMETRIZATIONS

The linear contributions to the motion of the compact
binary can be collected in the Lagrangian

L � LN �LPN �LSO �LSS �LQM �LDD; (2)

with the various contributions derived first in [31] (PN),
[32] (SS), [33] (QM) and [34] (DD):
L N �
�v2

2
�
Gm�
r

; LPN �
1

8c2 �1� 3���v4 �
Gm�

2rc2

�
�3� ��v2 � � _r2 �

Gm
r

�
;

LSO �
G�

2c2r3 v 	 �r
 �4S� 3���; LSS �
G

c2r3 ��S1 	 S2� �
3

r2 �r 	 S1��r 	 S2��;

LQM �
G�m3

2r5

X2

i�1

pi�3�Ŝi 	 r�2 � r2�; LDD �
1

r3 �3�n 	 d1��n 	 d2� � d1 	 d2�:

(3)
TABLE I. Various post-Newtonian constants in 
Ai.


A0 3�3�� 1� E2

c2�2


A1 2�7�� 6� EGmc2�


A2 �2�3�� 1� EL
2

c2�3 � �5�� 10� G
2m2

c2


A3 ��3�� 8� G
2m2L2

c2�2
Note that the SO part of the Lagrangian above was not
given before and it is valid when the spin-supplementary
condition (SSC) of Pryce [29] and Newton and Wigner
[30] is chosen. We have verified that the SO part of the
acceleration derived from LSO agrees with the expression
(A1b) of [35]. The magnitude and direction of the spins are
denoted as Si and Ŝi. The angle subtended by them is � �
cos�1�Ŝ1 	 Ŝ2�. Here S � S1 � S2 and � � �m2=m1�S1 �
�m1=m2�S2. The magnitude and direction of the magnetic
dipole moments di are denoted as di and d̂i. They sub-
tend the angle � � cos�1�d̂1 	 d̂2� with each other. In
a coordinate systems K with the axes �ĉ; L̂
 ĉ; L̂�,
where ĉ is the unit vector in the J
L direction, the polar
angles �i and  i of the spins are defined as Ŝi �
�sin�i cos i; sin�i sin i; cos�i� (see [19]). In the coordi-
nate system Ki with the axes �b̂i; Ŝi 
 b̂i; Ŝi�, where b̂i
are the unit vectors in the Si 
L directions, respectively,
the polar angles �i and 	i of the the magnetic dipole
moments diare d̂i � �sin�i cos	i; sin�i sin	i; cos�i� (see
[27]). The quadrupolar parameters (see [26]) are defined as
pi � Qi=mim

2, whereQi is the quadrupole-moment scalar
[33] of the ith axially symmetric binary component with
symmetry axis Ŝi. The reduced mass is � � m1m2=m and
� � �=m.
From (3) a radial equation can be derived

_r 2�
2E
�
�

2Gm
r
�

L2

�2r2�
X3

i�0


Ai
ri
�

2L
L

�2r2 �
2
E
�

: (4)

Here L � �1=2��
R

2�
0 L���d� is the angular average of the

magnitude of orbital angular momentum L���, � being the
true anomaly parameter. The explicit values of L in the
case of spin-spin, quadrupole-monopole, and magnetic
dipole-dipole interactions were computed in [25–27]. A
is the magnitude of the Laplace-Runge-Lenz vector char-
acterizing a Keplerian motion with E and L. The coeffi-
cients 
Ai in Eq. (4) are constant PN perturbations given in
the Table I, which can be read from [31]. The SO, SS, QM
and DD contributions to 
L and 
E are enlisted in the
Tables II and III. The shorthand notations �DD and
	DD�2�� are defined in Eq. (6).
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TABLE II. Various contributions to 
L.

SO G�L
2c2r

P2
i�1;j�i

4mi�3mj

mi
Si cos�i

SS � G�2

2c2L3 S1S2 sin�1 sin�2f2A cos��� 2� 0 �  ��

��3Gm�� 2A cos�� cos2���  0 �  �g

QM G�3m3

4L3

P2
i�1 pisin2�if2A cos��� 2� 0 �  i��

��3Gm�� 2A cos�� cos2���  0 �  i�g

DD �2d1d2

2L3 ��3Gm�� 4A cos��	DD�2�� � A sin� d	DD�2��
d� �
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In [36] a generic scheme was introduced for parametriz-
ing such perturbed Keplerian motions. The advantage of
the generalized eccentric anomaly parametrization and
generalized true anomaly parametrization is that a simple
technique based on the residue theorem can be applied for
computing secular effects [36]. The scheme was applied
individually for each of the SO, SS, QM, DD perturbations
in [19,25–27], respectively. It is straightforward to derive
the PN contribution to these parametrizations. We give
here in a concise form both parametrizations, with the
inclusion of the PN contribution as well. Both are defined
in terms of the turning points rmin and rmax of the radial
motion, given by _r � 0:

rmax
min
�
Gm�� A
�2E

� 
rPN
max
min
� 
rSO

max
min
� 
rSS

max
min
� 
rQM

max
min

� 
rDD
max
min
;


rPN
max
min
� ��� 7�

Gm

4c2 � ��� 9�
G2m2�

8Ac2

� �3�� 1�
A

8�c2 ;


rSO
max
min
� �

G�

2c2LA
�A�Gm��

X2

i�1;j�i

4mi � 3mj

mi
Si cos�i;


rSS
max
min
� �

G�S1S2

2c2L2A
��A�Gm���SS � A	SS�;


rQM
max
min
�
G�2m3

4L2A

X2

i�1

pi��A�Gm���iQM � A	
i
QM�;


rDD
max
min
�
�d1d2

2L2A
f�A�Gm���DD � A	DDg: (5)
We have introduced the shorthand notations
TABLE III. Various contributions to 
E.

SO No contribution
SS � GS1S2

2c2r3 f3 cos�1 cos�2 � cos�
�3 sin�1 sin�2 cos2���  0 �  �g

QM G�m3

2r3

P2
i�1 pi�1� 3sin2�icos2��� 2� 0 �  i���

DD d1d2

2r3 ��DD � 3	DD�2���
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�SS � 3 cos�1 cos�2� cos�;

	SS � sin�1 sin�2 cos2� 0� �;

�iQM � 2� 3sin2�i; 	iQM � sin2�i cos2� 0� i�;

�DD � 2 cos�� 3��12��21� sin� 

� 3��1�2�12�cos� ;

	DD�k�� � �12��1�2� cos�k�� 2� 0� ��

� ��12��21� sin�k�� 2� 0� ��;

	DD � 	DD�0�; (6)

where

�i � sin�i cos	i;

i � cos�i sin�i � sin�i sin	i cos�i:
(7)

The generalized eccentric anomaly parametrization r��� is
then defined as

r��� � ar�1� er cos��: (8)

The eccentric anomaly � reduces to the eccentric anomaly
parameter u of [31] for 1PN perturbations. In Eq. (8) the
semimajor axis ar and the radial eccentricity er was intro-
duced as

ar �
rmax � rmin

2
; (9)

er �
rmax � rmin

rmax � rmin
: (10)

The generalized true anomaly parametrization is defined as

2

r���
�

�
1

rmin
�

1

rmax

�
�

�
1

rmin
�

1

rmax

�
cos�: (11)

These two parametrizations of the radial motion are inter-
related by the Keplerian relations

tan
�
2
�

��������������
1� er
1� er

s
tan
�
2
; (12)

sin� �

��������������
1� e2

r

p
sin�

1� er cos�
; (13)

with er in place of the Keplerian eccentricity. Note that in
the Damour-Deruelle formalism [31], a different general-
ized true anomaly parameter v is introduced. To 1PN
accuracy v is related to � as

tan
�
2
�

�
1�

Gm�

4c2L2A

�
G2m�3 �

12EL2

�

��
tan
v
2
: (14)

When using the generalized true anomaly parameter v, the
equation ��v� replacing Eq. (12) will contain the angular
eccentricity e� rather than er.
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III. GENERALIZED KEPLER EQUATION

The first three terms on the right hand side in the radial
Eq. (4) sum up to

2E
�
�

2Gm
r
�

L2

�2r2 �

�
A

L2
�

2
Q
�

�
Asin2�

�
2A
�
�
Q� 
P cos��; (15)

where 
P and 
Q are perturbation terms depending on the
physical parameters of the binary and they are given in the
Tables IVand V. The parametrization (11) has the advanta-
geous property

dr
d�
�

1

2

�
1

rmin
�

1

rmax

�
r2 sin�: (16)

Employing Eqs. (11) and (16) into the radial Eq. (4), then
taking the square root and forming the reciprocal, after a
series expansion to first order in the perturbations we find
TABLE IV. Various c

PN �

SO � G�3

2c2L5

P2
i�

SS G�3S1S2

2c2L6 ��SS�

QM � Gm3�4

4L6

P2
i�1 pi��

DD � �3d1d2

2L6 ��DD

TABLE V. Various co

PN � �
8c2L4A

�2G2m2�2A2

SO � G2m�4

2c2L5A

P2
i�

SS G2m�4S1S2

2c2L6A

QM � G2m4�5

4L6A

P2
i�

DD � Gm�4d1d2

2L6A
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dt
d�
�
�r2

L

�
1�

L2

2�2r2A2sin2�

�
r2�A�
Q� 
P cos��

� 2�L
L� r2�
E� �
X3

i�0


Air2�i
��
: (17)
The integration of this equation is the main purpose of our
paper.

Apparently Eq. (17) becomes singular at � � k�, k 2
Z, because of the sin2� term in the denominator. Such
singularities could be just apparent, as was shown for the
SO contribution in [36]. We have verified that after forming
the common denominator in the bracket, and inserting the
detailed expressions of 
P, 
Q, 
L, and 
E, given in
Tables II, III, IV, and V, the numerator becomes propor-
tional to sin2�. Therefore the singularities are just apparent
rather than real for all type of contributions considered
here. Thus we obtain
dt
d�
�
�r2

L
�

�
dt
d�

�
PN
�

�
dt
d�

�
SO
�

�
dt
d�

�
SS
�

�
dt
d�

�
DD
�

�
dt
d�

�
QM
;

�
dt
d�

�
PN
�

�r2

2c2L3
f��� 13�G2m2�2 � �3�� 1�A2 � �3�� 8�Gm�A cos�g;

�
dt
d�

�
SO
� �

G�2r2

2c2L3
�3Gm�� A cos��

X2

i�1;j�i

4mi � 3mj

mi
Si cos�i;

�
dt
d�

�
SS
�
G�3S1S2r2

2c2L5

�
�Gm��3�SS � 2	SS� � A��SS � 	SS� cos�� �

2L4

�2r2A
sin�1 sin�2 cos��� 2� 0 �  ��

�
;

�
dt
d�

�
QM
� �

Gm3�4r2

4L5

X2

i�1

pi

�
�Gm��3�iQM � 2	iQM� � A��

i
QM � 	

i
QM� cos�� �

2L4

�2r2A
sin2�i cos��� 2� 0 �  i��

�
;

�
dt
d�

�
DD
� �

�3d1d2r2

2L5

�
�Gm��3�DD � 2	DD� � A��DD � 	DD� cos�� �

2L4

�2r2A
cos��� 2� 0 �  ��

�
:

(18)
ontributions to 
P.

Gm�2

c2L4 �A2��� 2� � 4G2m2�2�

1;j�i
4mi�3mj

mi
Si cos�i�A

2 � 3G2m2�2�

A2 � 3G2m2�2� � 	SS�A
2 �G2m2�2��

i
QM�A

2 � 3G2m2�2� � 	iQM�A
2 �G2m2�2��

�A2 � 3G2m2�2� � 	DD�A
2 �G2m2�2��

ntributions to 
Q.

�3�� 19� �G4m4�4��� 9� � A4�3�� 1��

1;j�i
4mi�3mj

mi
Si cos�i�3A

2 �G2m2�2�

��SS�3A
2 �G2m2�2� � 2	QMA

2�

1 pi��
i
QM�3A

2 �G2m2�2� � 2	iSSA
2�

��DD�3A
2 �G2m2�2� � 2	DDA

2�
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These expressions are regular for any �.
By integrating Eq. (18) and employing the relation (12)

between the two parametrizations we obtain the general-
ized Kepler equation (1). This is the main result of the
paper.
IV. THE ORBITAL PARAMETERS

In this section we enlist the detailed expressions of the
orbital parameters appearing either in the eccentric anom-
aly parametrization (8) or in the generalized Kepler
equation (1).

The semimajor axis is

ar �
Gm�
�2E

� aPN
r � aSO

r � aSS
r � a

QM
r � aDD

r ;

aPN
r �

Gm

4c2 ��� 7�;

aSO
r �

G�

2c2L

X2

i�1;j�i

4mi � 3mj

mi
Si cos�i;

aSS
r � �

G�S1S2

2c2L2
��SS � 	SS�;

aQM
r �

Gm3�2

4L2

X2

i�1

pi��
i
QM � 	

i
QM�;

aDD
r �

�d1d2

2L2
��DD � 	DD�:

(19)

The radial eccentricity is

er �
A

Gm�
� ePN

r � eSO
r � eSS

r � e
QM
r � eDD

r ;

ePN
r �

E

4c2Gm�2A
��5�� 15�A2 � ��� 9�G2m2�2�;

eSO
r �

E�G2m2�2 � A2�

c2Gm2�LA

X2

i�1;j�i

4mi � 3mj

mi
Si cos�i;

eSS
r � �

ES1S2

c2Gm2�L2A
��G2m2�2 � A2��SS � A

2	SS�;

eQM
r �

Em

2GL2A

X2

i�1

pi��G2m2�2 � A2��iQM � A
2	iQM�;

eDD
r �

Ed1d2

Gm�L2A
��G2m2�2 � A2��DD � A

2	DD�:

(20)

The mean motion is

n �
2�
T
�

1

Gm

�
�2E
�

�
3=2
�

1� ��� 15�
E

4c2�

�
: (21)
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The time eccentricity is

et �
A

Gm�
� ePN

t � eSO
t � eSS

t � e
QM
t � eDD

t ;

ePN
t � �

E

4c2Gm�2A
��7�� 17�A2 � ��� 9�G2m2�2�;

eSO
t �

EG�

c2LA

X2

i�1;j�i

4mi � 3mj

mi
Si cos�i;

eSS
t � �

ES1S2G��SS

c2L2A
;

eQM
t �

EGm3�2

2L2A

X2

i�1

pi�iQM;

eDD
t �

E�d1d2

L2A
�DD:

(22)

In what follows, we enlist the parameters ft and fit, the
analogues of which also appear in the extension to 2PN
[37] of the Damour-Deruelle parametrization, however
have no PN counterpart. The parameter ft receives only
SS and DD type contributions

ft � fSS
t � fDD

t ;

fSS
t � �

�
�2E
�

�
3=2 �S1S2

c2mAL
sin�1 sin�2;

fDD
t �

�
�2E
�

�
3=2 �d1d2

GmAL
:

(23)

Finally the parameters fit, originating from the QM inter-
action, are given as

fit �
�
�2E
�

�
3=2 m2�2

2AL
pisin2�i: (24)
V. CONCLUDING REMARKS

The generalized Kepler equation (1) with the orbital
parameters (19)–(24), together with any of the parametri-
zations (8) or (11) and their relation (12) represent the
complete solution of the radial motion of the compact
binary on eccentric orbit, to linear order in the perturba-
tions. All perturbations arising from relativistic corrections
and from the presence of spins, mass quadrupole and
magnetic dipole moments are included here to linear order
(PN, SO, SS, QM, DD contributions).

The generalized Kepler equation contains two parame-
ters, the generalized eccentric anomaly � (this is defined
similarly as the parameter u in [31,37] and the generalized
true anomaly � (different from the parameter v of [31,37],
their relation being given to 1PN accuracy by Eq. (14)).

The generalization of the relation (14) to 2PN accuracy
would imply to give the � parametrization (11) to 2PN,
however by the method described in [36] r��� can be
defined only to linear order in the perturbations.
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Nevertheless, the linear contributions to the Kepler equa-
tion included in the present paper (containing the parame-
ters � and �), and the 2PN contributions [37] (containing
u  � and v) can be simply summed up, at the price of
having all three parameters (�  u, �, and v) present in the
formalism. Notably at 2PN orders a new parameter, gt is
also present [38]. We note here that the 3PN contribution to
the Kepler equation is also known [15], however the con-
tribution of the first PN correction of the SO interaction,
arising at 2.5 PN is not. Therefore we conclude that for the
moment, the radial motion is solved only to 2PN orders
accuracy.

In contrast with the PN and 2PN Kepler equations, our
Eq. (1) contains the additional angles  0 and  i. During
one radial period these can be considered constants [19].
On the long run however, all these angles slowly vary as the
orbit and the spins undergo precessional motions. In order
to describe the slow evolution of these angles, the study of
the angular part of the motion (as opposed to the radial one)
is necessary, with the inclusion of all perturbations, to
linear order. This is available for the PN perturbation
104022
[31] and SO perturbation [15], however the latter holds
only for special cases (equal masses or a single spin). A
systematic investigation of the angular part of the per-
turbed Keplerian motion is under way [39].

We remark that the circular orbit limit of our formulae
should not be taken as A! 0. This is because the standard
interpretation of the Laplace-Runge-Lenz vector holds
only in the Newtonian limit. In the circular orbit limit all
corrections considered here add nonvanishing contribu-
tions to A.

Our generic Kepler equation (1) and the orbital elements
(19)–(24) correctly reproduce the PN contributions [31]
and the SO contributions [15]. However all of the other
contributions are new.
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