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Abstract
The five-dimensional (5d) Birkhoff theorem gives the class of 5d vacuum
spacetimes containing spatial hypersurfaces with cosmological symmetries.
This theorem is violated by the 5d vacuum Gergely–Maartens (GM) spacetime,
which is not a representant of the above class, but contains the static Einstein
brane as embedded hypersurface. We prove that the 5d Birkhoff theorem is
still satisfied in a weaker sense: the GM spacetime is related to the degenerated
horizon metric of certain black hole spacetimes of the allowed class. This
result resembles the connection between the Bertotti–Robinson spacetime and
the horizon region of the extremal Reissner–Nordstrom spacetime in general
relativity.

PACS numbers: 04.50.Gh, 04.50.−h, 11.25.Uv, 04.20.Jb

1. Introduction

In the most simple brane-world models the brane to which the standard model fields are
confined is embedded into a five-dimensional (5d) spacetime, in which only gravity acts. The
basic dynamical equation on the brane is the effective Einstein equation [1], supplemented by
the Codazzi and twice-contracted Gauss equations [2]. For a general overview of brane-worlds
see [3].

Such models admit black hole solutions with tidal charge on the brane [4]. The tidal
charge represents the effect of the Kaluza–Klein modes of gravity from the extra dimension,
however the 5d spacetime in which such a brane is embedded, is still unknown. Stars on
a brane [5–7] and gravitational collapse under spherical symmetry [8–13] were also studied
in brane-worlds, yielding to striking features like the production of radiation in a spherically
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symmetric collapse [10] and the emergence of unconventional forms of stellar matter leading
to dark energy production below the horizon [13].

Cosmological brane-world models were also studied, like a Gödel brane [14], branes with
Swiss-cheese type inhomogeneities [15, 16], but the most important, brane-world models with
Friedmann branes [2, 17], among them the static Einstein brane [18]3.

The Einstein static universe containing a perfect fluid is widely known to be unstable
against spatially homogeneous and isotropic perturbations [19]. However recent systematic
analysis using covariant techniques [20] has shown that it is neutrally stable against small
inhomogeneous vector and tensor perturbations and neutrally stable against adiabatic scalar
density inhomogeneities for the velocity of sound obeying c2

s > 1/5. The stability of Einstein
universes was also considered in alternative gravitational theories, like the Einstein brane in
the DGP model [21], in f (R) gravity [22] and in loop quantum cosmology [23].

The most general static vacuum 5d spacetime with cosmological constant �̃ = 3ε�2/̃κ2

(ε carries the sign of �̃ and κ̃2 is the gravitational constant in 5d), which contains a
Friedmann brane and has the symmetries of the brane in each point is [24] (see also [25])

d̃s2 = −f (r; k, ε) dt2 +
dr2

f (r; k, ε)
+ r2[dχ2 + H2(χ; k)(dθ2 + sin2 θ dϕ2)], (1)

with the metric functions

f (r; k, ε) = k − 2m

r2
− ε�2

2
r2, (2)

and

H(χ; k) =
⎧⎨
⎩

sin χ, k = 1
χ, k = 0
sinh χ, k = −1,

(3)

where both ε and k take any of the values (0,±1). This result is frequently referred as the 5d
Birkhoff theorem.

However an interesting exceptional case has been found in [18], representing a family of
vacuum solutions of the 5d Einstein equations with cosmological constant �̃ which contain
an Einstein brane. This 5d spacetime is given for y > 0 as

�2 d̃s2 = −F 2(y; ε) dτ 2 + dy2 + dχ2 + H2(χ; ε)(dθ2 + sin2 θ dϕ2). (4)

The boundary at y = 0 is the static Einstein brane [18], therefore a particular case of the
Friedmann branes for which the 5d Birkhoff theorem refers. The metric functions are

F(y; ε) =

⎧⎪⎨
⎪⎩

A cos(
√

2y) + B sin(
√

2y), ε = 1

A +
√

2By ε = 0

A cosh(
√

2y) + B sinh(
√

2y), ε = −1,

(5)

and H(χ; ε) defined as (3), with ε in place of k. A homogeneous counterpart of the Gergely–
Maartens (GM) metric (5) was also found [26]. The GM metric is well defined on the brane
for any A �= 0. According to the Lanczos equation a vanishing B would be incompatible with
brane matter [18]. As any of the constants A or B can be absorbed into the coordinate τ ,
the GM metric represents a one-parameter family of solutions, which is not a sub-case of the
metrics (1).

The higher dimensional Birkhoff theorem was formulated in an alternative way in [27],
by enouncing the set of conditions under which the higher dimensional spacetime is static.

3 The correspondence to the notations of [18] is: (α, β2, µ, t, Ki) → (sgn(D2), |D2|, 2m, τ, KGM
i ). In the round

bracket of the expression of KGM
8 given in (A1) the δ0

α term should have an additional factor of A/B and the sign of
the first term in the commutator [K8,K9] in (A6) is positive.
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The GM metric does not obey these conditions either as its metric coefficient gχχ is a constant.
Therefore it stays outside the validity of theorem 1 of [27] .

As remarked in section 4 of [18], the proof presented in [24] leading to metric (1) cannot be
applied when the metric function B of [24] (which is different from the parameter B of metric
(4)) is a constant. Then it is not possible to introduce r = B1/3 as a new radial coordinate in
order to obtain the class of metrics (1). This suggests however that the GM metric may be
related to a tiny layer (r, r + dr) of the spacetimes (1). It is the purpose of the present paper
to prove this conjecture and re-establish the validity of the 5d Birkhoff theorem in a weaker
sense.

In section 2, we will enlist arguments in favour of the claim that the GM spacetime
is related to the horizon regions of certain 5d black hole metrics (1). We also write up
an approximate form of the black hole metrics (1), valid in the vicinity of the degenerated
horizons of (1). We present the horizons of the various metrics in class (1) in appendix A.
Section 3 contains the technical derivation of the coordinate transformation bringing the
black hole horizon metric into the GM spacetime, done explicitly for various subcases of the
parameters of the GM metric. Section 4 contains discussions on the equivalence of the GM
metric and horizon metric, based on the analysis of the Killing algebras, presented in appendix
B. Section 5 is the concluding remarks. In appendix C we present a related result from general
relativity: the Bertotti–Robinson solution [28, 29] describing gravity in the presence of a
covariantly constant electromagnetic field corresponds to the horizon region of the extremal
Reissner–Nordström black hole [30]. We present this both for didactical reasons, as this
derivation is not well known, and as a simpler analogy for the method we follow in section 3.

2. Black hole horizons in a 5d spacetime with Friedmann brane boundary

It is immediate to see from the (χ, θ, ϕ) sector that any relation between the spacetimes (1)
and (4) may exist only for k = ε. In what follows, we will discuss only such metrics from the
class (1)4. As noted in [18], the curvature scalar of the GM solution with ε = −1 agrees with
the curvature scalar of the 5d black hole metric (1) with k = ε = −1, only when evaluated at
the horizon (when m = −1/4�2). This is a serious indication that the GM solution is related
to the event horizon of certain 5d black hole metrics.

No such relation exists in the non-cosmological case (ε = 0). Then the scalars
R̃abcd R̃

abcd and C̃abcd C̃
abcd vanish in the GM spacetime, however in the spacetime (1) they

are R̃abcd R̃
abcd = C̃abcd C̃

abcd = 288m2/r8. This can vanish for any finite value of r only if
m = 0, but then the metric (1) becomes ill-defined.

In order to establish more exactly the connection between the GM spacetime and the
horizon regions of the Schwarzschild—(anti) de Sitter metrics (1) we enlist the loci of the
horizons (given by f = 0) for various ε in tables A1–A3 of appendix A. We note that there is
no horizon in the case ε = 0, so it is not surprising that in this case no connection can be
established with the family of GM metrics.

There are two horizons only in the cases ε = k = 1,m > 0 or ε = k = −1,m < 0.
These horizons merge into one (degenerated) horizon at �r = 1 for εm = 1/4�2. The latter
is exactly the condition, under which for ε = −1 the curvature scalar of the 5d black hole
metric was shown to agree with the curvature scalar of the GM metric. Therefore we expect
to find a correspondence between the GM metric and the degenerated horizon regions of the
5d black hole metrics.

4 As we show in appendix A, only a subset of these metrics have horizons. In the cases km > 0 the metric (1) is also
known as 5d topological black hole (TBH) for ε = 0 or (anti) de Sitter TBH for ε = 1 (ε = −1), see [31].

3
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For this we introduce the new coordinate ρ = �r − 1, which is small close to the
degenerated horizon, positive above the horizon and ρ ∈ (−1, 0) below the horizon. For small
ρ the metric function f has the approximate expression f = −2ερ2 and by rescaling the time
coordinate as t → 4�2t we obtain the ‘horizon metric’

�2 d̃s2 = ε

2

(
ρ2 dt2 − dρ2

ρ2

)
+ dχ2 + H2(χ; ε) (dθ2 + sin2 θ dϕ2), (6)

describing for ε = k = 1 (or ε = k = −1) the vicinity of the horizon of the Schwarzschild—de
Sitter (or Schwarzschild—anti de Sitter-like with k = −1) spacetime. The time coordinate for
ε = 1 is ρ and for ε = −1 is t. We give the Killing vectors and Killing algebra of the horizon
metric in appendix B. As the horizon metric solves the five-dimensional Einstein equations in
the presence of a cosmological constant �̃ = 3ε�2/̃κ2, it can be extended towards non-small
values of ρ either.

3. The relation between the GM and the horizon metrics

In this section we prove that for ε = ±1 the GM spacetime is related to the degenerated
horizon region (6) of the 5d black hole (1) with the same ε and k = ε. In order to compare
the degenerated horizon region (6) of the 5d black hole metric (1) with the GM metric, we
absorb its parameter A into τ and denote B/A with B. Then we rewrite the metric function
F(y; ε = ±1) as

F(y; ε) = cos z + β sin z, ε = ±1,

z(y; ε) =
√

2 i(1−ε)/2y (7)

β(B; ε) = (−i)(1−ε)/2B.

Next we try to identify a suitable coordinate transformation (t, ρ) → (τ, y) of the horizon
metric. In order to enforce the correspondence with the GM spacetime, the original coordinates
t (τ, y), ρ(τ, y) have to obey the following differential equations:

ρ2

(
∂t

∂τ

)2

− 1

ρ2

(
∂ρ

∂τ

)2

= −2εF 2(y; ε), (8a)

ρ2

(
∂t

∂τ

)(
∂t

∂y

)
− 1

ρ2

(
∂ρ

∂τ

) (
∂ρ

∂y

)
= 0, (8b)

ρ2

(
∂t

∂y

)2

− 1

ρ2

(
∂ρ

∂y

)2

= 2ε. (8c)

For separable solutions t = t0(τ )t1(y) and ρ = ρ0(τ )ρ1(y) the system (8) simplifies to

(ρ0 ṫ0)
2(ρ1t1)

2 −
(

ρ̇0

ρ0

)2

= −2εF 2(y; ε), (9a)

(
ρ2

0 t0 ṫ0
)(

ρ2
1 t1t

′
1

) −
(

ρ̇0

ρ0

) (
ρ ′

1

ρ1

)
= 0, (9b)

(ρ0t0)
2(ρ1t

′
1)

2 −
(

ρ ′
1

ρ1

)2

= 2ε, (9c)

where a dot (a prime) denotes the derivative with respect to τ (y). In the last equation only
ρ2

0 t2
0 depends on τ , therefore either (a) t ′1 = 0, thus t = t (τ ) or (b) ρ0t0 = const. We consider

these cases separately:

4
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(a) When t = t (τ ) from (9c)

ρ1 = C1 exp(±√−2εy), (10)

(C1 a constant). Equation (9b) gives ρ0(τ ) = C0 (a constant). Substituting ρ into (9a) finally
we get

C0C1 exp(±√−2εy)

(
dt

dτ

)
= √−2εF (y; ε). (11)

Thus dt/dτ must be another constant, say C2 and

F(y; ε) = C0C1C2√−2ε
exp(±√−2εy). (12)

For the particular values of the constants C0C1C2 = √
2 and for ε = −1 this becomes the

metric function (7) for B = ±1

F(y;−1) = exp(±
√

2y) = cosh
√

2y ± sinh
√

2y. (13)

If we additionally choose C2 = 1, then

t = τ, ρ =
√

2 exp(±
√

2y) (14)

is a coordinate transformation from the degenerated horizon metric (6) with ε = −1 into the
GM spacetime with ε = −1 and B = ±1.

(b) For t ′1 �= 0 and ρ0t0 = C3 �= 0 (a constant) equation (9a) becomes

ρ̇2
0

ρ2
0

= −2εF 2(y; ε)(
ρ2

1 t
2
1 C2

3 − 1
) . (15)

This gives ρ̇0/ρ0 = −D (a constant), thus

ρ0 = C4 exp(−Dτ), t0 = C3

C4
exp(Dτ), (16)

where C4 is the integration constant. Equation (15) also implies

t2
1 = D2 − 2εF 2(y; ε)

C2
3D

2ρ2
1

, (17)

and from ρ0t0 = C3 and equation (9b)

ρ2
1 t1t

′
1C

2
3 +

ρ ′
1

ρ1
= 0. (18)

The last two equations imply

ρ ′
1

ρ1
= F ′(y; ε)

F (y; ε)
, (19)

with solution

ρ1 = GF(y; ε), (20)

where G is an integration constant. Finally equation (9c) constraints F(y; ε) as

2εF ′(y; ε)2 + 4F(y; ε)2 − 2εD2 = 0. (21)

5
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The metric function (7) solves this equation for D2 = 2(B2 + ε). Thus for this value of D the
horizon metric transforms into the GM metric under the coordinate transformation

ρ =
√

2 exp(−Dτ)F(y; ε), t = (−i)(1−ε)/2

√
2(B2 + ε)1/2

exp(Dτ)
tan z − β

1 + β tan z
. (22)

(We have set C4G = √
2.)

We note that the result derived in (a) only partially emerges from the limit D → 0 of
the result derived in (b) specified for ε = −1 and B = ±1 (thus D = 0) in the following
sense. First, for D = 0 the metric function (13) solves the differential equation (21). Second,
the expression of ρ from (22) reduces to the corresponding expression (14), however the
transformation from t to τ differs in a shift 1/D → ∞.

4. Discussion

The transformation (22) admits the following three particular cases:
(b1) Case ε = 1. Then the horizon coordinates (t, ρ) are related by a real coordinate

transformation to the GM coordinates (τ, y):

ρ = D exp(−Dτ) cos(α1 +
√

2y), t = 1

D
exp(Dτ) tan(α1 +

√
2y), (23)

where we have denoted B = −tan α1. We also note that this transformation obeys t2ρ2 < 1,
thus the GM spacetime only partially covers the horizon spacetime (6)5.

Thus the transformation (23) links the t2ρ2 < 1 region of the 5d black hole horizon metric
with ε = 1 to the GM metric with ε = 1 . In this region6 the horizon metric is static due to
K8, as shown in appendix B.

(b2) For ε = −1 and B2 > 1 (implying sgn(D2) = 1) the coordinate transformation is

ρ = D exp(−Dτ) sinh(α2 +
√

2y), t = 1

D
exp(Dτ) coth(α2 +

√
2y), (24)

where we have denoted B = coth α2. The horizon coordinates obey t2ρ2 > 1. The GM
spacetime in this case also covers only partially the horizon spacetime (6). In this part of the
horizon spacetime K8 is time-like, as well as K7,9.

(b3) For ε = −1 and B2 < 1 (implying sgn(D2) = −1) the horizon coordinates (ρ, t)

are related to the GM coordinates by a complex transformation

ρ = −iD exp(−Dτ) cosh(α3 +
√

2y), t = 1

D
exp(Dτ) tanh(α3 +

√
2y), (25)

with B = tanh α3. Note that in this case D is purely imaginary, which implies t2ρ2 < 0.
The coordinate transformation being complex, this case is the closest analogue of the
general relativistic result that the Bertotti–Robinson metric is related to the horizon region
of the extremal Reissner–Nordström metric (see the striking similarity with the structure of
equations (C.5) in appendix C).

Remembering that the transformation (14) classified as (a) relates the degenerated horizon
metric of the 5d black hole (6) with ε = −1 to the GM spacetime with ε = −1 and B = ±1,
we see that all possible cases of the GM metric with the cosmological constant (ε = ±1,

5 This is similar to another famous example from brane-worlds, which establishes the equivalence of the static branes
written in Gauss normal coordinates and moving branes in 5d Schwarzschild—anti de Sitter spacetime [32].
6 The 5d black hole metric (1) for ε = k = 1 and m > 0 is static only between the horizons (which degenerate for
m = 1/4�2). In other words the Killing vector K7 is time-like between the horizons, space-like outside. Thus for
degenerated horizons there is no time-like Killing vector. However the approximate degenerate horizon metric (6)
acquires new symmetries, among which K8 is time-like for t2ρ2 < 1.

6
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B arbitrary) are covered by our analysis. All GM metrics with ε = −1 are covered in (a),
(b2), (b3), while the GM metrics with ε = 1 in (b1).

In the cases with ε = −1 the static character of the 5d black hole metric both above and
below the degenerated horizons is assured by K7, which also remains a time-like Killing vector
for the horizon metric. In all these cases K9 is also time-like, while K8 is time-like for (b2),
space-like for (b3), and its causal character depends on the actual value of the coordinates for
(a), as for this transformation (14) ρ2t2 > 0.

As remarked earlier, for ε = 1 (case (b1)) the coordinate transformation (23) relates the
static GM metric to the static region of the horizon metric.

In each case the GM metric can be related to the horizon metric either by a real (cases
(a), (b1), (b2)), or by a complex coordinate transformation (case (b3)). The latter case
is similar to the general relativistic analogy between the Bertotti–Robinson spacetime and
the degenerated horizon region of the extremal Reissner–Nordström black hole shown by a
complex transformation (see appendix C). Both there and in our case (b3) this is understood
in the following sense: although the emerging coordinates are complex, only their real subset
is considered in the line element.

5. Concluding remarks

We have shown that the 5d GM spacetime, which contains the Einstein brane as boundary,
although violates the 5d Birkhoff theorem (being a 5d vacuum spacetime different from (1)
and with an embedded static Friedmann brane), obeys the theorem in the following weaker
sense. For all cases of the GM spacetime parameters a specific 5d black hole metric can be
found for which the GM metric is related to its degenerated horizon region either by a real or
a complex coordinate transformation. We have proven this result by explicitly constructing
the respective coordinate transformations.

For a positive 5d cosmological constant (ε = 1), the GM metric represents the static
region of the horizon metric which approximates the 5d Schwarzschild—de Sitter 5d black
hole degenerate horizon region.

A negative 5d cosmological constant (ε = −1) is far more acceptable from a brane point
of view as it gives a small cosmological constant � on the brane through the relation

2� = κ2λ + 3ε�2, (26)

(where λ = 6κ2/̃κ4 is the brane tension, known to have a high value [33], and κ2 is the
brane gravitational constraint). For this case we have shown that the GM metric is related
to the static horizon metric representing the region close to the degenerated horizon of a 5d
Schwarzschild—anti de Sitter-like black hole with curvature index k = −1.

The generic result established in this paper according to which the GM spacetime
containing the Einstein brane is the degenerated horizon region of the Schwarzschild—
(anti) de Sitter 5d black hole, is in close analogy with the general relativistic result, that
the Bertotti–Robinson spacetime generated by a covariantly constant electromagnetic field is
the degenerated horizon region of the extremal Reissner–Nordström spacetime.

Our result re-establishes the validity of the Birkhoff theorem in 5d, although in a weaker
sense.
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Table A1. The location (given by the r coordinate) of the horizons with the vanishing 5d
cosmological constant (ε = 0).

m < 0 m = 0 m > 0

k = −1
√−2m Flat metric −

k = 0 − Ill-defined metric −
k = 1 − Flat metric

√
2m

Table A2. The location (given by �r) of the horizons with the positive 5d cosmological constant
(ε = 1).

m < 0 m = 0 m > 0

k = −1
√

−1 +
√

1 − 4m�2 − −
k = 0 4√−4m�2 − −
k = 1

√
1 +

√
1 − 4m�2

√
2

√
1 ± √

1 − 4m�2

Table A3. Same as in the table A2 with ε = −1.

m < 0 m = 0 m > 0

k = −1
√

1 ±
√

1 + 4m�2
√

2
√

1 +
√

1 + 4m�2

k = 0 − − 4√4m�2

k = 1 − −
√

−1 +
√

1 + 4m�2

Appendix A. Horizons in the spacetime (1)

The metrics with constant curvature (1) admitting branes with constants spatial curvature for
the various possible values of ε and k and sign of the mass parameter m in certain cases
describe black holes with horizons given in the tables A1–A3.

Appendix B. The Killing algebra of the horizon metric

The solution of the Killing equation gives the following independent Killing vectors for the
horizon metric (6), written in the coordinate basis (t, ρ, χ, θ, ϕ):

K1 = (0, 0, 0, 0, 1), (B.1a)

K2 = (0, 0, 0,−cos ϕ, cot θ sin ϕ), (B.1b)

K3 = (0, 0, 0, sin ϕ, cot θ cos ϕ), (B.1c)

K4 = (0, 0,−cos θ, sin θ∂χ lnH, 0), (B.1d)

K5 =
(

0, 0, sin θ sin ϕ, cos θ sin ϕ∂χ lnH,
cos ϕ

sin θ
∂χ lnH

)
, (B.1e)

K6 =
(

0, 0, sin θ cos ϕ, cos θ cos ϕ∂χ lnH,− sin ϕ

sin θ
∂χ lnH

)
, (B.1f )

K7 = (1, 0, 0, 0, 0) (B.1g)

K8 = (t,−ρ, 0, 0, 0), (B.1h)

8
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K9 =
(

t2

2
+

1

2ρ2
,−tρ, 0, 0, 0

)
. (B.1i)

The Killing vectors K1−6 are the usual cosmological symmetries (representing rotations and
quasi-translations), and they are space-like. In order to find out the causal character of the rest
of the Killing vectors we calculate their length in the horizon metric

g(K7,K7) = ε

2�2
ρ2, (B.2)

g(K8,K8) = ε

2�2
(ρ2t2 − 1), (B.3)

g(K9,K9) = ε

8�2ρ2
(ρ2t2 − 1)2. (B.4)

It is obvious that K7 and K9 are time-like for ε = −1 and space-like for ε = 1, while the
causal character of K8 depends on the sign of the product ε(ρ2t2 − 1). The horizon metric is
static in all cases excepting when ε = 1 and ρ2t2 > 1. Also the locus ρt = ±1 is a Killing
horizon for K8.

The Killing vectors K1−7 are also Killing vectors for the black hole metric (1). While K1−6

remain space-like, the causal character of K7 depends on the region of spacetime: calculated
with the metric (1) g(K7,K7) = −f . Therefore K7 is time-like if there is no horizon; time-
like above the horizon and space-like below, if there is one horizon; and time-like above the
exterior horizon and below the inner horizon, space-like between the two horizons, when there
are two horizons (it is time-like everywhere excepting the horizon for degenerated horizons);
finally on any horizon is null, thus the event horizons are also Killing horizons for K7 in the
black hole metrics (1), a property which is lost in the approximate horizon metric.

Having the additional K8,9 Killing vectors, the horizon metric has more symmetries, than
the full black hole metric.

The Killing algebra is given by

[Ki,Kj] = εijkKk, (B.5)

[K3+i,K3+j] = εεijkKk, (B.6)

[Ki,K3+j] = εijkK3+k, (B.7)

[K6+i,Kj] = 0 = [K6+i,K3+j], (B.8)

[K7,K8] = K7, (B.9)

[K8,K9] = K9, (B.10)

[K7,K9] = K8, (B.11)

and is classified in table B1.
The Killing vectors K1−6 of the horizon metric and KGM

1−6 of the GM metric are identical
and the Killing vectors K7−9 are also related to the Killing vectors KGM

7−9 (specified for A = 1).
In order to establish these relations, K7−9 have to be transformed in the GM coordinate basis
by the coordinate transformations derived in sections 3 and 4

(a) Applying the coordinate transformation (14) on K7−9 we find

KGM
7 = K7, KGM

8 = −K9, KGM
9 = −K8. (B.12a)

9
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Table B1. Killing algebras of the black hole metric (upper row) and horizon metric (bottom row)
for ε = ±1.

ε 1 −1

K1−7 so(4) ⊕ R so(1, 3) ⊕ R

K1−9 so(4) ⊕ so(1, 2) so(1, 3) ⊕ so(1, 2)

(b1) Applying (23)

KGM
7 = K8, (B.13a)

KGM
8,9 = DK9 ± 1

2D
K7. (B.13b)

(b2) Applying (24)

KGM
7 = K8, (B.14)

KGM
8,9 = −DK9 ± 1

2D
K7. (B.15)

(b3) Finally applying (25)

KGM
7 = iK8, (B.16)

KGM
8 = DK9 − 1

2D
K7, (B.17)

KGM
9 = i

(
DK9 +

1

2D
K7

)
. (B.18)

Thus in the cases (a), (b1), (b2) KGM
7−9 are linear combinations with constant real coefficients

of K7−9, while in the case (b3) the linear combination is complex.

Appendix C. General relativistic analogy: the Bertotti–Robinson metric as the horizon
region of the extremal Reissner–Nordström spacetime

The Reissner–Nordström metric describes the spherically symmetric, static electro-vacuum
exterior of a point mass m with electric charge q. The two horizons degenerate into a single
one located at r = m in the extremal case, when q = m. Then the line element takes the form

ds2
RN = −

(
1 − m

r

)2
dt2 +

(
1 − m

r

)−2
dr2 + r2 d�2, (C.1)

with d�2 the infinitesimal solid angle on the unit 2-sphere. In order to approximate the metric
(C.1) in the vicinity of the horizon, it is useful to introduce a new coordinate ρ = r − m [30],
in terms of which the line element (C.1) becomes

ds2
RN = −

(
ρ

ρ + m

)2

dt2 +

(
ρ

ρ + m

)−2

dρ2 + (ρ + m)2 d�2. (C.2)

Close to the horizon (ρ ≈ 0) the extremal Reissner–Nordström spacetime is approximated as

ds2
hRN = −

( ρ

m

)2
dt2 +

( ρ

m

)−2
dρ2 + m2 d�2. (C.3)

10
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The sequence of transformations (i) t
′ = it ; (ii) ρ = m exp(−τ ′) cosh z, t ′ = m exp(τ ′) tanh z;

(iii) τ = iτ ′ brings the metric into the form [30]

ds2
hRN = m2[−cosh2 z dτ 2 + dz2 + d�2]. (C.4)

The sequence of coordinate transformations can also be given as

ρ = m exp(iτ) cosh z, t = −im exp(−iτ) tanh z, (C.5)

with the inverse

z = arcsinh

(
iρt

m2

)
, 2iτ = ln

m2ρ2

m4 − t2ρ2
. (C.6)

The energy–momentum tensor of the extremal Reissner–Nordström spacetime in the
(t, r, θ, ϕ) coordinate system is

T a
b = m2

r4
diag(−1,−1, 1, 1). (C.7)

With the coordinate ρ = r − m and for ρ ≈ 0 this approximates as

T a
b = 1

m2
diag(−1,−1, 1, 1). (C.8)

The approximate horizon metric (C.3) solves the Einstein equations for the above energy–
momentum tensor. Moreover, after applying the complex coordinate transformation (C.5) the
energy–momentum tensor will have the same form (C.8).

This describes a pure electric field, as required. In order to see this, we note that in
the coordinates (t, r, θ, ϕ) the only non-vanishing components of the Maxwell tensor for the
Reissner–Nordström spacetime are

Ftr = −Frt = − q

r2
. (C.9)

In the extremal case q = m and the degenerated horizon is at r = m, such that the non-
vanishing components of the Maxwell tensor become

Ftr = −Frt = − 1

m
. (C.10)

The Bertotti–Robinson spacetime [28, 29] represents the product of two Riemannian 2-
surfaces with constant curvature radius, generated by a covariantly constant electromagnetic
field in the presence of a cosmological constant. Its generic form is given by the line element

ds2
BR = −

(
1 +

x2

r2
+

)
dt2 +

(
1 +

x2

r2
+

)−1

dx2 + r2
− d�2. (C.11)

By performing the coordinate transformations

arcsinh
x

r+
= z, t = r+τ (C.12)

which gives 1 + x2/r2
+ = cosh2 z, the Bertotti–Robinson metric becomes

ds2
BR = r2

+[−cosh2 z dτ 2 + dz2] + r2
− d�2, (C.13)

which agrees with the metric (C.4) in the case when the two Riemannian surfaces have the
same curvature radii

r+ = r− = m. (C.14)

The equality of the two curvature radii is equivalent with the vanishing of the cosmological
constant in the Bertotti–Robinson solution, which therefore represents the spacetime generated
by a pure electromagnetic field.

11
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The Maxwell tensor for the Bertotti–Robinson spacetime is given by equation (17) in
[28], representing parallel electric and magnetic fields. In the (τ, z, θ, ϕ) coordinate system
the energy–momentum tensor is given by

T a
b = µ diag(−1,−1, 1, 1), (C.15)

where µ = 1/m2 (see (C.8)) is related to the two invariants of the electromagnetic field as

µ2 = (h2 − e2)2 + (2eh)2. (C.16)

Since the energy–momentum tensor only depends on ρ, this is what the geometry determinates.
Thus another key piece of information about the electromagnetic field, represented by the
parameter

α = −1

2
arctan

2eh
h2 − e2

, (C.17)

remains undeterminated. With the convenient choice of α the electromagnetic field can be
chosen as a pure electric field with e2 =1/m2 in perfect agreement with the source (C.10) of
the horizon metric.
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