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A cosmological model of a flat Friedmann universe filled with a mixture of anti-Chaplygin gas and

dustlike matter exhibits a future soft singularity, where the pressure of the anti-Chaplygin gas diverges

(while its energy density is finite). Despite infinite tidal forces the geodesics pass through the singularity.

Because of the dust component, the Hubble parameter has a nonzero value at the encounter with

the singularity, therefore the dust implies further expansion. With continued expansion however, the

energy density and the pressure of the anti-Chaplygin gas would become ill-defined hence from the point

of view of the anti-Chaplygin gas only a contraction is allowed. Paradoxically, the universe in this

cosmological model would have to expand and contract simultaneously. This obviously could not happen.

We solve the paradox by redefining the anti-Chaplygin gas in a distributional sense. Then a contraction

could follow the expansion phase at the singularity at the price of a jump in the Hubble parameter.

Although such an abrupt change is not common in any cosmological evolution, we explicitly show that the

set of Friedmann, Raychaudhuri and continuity equations are all obeyed both at the singularity and in its

vicinity. We also prove that the Israel junction conditions are obeyed through the singular spatial

hypersurface. In particular we enounce and prove a more general form of the Lanczos equation.
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I. INTRODUCTION

The problem of cosmological singularities has been
attracting the attention of theoreticians working in gravity
and cosmology since the early fifties [1–3]. In the sixties
general theorems about the conditions for the appearance
of singularities were proven [4,5] and the oscillatory re-
gime of approaching the singularity [6], the Mixmaster
universe [7] was discovered. Basically, until the end of
nineties almost all discussions about singularities were
devoted to the big bang and big crunch singularities, which
are characterized by a vanishing cosmological radius.

However, kinematical investigations of Friedmann cos-
mologies have raised the possibility of sudden future sin-
gularity occurrence [8–18], characterized by a diverging €a
whereas both the scale factor a and _a are finite. Then, the
Hubble parameter H ¼ _a=a and the energy density � are
also finite, while the first derivative of the Hubble parame-
ter and the pressure p diverge. Until recent years, however,
sudden future singularities attracted only a limited interest
among researchers. The interest grew due to two reasons.
The recent discovery of the cosmic acceleration [19] has
stimulated the elaboration of dark energy models, respon-
sible for such a phenomenon (see e.g., for review [20]).
Remarkably in some of these models the sudden singular-
ities arise quite naturally. Another source for the interest in

sudden singularities is the development of brane models
[10,11,18], where singularities of this kind could arise
naturally (sometimes these singularities, arising in brane-
world models, are called ‘‘quiescent’’ [10]).
In the investigations devoted to sudden singularities one

can distinguish three main topics. The first of them deals
with the question of the compatibility of the models pos-
sessing soft singularities with observational data
[15,21,22]. The second direction is connected with the
study of quantum effects [11,17,23–25]. Here one can
see two subdirections: the study of quantum corrections
to the effective Friedmann equation, which can eliminate
classical singularities or at least, change their form
[10,17,23]; and the study of solutions of the Wheeler-
DeWitt equation for the quantum state of the universe in
the presence of sudden singularities [24,25]. The third
direction is connected with the possibility of the sudden
singularity crossing in classical cosmology [25–29]. The
present paper is devoted exactly to this topic.
A particular feature of the sudden future singularities is

their softness [26]. As the Christoffel symbols depend only
on the first derivative of the scale factor, they are regular at
these singularities. Hence, the geodesics are well behaved
and they can cross the singularity [26]. One can argue that
the particles crossing the singularity will generate the
geometry of the spacetime, providing in such a way a
‘‘soft rebirth’’ of the universe after the singularity crossing
[29]. Note that the possibility of crossing of some kind of
cosmological singularities was noticed already in the
early paper by Tipler [30]. A close idea of integrable
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singularities in black holes, which can give origin to a
cosmogenesis was recently put forward in Ref. [31].

As a starting point we consider an interesting example of
a sudden future singularity—the big brake which was
discovered in Ref. [32] while studying a particular tachyon
cosmological model. The particularity of the big brake
singularity consists in the fact that the time derivative of
the scale factor is not only finite but exactly equal to zero.
That makes the analysis of the behavior in the vicinity of
singularity especially convenient. In particular, in Ref. [22]
it was shown that the predictions of the future of the
universe in this model [32] are compatible with the
supernovae-type Ia data, while in Refs. [24,25] some quan-
tum cosmological questions were studied in the presence
of the big brake singularity.

The simplest cosmological model allowing a big brake
singularity was also introduced in Ref. [32]. This model is
based on the perfect fluid, dubbed ‘‘anti-Chaplygin gas’’.
This fluid is characterized by the equation of state

p ¼ A

�
; (1)

where A is a positive constant. Such an equation of state
arises, for example, in the theory of wiggly strings [33].
In paper [32] a fluid obeying the equation of state (1) was
called ‘‘anti-Chaplygin gas’’ in analogy with the
Chaplygin gas [34] which has the equation of state p ¼
�A=� and has acquired some popularity as a candidate for
a unified theory of dark energy and dark matter [35].

An explicit example of the crossing of the big brake
singularity was described in detail in paper [29], in which
the tachyon model [22,32] was investigated. In this model
the tachyon field passes through the singularity, continuing
its evolution with a recollapse towards a big crunch. In a
simpler model, based on the anti-Chaplygin gas, such a
crossing is even easier to understand.

The next natural step in the analysis of the soft singu-
larities seems to be obvious. One can consider a soft
singularity of more general type than the big brake by
adding to the tachyon matter or to the anti-Chaplygin gas
some dustlike matter. However, in this case the travers-
ability of the singularity seems to be obstructed. The main
reason for this is that while the energy density of the
tachyonic field (or of the anti-Chaplygin gas) vanishes at
the singularity, the energy density of the matter component
does not, leaving the Hubble parameter at the singularity
with a finite value. Then some kind of paradox arises: if the
universe continues its expansion, and if the equation of
state of the component of matter, responsible for the ap-
pearance of the soft singularity (in the simplest case, the
anti-Chaplygin gas) is unchanged, then the expression for
the energy density of this component becomes imaginary,
which is unacceptable. The situation looks rather strange:
indeed, the model, including dust should be in some sense
more regular than a single exotic fluid, the anti-Chaplygin

gas. Thus, if the model based on the pure anti-Chaplygin
gas has a traversable big brake singularity, than the more
general singularity arising in the model based on the
mixture of the anti-Chaplygin gas and dust should also
be traversable.
Related to that, it was recently shown that general soft

singularities arising in the Friedmann model, filled with the
scalar field with a negative potential, inversely proportional
to this field are traversable. So, what could be wrong with
the simple two-fluid model? One can see that what we face
is some sort of a clash between the equation of state of one
of these fluids and the dynamics (the Friedmann and
Raychaudhuri equations) and energy conservation equa-
tions. In this paper we shall try to resolve this paradox,
insisting on the preservation of the equation of state of the
anti-Chaplygin gas. The price which one has to pay for it is
the obligatory use of the generalized functions for some
cosmological quantities. Namely, the anti-Chaplygin gas
remains physical if rather a recollapse follows, but then the
Hubble parameter would have a sharp jump, obstructing
the validity of the Raychaudhuri equation (the second
Friedmann equation) in the usual sense of functions.
Thus, apparently, the evolution cannot be continued
through the soft singularity, unless treating the cosmologi-
cal quantities as distributions. We claim that such a gen-
eralization is mathematically rigorous, moreover, the
introduction of distributions is not so drastic, as it looks
at the first sight, as the pressure of the anti-Chaplygin gas
diverges anyhow at the soft singularity (as it does for the
tachyon field). Then in the Conclusion we shall dwell on
the possible physical sense of the proposed constructions
and its possible alternatives.
The plan of the paper is as follows. In Sec. II we discuss

generic Friedmann spacetimes, which admit _H ¼ �1
type singularities, while the Hubble parameter H remains
finite. Such singularities are related to corresponding di-
vergencies in the pressure of the perfect fluid filling the
Friedmann universe (while its energy density stays finite).
We investigate the kinematics, the geodesic equations, the
geodesic deviation equations in the vicinity of these singu-
larities and also prove that these singularities are weak.
In Sec. III we discuss a mixture of the anti-Chaplygin

gas and dust in a flat Friedmann universe and explain the
essence of the paradox. We explicitly derive the behavior
of the energy density and pressure in the vicinity of the soft
singularity and we solve the geodesic equations in this
region. While the singularity turns to be traversable by
the geodesics, the explicit solution also shows that the
Raychaudhuri equation is violated at the singularity.
In Sec. IV we add generalized distributional contribu-

tions to both the pressure and energy density, such that
(a) the equation of state of the anti-Chaplygin gas still
holds and (b) the singularity becomes traversable. We
also perform checks of the Friedmann, Raychaudhuri and
continuity equations, which all hold valid across the
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singularity in a distributional sense. In the process we
employ a number of propositions on distributions pre-
sented and proved in Appendix A. For the convenience
of the reader we present a related semiheuristic discussion
of two known distributional identities in Appendix B. We
stress that the distributional modifications of the energy
density and pressure do not modify the cosmological evo-
lution, but they make possible the soft singularity crossing.

In Sec. V we revisit the junction conditions along a
spacelike hypersurface in a flat Friedmann universe. The
future soft singularity represents such a spatial hypersur-
face, along which the energy-momentum tensor diverges.
Extending the spacetime through this hypersurface is pos-
sible by obeying both Israel junction conditions. While the
first condition, requiring the continuity of the induced
metric is easy to satisfy (the metric stays regular at the
soft singularity), the second condition relates the jump in
the extrinsic curvature to the distributional part of the
energy-momentum tensor through the Lanczos equation.
We will show that in flat Friedmann spacetimes the
Lanczos equation holds for a more general class of distri-
butional energy-momentum tensors. With this we give a
second proof that the generalized distributional energy-
momentum tensor assures the traversability of the soft
singularity. In the process we employ a simple form of
the Lanczos equation valid in flat Friedmann universes,
derived in Appendix C.

We summarize our results and give some further outlook
in the concluding remarks.

We chose c ¼ 1 and 8�G=3 ¼ 1. A subscript S denotes
the value of the respective quantity at the soft singularity.

II. PRESSURE SINGULARITIES IN FLAT
FRIEDMANN UNIVERSES

The line element squared of a flat Friedmann universe
can be written as

ds2 ¼ �dt2 þ a2ðtÞX
�

ðdx�Þ2; (2)

where x� (� ¼ 1, 2, 3) are Cartesian coordinates. The
evolution of the Friedmann universe is governed by the
Raychaudhuri (second Friedmann) equation

_H ¼ � 3

2
ð�þ pÞ; (3)

and by the continuity equation for the fluid

_�þ 3Hð�þ pÞ ¼ 0: (4)

Here the dot denotes the derivative with respect to cosmo-
logical time t. A first integral of this system is given by the
first Friedmann equation

H2 ¼ �: (5)

It is easy to see that the Raychaudhuri equation can be
obtained from the first Friedmann and the continuity
equations.

A. Kinematics in the vicinity of sudden singularities

Sudden singularities are characterized by finite H and
_H ! �1 (finite _a and €a ! �1) at some finite scale
factor a. The energy density of the fluid is finite but its
pressure diverges at this type of singularity, therefore the
term ‘‘pressure singularity’’ is also used. Then, we would
like to emphasize the fact that there is an essential differ-
ence between the sudden singularities withH ¼ 0 and with
H > 0. As already mentioned in the Introduction, in the
first case, which is called big brake, the universe begins
contracting and running towards the big crunch singularity.
This occurs exactly in models based on tachyon field with a
particular potential [22,29,32] or in the anti-Chaplygin gas
models. In the case of the model based on the mixture of
one of this fluids and dust, we encounter the second situ-
ation when the value of the Hubble constant is positive at
the moment of encounter with the sudden singularity. That
means that after crossing the singularity the universe
should continue its expansion, but the anti-Chaplygin gas
becomes ill-defined (shown in detail in Sec. III), devoted to
the model based on the mixture of the anti-Chaplygin gas
and dust.
One possible way of overcoming this obstacle is to allow

the jump in the sign of the Hubble parameter, which as
mentioned in the Introduction leaves valid the first
Friedmann equation, the continuity equation and the equa-
tion of state, while making invalid the Raychaudhuri equa-
tion. This last obstacle can be cured by the accepting the
distributional Dirac �-function-type contributions into the
pressure and the energy density, which is described in
detail in the Sec. IV.

B. Geodesics in the vicinity of sudden singularities

The geodesic equations in flat Friedmann space-time are

d2x�

d�2
þ 2

_a

a

dt

d�

dx�

d�
¼ 0; (6)

d2t

d�2
þ a _a

X
�

�
dx�

d�

�
2 ¼ 0; (7)

where � is an affine parameter. Integrating these equations
yields

dx�

d�
¼ P�

a2
; (8)

�
dt

d�

�
2 ¼ �þ P2

a2
; (9)

with P�, � integration constants and P2 ¼ P
�ðP�Þ2. The

quantity � is fixed by the length of the tangent vector ua of
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the geodesic as � ¼ �uau
a; i.e., one for timelike and zero

for lightlike orbits. In a comoving system P� ¼ 0 and
t ¼ � is affine parameter.

Equations (8) and (9) are singular only for vanishing
scale factor (see also Ref. [26]). Therefore, the existence of
a solution tð�Þ, x�ð�Þ of Eqs. (8) and (9) is assured by the
Cauchy-Peano theorem for any nonzero a (including
the soft singularity). Thus the functions tð�Þ and x�ð�Þ,
i.e., the geodesics can be continued through the singularity
occurring at finite scale factor. Only derivatives of higher
order than two of tð�Þ and x�ð�Þ are singular (as they
contain €a), however these do not appear in the geodesic
equations. Pointlike particles moving on geodesics do not
experience any singularity. Thus, as we argued in the
preceding paper [29] one is not obliged to consider such
a singularity as a final state of the universe. Indeed, passing
through this singularity the matter recreates also the space-
time in a unique way, at least for such simple models, as
those based on Friedmann metrics.

C. Deviation equation in the vicinity of
sudden singularities

The 3-spaces with t ¼ const have vanishing Riemann
curvature. However, the four-dimensional Riemann curva-
ture tensor has the nonvanishing components

R�
t�t ¼ � €a

a
��
� ¼ ð� _H þH2Þ��

�;

R1
212 ¼ R1

313 ¼ R2
323 ¼ _a2

(10)

and the corresponding components arising from symmetry.
Here �, � ¼ 1, 2, 3. Remarkably, all components which
diverge at the singularity are of the type Rtata [29].
Therefore, the singularity arises in the mixed spatio-
temporal components.

The geodesic deviation equation along the integral
curves of u ¼ @=@t (which are geodesics with affine pa-
rameter t) is

_u a ¼ �Ra
cbd�

bucud; (11)

where �b is the deviation vector separating neighboring
geodesics, chosen to satisfy �bub ¼ 0. For a Friedmann
universe it becomes

_u a ¼ �Ra
tbt�

b / €a; (12)

which at the singularity diverges as �1. Therefore, when
approaching the singularity, the tidal forces manifest them-
selves as an infinite braking force stopping the further
increase of the separation of geodesics but not the evolu-
tion along the geodesics. With €a < 0 in the vicinity of the
singularity, once the geodesics have passed through, they
will approach each other. Therefore a contraction phase
will follow: everything that has reached the singularity will
bounce back.

D. The type of the singularity

In this subsection we shall present the classification of
singularities, based on the point of view of finite size
objects, which approach these singularities. In principle,
finite size objects could be destroyed while passing through
the singularity due to the occurring infinite tidal forces. A
strong curvature singularity is defined by the requirement
that an extended finite object is crushed to zero volume by
tidal forces. We give below Tipler’s [30] and Królak’s [36]
definitions of strong curvature singularities together with
the relative necessary and sufficient conditions. An alter-
native definition of the softness of a singularity, based on a
Raychaudhuri averaging, was developed by Dabrowski
[37].
According to Tipler’s definition if every volume element

defined by three linearly independent, vorticity-free, geo-
desic deviation vectors along every causal geodesic
through a point p vanishes, a strong curvature singularity
is encountered at the respective point p [26,30]. The nec-
essary and sufficient condition for a causal geodesic to run
into a strong singularity at �s (� is affine parameter of the
curve) [38] is that the double integral

Z �

0
d�0 Z �0

0
d�00jRi

ajbu
aubj (13)

diverges as � ! �s. A similar condition is valid for light-
like geodesics, with Ri

ajbu
aub replacing Rabu

aub in the

double integral.
Królak’s definition is less restrictive. A future-endless,

future-incomplete null (timelike) geodesic 	 is said to
terminate in the future at a strong curvature singularity if,
for each point p 2 	, the expansion of every future-
directed congruence of null (timelike) geodesics emanat-
ing from p and containing 	 becomes negative somewhere
on 	 [36,39]. The necessary and sufficient condition for a
causal geodesic to run into a strong singularity at �s [38] is
that the integral

Z �

0
d�0jRi

ajbu
aubj (14)

diverges as � ! �s. Again, a similar condition is valid for
lightlike geodesics, with Ri

ajbu
aub replacing Rabu

aub in

the integral.
In flat Friedmann spacetime the comoving observers

move on geodesics having four velocity u ¼ @=@t, where
t is affine parameter. The nonvanishing components of
Riemann tensor are given by Eq. (10). Since H is finite
along the geodesics, neither of the integrals (13) and (14)
diverge at the singularity. The singularity is weak (soft)
according to both Tipler’s and Królak’s definitions. That
means that although the tidal forces become infinite, the
finite objects are not necessarily crushed when reaching the
singularity (see also Ref. [26]).
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III. THE PARADOX OF THE SOFT SINGULARITY
CROSSING IN THE COSMOLOGICAL MODEL

BASED ON THE ANTI-CHAPLYGIN
GAS AND DUST UNIVERSE

We discuss a universe filled with two components. One
is the anti-Chaplygin gas with the equation of state (1) and
(2) the other is the pressureless dust.

The solution of the continuity equation for the anti-
Chaplygin gas gives the following dependence of its
energy density on the scale factor:

�ACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

a6
� A

s
; (15)

where B is a positive constant, determining the initial
condition. The energy density of the dustlike matter is as
usual

�m ¼ �m;0

a3
; (16)

where �m;0 is a constant.

It is clear that during the expansion of the universe, its
scale factor approaches the value

aS ¼
�
B

A

�1
6
; (17)

the energy density of the anti-Chaplygin gas vanishes, and
its pressure grows to infinity. That means that the decel-
eration also becomes infinite. However, the energy density
of dust remains finite, hence the same is true also for the
Hubble parameter. It is here that the paradox arises: if the
universe continues to expand, the expression under the sign
of the square root in Eq. (15) becomes negative and the
energy density of the anti-Chaplygin gas becomes ill-
defined. A way out of this situation is only by assuming
that at this moment the Hubble parameter changes its sign,
while keeping its absolute value (such that the energy
density will not have a jump, as implied by the
Friedmann equation). This possibility will be studied in
detail in the following subsections.

A. Evolutions in the vicinity of the singularity

Let us substitute Eqs. (15) and (16) into the first
Friedmann equation. We shall find its solution for the
universe approaching to the soft singularity point at the
moment tS (the latter cannot be found analytically, but its
value is not important for our analysis),

aðtÞ ¼ aS �
ffiffiffiffiffiffiffiffiffi
�m;0

aS

s
ðtS � tÞ �

ffiffiffiffiffiffiffiffiffiffiffi
2Aa2S
3HS

s
ðtS � tÞ3=2; (18)

where

HS ¼
ffiffiffiffiffiffiffiffiffi
�m;0

a3S

s
(19)

is the value of the Hubble parameter at t ¼ tS.
Correspondingly the leading terms of the energy densities
of the anti-Chaplygin gas and dust, also of the pressure of
the anti-Chaplygin gas are

�m ¼ H2
S þ 3H3

SðtS � tÞ; (20)

�ACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6AHSðtS � tÞ

q
; (21)

pACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

6HSðtS � tÞ

s
: (22)

One can see that Eqs. (18), (21), and (22) cannot be
continued for t > tS due to the emerging negative quanti-
ties under the square roots. The assumption of a sharp
transition from expansion to contraction implies the fol-
lowing changes in Eqs. (18)–(22):

aðtÞ ¼ aS �
ffiffiffiffiffiffiffiffiffi
�m;0

aS

s
jtS � tj �

ffiffiffiffiffiffiffiffiffiffiffi
2Aa2S
3HS

s
jtS � tj3=2; (23)

�m ¼ H2
S þ 3H3

SjtS � tj; (24)

�ACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6AHSjtS � tj

q
; (25)

pACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

6HSjtS � tj

s
: (26)

The quantities (23)–(25) are well-defined and continuous
at the moment of the singularity crossing. The expression
for the pressure (26) is divergent, but this divergence is
integrable and this is sufficient for our purposes. These new
expressions satisfy the Friedmann equation, the continuity
equations and the equation of state for the anti-Chaplygin
gas. However, the time derivatives of these quantities are
not continuous and it is the reason of the failure of the
Raychaudhuri equation. We shall analyze this problem in
the following section, but first we discuss the geodesics in
the vicinity of the singularity.

B. Singularity crossing geodesics

We can integrate explicitly the geodesics Eqs. (8) and (9)
in the vicinity of singularity, using Eq. (23) for the cosmo-
logical factor, also taken in the vicinity of singularity.
Choosing the affine parameter in such a way that the point
� ¼ 0 corresponds to the singularity crossing we obtain up
to the second-order in �-terms

t ¼ tS þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ P2

a2S

s
�þ P2HS

2a2S
sgnð�Þ�2; (27)
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x� ¼ x�S þ P�

a2S
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ P2

a2S

s
P�HS

a2S
sgnð�Þ�2: (28)

One can see from Eqs. (27) and (28) that not only the time
and spatial coordinates of the geodesics are continuous at
the soft singularity crossing but also their first derivatives
with respect to the affine parameter �.

IV. SINGULARITY CROSSING, THE
RAYCHAUDHURI EQUATION AND

DISTRIBUTIONS

Let us discuss the expressions for the Hubble parameter
and its time derivative in the vicinity of the singularity.
Beginning with Eq. (23) we obtain

HðtÞ¼HSsgnðtS� tÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A

2HSa
4
S

s
sgnðtS� tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtS� tj

q
; (29)

_H ¼ �2HS�ðtS � tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A

8HSa
4
S

s
sgnðtS � tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijtS � tjp : (30)

Naturally, the �-term in _H arises because of the jump inH,
as the expansion of the universe is followed by a contrac-
tion. To restore the validity of the Raychaudhuri equation
we shall add a singular �-term to the pressure of the anti-
Chaplygin gas, which will acquire the form

pACh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

6HSjtS � tj

s
þ 4

3
HS�ðtS � tÞ: (31)

The equation of state (1) of the anti-Chaplygin gas is
preserved, if we also modify the expression for its energy
density,

�ACh ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

6HSjtS�tj
q

þ 4
3HS�ðtS � tÞ

: (32)

The last expression should be understood in the sense of
the composition of distributions (see Appendix A, and the
references therein).

In order to prove that pACh and �ACh represent a self-
consistent solution of the system of cosmological equa-
tions, we shall use the following distributional identities:

½sgnð
Þgðj
jÞ��ð
Þ ¼ 0; (33)

½fð
Þ þ C�ð
Þ��1 ¼ f�1ð
Þ; (34)

d

d

½fð
Þ þ C�ð
Þ��1 ¼ d

d

f�1ð
Þ: (35)

Here gðj
jÞ is bounded on every finite interval, fð
Þ> 0
and C> 0 is a constant. These identities follow from the
propositions 1, 2 and the corollary enounced and proved in
Appendix A. The parameter 
 stays instead of the differ-
ence tS � t.

Because of Eq. (34), the energy density (32) behaves as a
continuous function which vanishes at the singularity.
Therefore the addition of a Dirac delta term, which is not
changing the value of pACh at any 
 � 0 (i.e., t � tS) does
not look too drastic and might be considered as some kind
of renormalization.
To prove that Friedmann, Raychaudhuri and continuity

equations are satisfied we must only investigate those
terms, appearing in the field equations, which contain
Dirac �-functions, since without them these equations
can be reduced to those we found in the previous section.
First, we check the continuity equation for the anti-
Chaplygin gas. Because of the identities (34) and (35),
the �ð
Þ-terms occurring in �ACh and _�ACh could be
dropped. We keep them however in order to have the
equation of state explicitly satisfied. Then the �ð
Þ-term
appearing in 3HpACh vanishes, because the Hubble pa-
rameter changes sign at the singularity [see Eq. (33)].
The �ð
Þ-term appearing in �ACh does not affect the

Friedmann equation due to the identity (34). Finally, the
�-term arising in the time derivative of the Hubble parame-
ter in the left-hand side of the Raychaudhuri equation is
compensated by the conveniently chosen �-term in the
right-hand side of Eq. (31).

V. THE JUNCTION CONDITIONS ACROSS
THE SINGULARITY

In this section we discuss the singularity crossing in a
slightly different way, by analyzing the junction condi-
tions. We have to match two spacetime regions across the
spacelike hypersurface 
 ¼ 0. The junction of two space-
time regions has to obey the Israel matching conditions
[40], namely, the induced metric should be continuous and
the extrinsic curvature of the junction hypersurface could
possibly have a jump, which is related to the distributional
energy-momentum tensor on the hypersurface by the
Lanczos equation. The scale factor being continuous
across the singularity the first Israel condition is obeyed.
Wewill next prove that the second Israel junction condition
(the Lanczos equations [40,41]) is also satisfied.
For this we have to check whether equation

@

@t
ðHa2Þ ¼

�
�H2 þ 3

2
½~�� ~p� �p�ð
Þ�

�
a2; (36)

(see Appendix C), still implies the Lanczos equation

�Hjts ¼ � 3

2
�p; (37)

derived in Appendix C, when ~pþ �p�ð
Þ ¼ pACh, ~� ¼
�m þ �ACh and �ACh is generalized to a distribution

�ACha
2 ¼ Pð
Þ

½Rð
Þ þQð
Þ�ð
Þ�! : (38)

Here !> 0, Rð
Þ> 0, Qð
Þ> 0 and Pð
Þ is bounded.
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When Eq. (36) is applied to a test function ’ð
Þ, the
terms containing H2 and �m give regular contributions and
the limits of the respective integrals vanish, similarly as
discussed in Appendix C. Also, due to proposition 2 given
in Appendix A, the integral of the distributional term
containing �ACh becomesZ "

�"

Pð
Þ’ð
Þ
R!ð
Þ d
; (39)

which also vanishes for " ! 0. We still have to consider
the contributionsZ "

�"
½~pþ �p�ð
Þ�’ð
Þa2d
: (40)

Although the contribution ~p’ð
Þa2 to the integrand is
singular at 
 ¼ 0, its integral can be conveniently eval-
uated by the Residue theorem. For this we remark that the
integrand is an analytically extendible function into
the complex plane in the vicinity of 
 ¼ 0 and its residue
is zero, therefore the integral vanishes. Finally, the contri-
bution containing �p leads by integration and the limiting
process to the right-hand side of the Lanczos equation (37).

Therefore we have proven that the spacetime regions
separated by the singular spatial hypersurface, representing
the pressure singularity, can be joined. In other words, the
singularity becomes traversable.

VI. CONCLUDING REMARKS

It is known that certain models of cosmological fluids in
Friedmann universes, like the anti-Chaplygin gas or the
tachyon field with a special potential [32], evolve into a
sudden future singularity, which in spite of a diverging
pressure, is weak. It was argued that singularities of this
kind could be traversable despite infinite tidal forces
emerging at the singularity for an infinitesimally short
time [26]. In Ref. [29] the process of crossing of the big
brake singularity was described in some detail for the
tachyon model [32]. (The particularity of the big brake
singularity, consists in the fact that at the crossing of such a
singularity the Hubble variable is not only finite but van-
ishes.) We also note recent discussions [42] on crossing the
‘‘traditional’’ big bang and big crunch singularities.

In the present paper we considered a simple cosmologi-
cal model containing a mixture of anti-Chaplygin gas
and dust. We have shown that the geodesics equations
and their solutions are still well-defined in this case,
however the inclusion of dust generates a nonzero value
of the Hubble parameter at the singularity encounter, gen-
erating the following paradox. The dust would require a
continued expansion, which would make the energy den-
sity and pressure of the anti-Chaplygin gas ill-defined.
A contraction in turn, would be compatible with the anti-
Chaplygin gas, nevertheless implying an abrupt change of
the Hubble parameter from expansion to contraction. The
jump in the Hubble parameter implies the appearance of

the �-function in the Raychaudhuri equation (which con-
tains _H).
We have cured this situation by redefining the pressure

and energy density of the anti-Chaplygin gas as distribu-
tions. As an equivalent interpretation, the pressure can be
generalized by the addition of a distributional contribution,
while the energy density left unchanged, at the price of
redefining the equation of state of the anti-Chaplygin gas in
a distributional sense. Then all cosmological equations are
satisfied in the same distributional sense. We have also
shown, that the Israel junction conditions are obeyed
through the singular spatial hypersurface, in particular,
we have enounced and proved a more general form of
the Lanczos equation. The results rely on two propositions
and a corollary proven in Appendix A.
The resolution of the paradox at the soft singularity

crossing by the introduction of distributional quantities
and equations may look unusual, however distributional
quantities, localized on hypersurfaces are quite commonly
used in general relativity and other gravitational theories.
Spacetime regions are frequently matched by the inclusion
of distributional layers; also shock-waves can be modeled
by Dirac �-functions. Braneworld models [43,44] arise due
to the orbifold boundary conditions, the nonsmoothness of
the five-dimensional metric at the brane (the jump in its
extrinsic curvature) being directly related to the distribu-
tional 3þ 1 standard-model fields embedded in the
5-dimensional spacetime. Besides, metrics allowing distri-
butional curvature were considered earlier for studying
strings and other distributional sources in general relativity
[45]. The applications of the distributional quantities to the
study of Schwarzschild geometry and point massive parti-
cles in general relativity were used in Refs. [46,47],
respectively.
More generically the connection between singularities

and the distributional treatment of the physical quantities is
well-known in quantum field theory. Indeed, the appear-
ance of the ultraviolet divergences can be understood as the
result of the indefiniteness of the product of distributions
and the renormalization procedure could be interpreted as a
definition of such a product [48].
We hope that the investigations presented here may turn

useful in deriving similar results in connection with the
traversability of other types of sudden singularities.
While mathematically self-consistent, the scenario pre-

sented in this paper may look somewhat counter-intuitive
from the physical point of view. This is because its essen-
tial ingredient is the abrupt change of the expansion into a
contraction. However, such a behavior is not more counter-
intuitive that the absolutely elastic bounce of the ball from
a rigid wall, as known in classical mechanics. Indeed, in
the latter case the velocity and the momentum of the ball
change their direction abruptly. That means that an infinite
force acts from the wall onto the ball during an infinitely
small interval of time. The result of this action is however
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integrable and results in a finite change of the momentum
of the ball. In fact, the absolutely elastic bounce is an
idealization of a process of finite time-span during which
inelastic deformations of both the ball and the wall are
likely. It is reasonable to think that something similar
occurs also in the two-fluid universe model presented in
this paper, which undergoes a transition from an expanding
to a contracting phase. The smoothing of this process
should involve some (temporary) geometrically induced
change of the equation of state of matter. Note, that such
changes are not uncommon in cosmology. In the tachyon
model [32] which was the starting point of our studies of
the big brake singularities, there was the tachyon-
pseudotachyon transformation driven by the continuity of
the cosmological evolution. In a cosmological model with
the phantom field with the cusped potential [49], the trans-
formations between phantom and standard scalar field
were considered. Thus, one can imagine that the real
process of the transition from the expansion to contraction
induced by passing through a soft singularity can imply
some temporary change of the equation of state which
makes the above processes smoother. We hope to explore
such a scenario in the future.
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APPENDIX A: PROPOSITIONS ON
THE PRODUCTAND THE

COMPOSITION OF DISTRIBUTIONS

To investigate how the Friedmann universe crosses a soft
singularity, we must solve the field equation in distribu-
tional sense. For this purpose we give the definitions of the
product and of the composition of distributions and prove
two propositions. Fisher derived the following result:
½sgnð
Þj
j���ð
Þ ¼ 0 for � >�1 [50]. Our first proposi-
tion generalizes this equation for � � 0. The second prop-
osition generalizes Antosik’s result: ½1þ �ð
Þ��1 ¼ 1
[51]. Finally, we show a corollary.

Let �ð
Þ be any infinitely differentiable function having
the following properties: (i) �ð
Þ ¼ 0 for j
j � 1;
(ii) �ð
Þ � 0; (iii) �ð
Þ ¼ �ð�
Þ; (iv)

R
1
�1 �ð
Þd
 ¼ 1.

Then �nð
Þ ¼ n�ðn
Þ (with n ¼ 1; 2; . . . ) is a regular se-
quence of infinitely differentiable functions converging to
Dirac delta function: limn!1h�n; ’i ¼ h�;’i for any ’ 2
D [52]. HereD denotes the space of test functions having
continuous derivatives of all orders and compact support.
The action of an f 2 D0 distribution on test functions ’ is
given by hf; ’i, which in the case when f is an ordinary
locally summable function is nothing but

R1
�1 fð
Þ’ð
Þd
.

We note that �nð
Þ has the compact support ð�1=n; 1=nÞ.
We will also use the n-th derivative of f 2 D0 acts as
hdfð
Þ=d
n; ’i ¼ ð�1Þnhfð
Þ; d’=d
ni.
For an arbitrary distribution f, the function fnð
Þ ¼

f � �n � hfð
� xÞ; �nðxÞi gives a sequence of infinitely
differentiable functions converging to f.
Definition 1. The commutative product of f and g

exists and is equal to h on the open interval ða; bÞ
(�1 � a < b � 1) if

lim
n!1hfngn; ’i ¼ hh; ’i

for any’ 2 Dwith support contained in the interval ða; bÞ
[52].1

Proposition 1. The commutative product of sgnð
Þgðj
jÞ
and �ð
Þ exists and

½sgnð
Þgðj
jÞ��ð
Þ ¼ 0

for arbitrary gðj
jÞ bounded on every finite interval.
Proof. We would like to show that

h½sgnð
Þgðj
jÞ��ð
Þ; ’i ¼ 0. Using the mean value theorem
’ð
Þ ¼ ’ð0Þ þ 
d’ð�
Þ=d
 with 0 � � � 1, we have

jh½sgnð
Þgðj
jÞ�n�nð
Þ; ’ij
�

��������’ð0Þ
Z 1=n

�1=n
½sgnð
Þgðj
jÞ�n�nð
Þd


��������
þ sup

j
j�1=n

��������d’ð
Þd


��������
Z 1=n

�1=n
j
½sgnð
Þgðj
jÞ�n�nð
Þjd
:

The first integral on the right side of the above equation
vanishes because the integrand is an odd function. For the
second integrand, we haveZ 1=n

�1=n
j
½sgnð
Þgðj
jÞ�n�nð
Þjd


¼
Z 1=n

�1=n
j
�nð
Þj

Z 1=n

�1=n
jgðj
� xjÞj�nðxÞdxd


� n sup
j
j�1=n

j�ð
Þj
Z 1=n

�1=n
j
�nð
Þj

Z 1=n

�1=n
jgðj
� xjÞjdxd


� 2 sup
j
j�1=n

j�ð
Þj sup
j
j�1=n

jgðj
jÞj
Z 1=n

�1=n
j
�nð
Þjd


¼ 2

n
sup

j
j�1=n

j�ð
Þj sup
j
j�1=n

jgðj
jÞj
Z 1

�1
jy�ðyÞjdy

� 2

n
sup

j
j�1=n

j�ð
Þj sup
j
j�1=n

jgðj
jÞj;

that vanishes for n ! 1.
Definition 2. The composition FðfÞ of distributions F

and f exists and is equal to h 2 D0 on the interval ða; bÞ if

1This definition can be generalized for the cases when the
usual limit does not exist by taking the so-called neutrix limit
[52,53]. However, we do not need this more general definition
here.
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lim
n!1

�
lim
m!1

Z b

a
Fnðfmð
ÞÞ’ð
Þd


�
¼ hh; ’i

for all ’ 2 D with support contained in the interval
ða; bÞ.2

Proposition 2. The composition of distribution
Pð
Þ½Rð
Þ þQð
Þ�ð
Þ��! (where!> 0, Pð
Þ is bounded,
Rð
Þ � 0, and in some range close 
 ¼ 0 the signs of Rð
Þ
and Qð
Þ are the same if Qð
Þ � 0) exists if Pð
Þ=R!ð
Þ
exists3 and

Pð
Þ
½Rð
Þ þQð
Þ�ð
Þ�! ¼ Pð
Þ

R!ð
Þ :

Proof. By the definition of composition of distributions,
we should calculate

	
Pnð
Þ

½Rmð
Þ þQmð
Þ�mð
Þ�!n ; ’ð
Þ



¼
Z 1

�1

Z 1=n

�1=n

’ð
ÞPnð
Þ�nðxÞdxd

½Rmð
� xÞ þQmð
Þ�mð
� xÞ�! :

Performing a change of the variables as 
 ¼ 
, y ¼
mð
� xÞ, we have

¼ � 1

m

Z 1

�1

Z 1

�1
’ð
ÞPnð
Þ�nð
� y=mÞ

½Rmðy=mÞ þmQmðy=mÞ�ðyÞ�! dyd


¼ � 1

m

Z 1

�1

Z
�1

’ð
ÞPnð
Þ�nð
� y=mÞ
R!
mðy=mÞ dyd


� 1

m

Z 1

�1

Z
�2

’ð
ÞPnð
Þ�nð
� y=mÞ
½Rmðy=mÞ þmQmðy=mÞ�ðyÞ�! dyd
;

where �2 ¼ fy:jyj< 1 and�ðyÞ � 0g and �1 ¼ R��2.
The double limit of the first term is

lim
n!1 lim

m!!1� 1

m

Z 1

�1
d
’ð
ÞPnð
Þ

Z
�1

�nð
� y=mÞ
R!
mðy=mÞ dy

¼ lim
n!1 lim

m!!1

Z 1

�1
d
’ð
ÞPnð
Þ

Z
jxj<1=n;

mj
�xj2�1

�nðxÞ
R!
mð
� xÞ dx

¼
	
Pð
Þ
R!ð
Þ ; ’ð
Þ



:

We investigate the absolute value of the second integral.
According to our assumptions for R and Q, and since we
are interested in m ! 1, we can choose m large enough to
let the signs of R and Q be the same, then for !> 0

��������1

m

Z 1

�1

Z
�2

’ð
ÞPnð
Þ�nð
� y=mÞ
½Rmðy=mÞ þmQmðy=mÞ�ðyÞ�! dyd


��������
�

�������� 1

m1þ!

Z 1

�1
’ð
ÞPnð
Þ

Z
�2

�nð
� y=mÞ
Qmðy=mÞ�!ðyÞ dyd


��������:

Performing a change of the variables as z ¼ nð
� y=mÞ,
y ¼ y, we have

� 1

m1þ!

Z 1

�1

Z
�2

��������’
�
z

n
þ y

m

�
Pn

�
z

n
þ y

m

�
�ðzÞ
�!ðyÞ

��������dydz
� 1

m1þ!
sup

�2;jzj�1

��������’
�
z

n
þ y

m

�
Pn

�
z

n
þ y

m

�
��!ðyÞ

�
��������
Z 1

�1
�ðzÞdz

Z 1

�1
dy

¼ 2

m1þ!
sup

�2;jzj�1

��������’
�
z

n
þ y

m

�
Pn

�
z

n
þ y

m

�
��!ðyÞ

��������;

that vanishes for m ! 1 if P is bounded.
Corollary 1. The distribution dfPð
Þ½Rð
Þ þ

Qð
Þ�ð
Þ��!g=d
 (with the same properties for P, R, Q
and ! as in proposition (2) exists if Pð
Þ=R!ð
Þ and its
derivative exist, and

d

d


Pð
Þ
½Rð
Þ þQð
Þ�ð
Þ�! ¼ d

d


Pð
Þ
R!ð
Þ :

Proof. Applying the derivative of a distribution at tests
functions, and using the fact that d’=d
 2 D for any
’ 2 D, and by the proposition 2, we have	

d

d


Pð
Þ
½Rð
Þ þQð
Þ�ð
Þ�! ;’




¼ �
	

Pð
Þ
½Rð
Þ þQð
Þ�ð
Þ�! ;

d

d

’




¼ �
	
Pð
Þ
R!ð
Þ ;

d

d

’



¼

	
d

d


Pð
Þ
R!ð
Þ ; ’



:

APPENDIX B: TWO SIMPLE EXAMPLES OF
THE PRODUCTAND OF THE

DECOMPOSITION OF DISTRIBUTIONS

The definition of the product and the composition of
distributions, used in this paper and presented in Appendix
A are not often encountered in physics. Thus, to give the
reader some flavor of the corresponding considerations,
using simpler means we decided to give two semiheuristic
examples of such products and compositions. We consider
first a remarkable formula

P
�
1

x

�
�ðxÞ ¼ � 1

2
�0ðxÞ; (B1)

which was first proven in Ref. [57]. Here P means the
principal value of the corresponding function. We shall
prove here that the regularizing succession of functions
with compact support �, employed in Appendix A and the

2This definition can be generalized for the cases when the
usual limit does not exist by taking double neutrix limit [54–56].

3We note that this proposition can be held even if Pð
Þ ¼ 1
and Rð
Þ ¼ �ð
Þ with ! ¼ 1; 2; . . . . Indeed, ��!ð
Þ exists in
neutrix limit and ��!ð
Þ ¼ 0 [55]. Thus in definition 2, the usual
limit must be changed for neutrix limit for this case.

PARADOX OF SOFT SINGULARITY CROSSING AND ITS . . . PHYSICAL REVIEW D 86, 063522 (2012)

063522-9



references therein, can be chosen alternatively as the fam-
ily of the Cauchy-Lorentz functions

f�ðxÞ ¼ 1

�

�

x2 þ �2
: (B2)

It is well known that when the small parameter � ! 0, the
functions of this family tend in the distributional sense to
the Dirac �-function. Obviously, the convolution of the
function (B2) with the Dirac �-function gives again the
same function (B2),

f� � �ðxÞ ¼ f�ðxÞ: (B3)

The calculation of the convolution of the principal value
P ð1xÞ with the function f�ðxÞ is slightly more complicated,

P
�
1

x

�
� f�ðxÞ ¼ lim

"!0

�Z x�"

�1
dy

1

x� y

�

�ðy2 þ �2Þ
þ

Z 1

xþ"
dy

1

x� y

�

�ðy2 þ �2Þ
�

¼ x

x2 þ �2
: (B4)

The product of Eqs. (B3) and (B4) is

P
�
1

x

�
�
� ��ðxÞ ¼ �x

�ðx2 þ �2Þ2 : (B5)

Let us now consider a family of functions,

df�ðxÞ
dx

¼ � 2x�

�ðx2 þ �2Þ2 : (B6)

One can easily prove that if the family of functions (B2)
converges in the distributional sense to the Dirac
�-function, the family of their derivatives (B6) converges
to the derivative of the delta function. Now, comparing the
right-hand sides of Eqs. (B6) and (B5) we see that when
� ! 0 the product in the left-hand side of Eq. (B5) con-
verges in the distributional sense to � 1

2�
0ðxÞ and thus the

correctness of the equality (B1) is checked.
Now let us discuss the Antosik identity [51],

1

1þ �ðxÞ ¼ 1: (B7)

Here we have the composition of the distributions FðgÞ,
where F ¼ 1

g and gðxÞ ¼ 1þ �ðxÞ. Calculating the convo-

lutions of the distributions F and g with the Cauchy-
Lorentz functions (B2) we obtain

F�ðgÞ ¼ F � f�ðgÞ ¼ g

g2 þ �2
; (B8)

g�ðxÞ ¼ 1þ �

x2 þ �2
: (B9)

Correspondingly the composition of these functions is

F�ðg�Þ ¼
1þ �

�ðx2þ�2

�2 þ ð1þ �
�ðx2þ�2

Þ2 (B10)

and it is easy to check that

lim
�!0

lim
�!0

F�ðg�Þ ¼ 1; (B11)

confirming the identity (B7).

APPENDIX C: THE LANCZOS EQUATION

For a generic junction surface the Lanczos equation
emerges from the Gauss-Codazzi relations [43,58]. The
projected Lie derivative of the extrinsic curvature Kab in
the normal direction n to the surface is

hiah
j
bLnKij ¼ �3�

�
hiah

k
bTik � hab

2
gikTik

�
þZab (C1)

[Eq. (21) of Ref. [43] in the units 8�G=3 ¼ 1], with

Z ab¼��Rabþ2KacK
c
b�gikKikKabþDb�a���b�a:

(C2)

Here gab is the spacetime metric, hab ¼ gab � �nanb
(� ¼ nana ¼ f�1; 1g) is the induced metric on the junction
surface, and Tab is the energy-momentum tensor. The
tensor Zab depends only on geometrical quantities: Rab

andD are the Ricci tensor and covariant derivative induced
on the hypersurface, and �a ¼ ncrcna, with r the four-
dimensional covariant derivative.
When the energy-momentum tensor is a sum Tik ¼

�ik þ�ik�ð
Þ (where 
 is the coordinate adapted to n,
i.e., n ¼ t�1

S @=@
, and na�ab ¼ 0), with �ik the regular

four-dimensional part and�ik the distributional part on the
hypersurface, integration of Eq. (C1) across 
 through an
infinitesimal range containing the hypersurface keeps only
the distributional part, leading to the Lanczos equations
[40,41]

�Kab ¼ �3�

�
�ab ��

2
hab

�
; (C3)

or equivalently

� 3��ab ¼ �Kab � hab�K: (C4)

Here� is the trace of�ab. AsZab is finite, its contribution
to the integral across the infinitesimal range also vanishes.
Without a distributional energy-momentum part, the ex-
trinsic curvature should be continuous.
Let us now specialize this for a junction along a maxi-

mally symmetric 
 ¼ 0 spacelike hypersurface (a hyper-
plane with Rab ¼ 0) embedded in a flat Friedmann
spacetime. The normal vector n has zero acceleration�a ¼
0 and the extrinsic curvature becomes Kab ¼ _aa~hab, with
~hab the three-dimensional Euclidean metric. The curvature
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term is Zab ¼ �H2a2 ~hab and the energy-momentum

tensors are �ab ¼ ~�nanb þ ~pa2 ~hab and �ab ¼ �pa2 ~hab.
Since the projected Lie-derivative in Eq. (C1) becomes a
time derivative, the equation reads

@

@t
ðHa2Þ ¼

�
�H2 þ 3

2
½~�� ~p� �p�ð
Þ�

�
a2; (C5)

which is a combination of the Raychaudhuri and Friedmann
equations. For finiteH, ~� and ~p as before the integration of
Eq. (C5) across an infinitesimal time range 
 leads to the
Lanczos equation

�Hjts ¼ � 3

2
�p: (C6)
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