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Perturbations of Kantowski-Sachs models with a positive cosmological constant are con-

sidered in a harmonic decomposition, in the framework of gauge invariant 1+3 and

1+1+2 covariant splits of spacetime. Scalar, vector and tensor modes are allowed, how-

ever they remain vorticity-free and of perfect fluid type. The dynamics is encompassed

in six evolution equations for six harmonic coefficients.

1. Introduction

We investigate perturbations of Kantowski-Sachs models with a positive cosmolog-

ical constant. Although a simple argument by Börner and Ehlers1 renders isotropic

bouncing universes incompatible with observations, the argument does not hold for

Kantowski-Sachs models,2 in some of which the universe exhibits an anisotropic

bounce from a contracting into an expanding phase. Hence the evolution and prop-

agation of perturbations in these models, also their possible effects on observables,

like the Sachs-Wolfe effect3 are of interest.

The 1+3 and 1+1+2 covariant splits of the space-time4–7 prove particularly

suitable for perturbation theory, as they employ variables vanishing on the back-

ground, hence with gauge invariant perturbations.8 For simplicity we consider only

vorticity-free perturbations of perfect fluid type, but allow for scalar, vector and ten-

sor modes. We further expand the evolution equations for the perturbative variables

in terms of harmonics.

2. The 1+3 and 1+1+2 covariant formalisms

The existence of a preferred timelike vector ua naturally leads to a covariant 1+3

split of spacetimes.6,7 The induced metric hba = gba + uau
b also acts as a projection

operator onto the perpendicular 3-space. All vectors and tensors can be covariantly

decomposed into ”spatial” and ”timelike” parts. Covariant time derivative and pro-

jected spatial derivative can be defined as

ψ̇a..b ≡ uc∇cψa...b and Dcψa...b ≡ hfch
d
a...h

e
b∇fψd...e

respectively. The covariant derivative of the 4-velocity ua is decomposed as

∇aub = −uaAb +Daub = −uaAb +
1

3
θhab + ωab + σab (1)
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in terms of the kinematic quantities of ua, the acceleration Aa ≡ ub∇bua, expan-

sion θ ≡ Dau
a, vorticity ωab ≡ D[aub] and shear σab ≡ D<aub> respectively. The

kinematic quantities, supplemented by the Ricci tensor (expressed via the Ein-

stein equations in terms of the energy density µ and pressure p of a perfect fluid)

and by the electric and magnetic parts of the Weyl tensor (Eab ≡ Cacbdu
cud and

Hab ≡
1
2ηadeC

de
bcu

c) are the dependent variables. The Ricci and Bianchi identities

lead to both evolution equations in the ua direction and to constraints.

A formalism for a further split (1+2) with respect to a spatial vector na (with

uana = 0) is also known.4,5 The projections perpendicular to na arise via the in-

duced metricN b
a = hba−nan

b of the 2-space. Vectors and tensors may be decomposed

again into scalars along na, perpendicular two-vectors and symmetric, trace-free

two-tensors asAa = Ana+Aa , ωa = Ωna+Ωa, σab = Σ(nanb−
1
2Nab)+2Σ(anb)+Σab

and similarly for Eab and Hab in terms of E , Ea, Eab and H, Ha, Hab respectively.

The derivatives along and perpendicular to na are

ψ̂a...b ≡ ncDcψa...b = nchfch
d
a...h

e
b∇fψd...e and δcψa...b ≡ Nf

c N
d
a ...N

e
bDfψd...e

respectively. Similarly to ∇aub, the derivatives Danb and ṅa can be decomposed in

terms of ‘kinematical’ quantities related to na as

Danb = naab +
1

2
φNab + ξǫab + ζab and ṅa = Aua + αa (2)

where aa ≡ n̂a, φ ≡ δan
a, ξ ≡ 1

2ǫ
cabdδanbucnd, ζab ≡ δ{anb}, A ≡ naAa, αa ≡ N b

aṅb.

As summary, the Ricci and Bianchi identities can be rewritten as evolution and

propagation equations in the ua and na directions plus constraints.

3. Perturbations of Kantowski-Sachs

For the unperturbed space-time we take Locally Rotationally Symmetric (LRS)

Kantowski-Sachs cosmologies9

ds2 = −dt2 + a21(t)dz
2 + a22(t)

(

dϑ2 + sin2 θdϕ2
)

(3)

with cosmological constant Λ > 0 and a perfect fluid with barytropic equation of

state p = p(µ). These space-times are completely determined by the shear Σ, energy

density µ, expansion θ. The electric part of the Weyl tensor E is given algebraically

in terms of the others.

The perturbative analysis proceeds smoothly in terms of variables vanishing on

the background, hence being gauge invariant.8 The spatial variations in θ,Σ, E , µ

are characterized by their gradients

Wa ≡ δaθ, Va ≡ δaΣ, Xa ≡ δaE , µa ≡ δaµ , (4)

vanishing on the background (the derivatives θ̂ ≡ naDaθ etc. can be rewritten in

terms of δa-derivatives due to the commutation relations holding in the case of no

vorticity). Other variables vanishing on the background are aa, φ, ξ, ζab, αa,A,Aa,

Σa,Σab, Ea, Eab,H,Ha,Hab, where aa can be put to zero by choice of frame.
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Any scalar, vector and tensor variable is expanded in harmonics according to

Ψ =
∑

k‖,k⊥

Ψk‖k⊥
Pk‖

Qk⊥
, Ψa =

∑

k‖,k⊥

Pk‖

(

ΨV
k‖k⊥

Qk⊥
a +Ψ

V

k‖k⊥
Q

k⊥

a

)

,

Ψab =
∑

k‖,k⊥

Pk‖

(

ΨT
k‖,k⊥

Qk⊥

ab +Ψ
T

k‖,k⊥
Q

k⊥

ab

)

(5)

where Qk⊥
, Qk⊥

a , Q
k⊥

a , Qk⊥

ab and Q
k⊥

ab are harmonics on the 2-spheres of constant z

and Pk‖
are the corresponding expansion functions in the z-direction.

All first order quantities can be given in terms of six coefficients. Four of them,

µV
k‖,k⊥

, ΣT
k‖,k⊥

, ET
k‖,k⊥

and H
T

k‖,k⊥
form a closed first order system of evolution

equations coupled to the density gradient, in agreement with earlier results for

scalar perturbations.2 The two other E
T

k‖,k⊥
and HT

k‖,k⊥
form a closed system for

free waves.

These sets of equations seem suitable to study the propagation of gravitational

waves, and the coupling between scalar and tensor perturbations. Furthermore, the

null geodesic condition for photons leads to equations giving the redshift in different

directions in terms of the 1+1+2 quantities. Hence the Sachs-Wolfe effect and the

corresponding variations in the CMB temperature can be calculated.
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