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Spinning compact binary dynamics and chameleon orbits
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We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN)
order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions
included. As a main result we derive a closed system of first-order differential equations in a compact form,
for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions
are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained
dynamical systems we perform a consistency check and prove that the constraints are preserved by
the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital
parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large
distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at

short distances than Newtonian theory does.
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I. INTRODUCTION

The orbital dynamics of compact objects (black holes
or neutron stars) provides one of the best testbeds of any
gravitational theory [1]. Such systems are characterized
by a violently changing mass quadrupole moment, hence
leading to emission of gravitational radiation. Gravitational
waves represent ripples in space-time curvature. The way
to separate them from the background curvature is to look
for the fast changing component of the curvature, in the
high-frequency/geometric optics approximation [2]. These
perturbations of the background geometry then travel away
with the speed of light.

In certain cases they can be described in terms of a
post-Newtonian (PN) approach, excellently reviewed in
Refs. [3,4]. Such an approach is restricted to (i) a weak-
field regime, where gravity is weak compared to its strength
at a black hole horizon and the distance r is large compared
to the horizon radius, e = Gm/ c2r < 1 (here ¢ is the PN
parameter, G the gravitational constant, ¢ the speed of light
in vacuum, m and r are the total mass and separation), and
(i1) slow motions compared to the speed of light, v < c.
Due to the virial theorem, e ~ v?/c?. Gravitational wave
characteristics can be reliably computed in the framework
of the PN formalism throughout the inspiral (lasting from
tiny values of € to an upper value of the order of 0.1),
after which a merger regime follows (requiring a numerical
analysis of the full nonlinear Einstein equations) and a
ringdown of the finally merged object (which can be
described in terms of black hole perturbation theory [5]).
Alternatively the full inspiral-merger-ringdown process is
well encompassed by the effective one-body approach [6],
where the waveforms are calibrated by accurate numerical
relativity simulations [7].

Efforts for the direct detection of gravitational waves
emitted by compact binaries by the ground-based
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interferometric detectors LIGO [8], Kagra [9], and Virgo
[10] are under way and a detection is expected in a few
years, based on the best estimated coalescence rates [11].
Gravitational waves emitted by supermassive black hole
binary coalescence could be observed by pulsar timing
arrays [12] or with LISA [13] (launch date 2032).

During the inspiral, up to 2PN orders the dynamics is
conservative. A classical test of general relativity, the
perihelion shift of planetary orbits is a 1PN effect. In the
strong gravity regimes even without including the dissipa-
tive effects arising at 2.5PN orders and beyond [14], the
orbits could be extremely different from Keplerian ones.
As an example we mention zoom-whirl orbits, arising in
geodesic calculations [15,16] and numerical relativity
simulations [17,18]. Corresponding contributions, that
capture some of these features, arise at large PN parameters
[19]. In the conservative dynamics general relativistic
effects contribute at 1PN and 2PN orders, but the spins
of the components also couple with the orbital angular
momentum and with themselves, leading to spin-orbit (SO)
and spin-spin (SS) effects. The mass quadrupole of the
compact objects also modifies the binary orbits with
quadrupole-monopole couplings (QM). It is usual to trace
back the quadrupole moment to rotation, in case of which
the QM contributions to dynamics could be expressed in
terms of the spin. These corrections to the dynamics have
been discussed extensively in Refs. [20-26], while the
backreaction of gravitational radiation in Refs. [23,27-33],
and implications on galactic jets in Refs. [34,35].

In this paper we study the conservative dynamics of
a spinning compact binary system. We rewrite the full
set of conservative evolution equations, first derived in
Refs. [25,26], in terms of a set of dimensionless variables
evolving in a dimensionless time, in a form suitable to
monitor both bounded and unbounded orbits (as defined
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by their osculating orbital elements in a local, Newtonian

sense).

In Sec. II we introduce the dimensionless variables
closely tied to the leading-order dynamics. These include
(a) dynamical quantities, which up to the 2PN conservative
evolution are constants, (b) angular variables defined in
reference systems selected by the orbital motion and total
angular momentum, and finally (c) spin angles. Then in
Sec. III we introduce the perturbing force of the Keplerian
evolution, encompassing corrections from general relativity
in the form of the 1PN and 2PN contributions and spin
related corrections, namely the leading-order SO, SS and
QM couplings. The contributions to the precessional
evolutions are also enlisted.

The full 2PN conservative dynamics is presented in
Sec. IV in the form of a generalization of the Lagrange
planetary equations. First the evolution of five dimension-
less orbital elements and of four spin angles is given in
terms of the true anomaly. This is complemented by the
evolution of the true anomaly in terms of the dimensionless
time. As a result we obtain a closed system of first-order
differential equations. They are involved, nevertheless they
exhibit a simple structure. Suitable notations made this
structure transparent.

The dimensionless variables however do not evolve
unconstrained. At the 2PN accuracy of the conservative
motion there are constants of motion, expressible in terms
of these variables. We give these constraints in terms of the
dimensionless dynamical variables in Sec. V.

As for any constrained dynamical system, consistency
checks need to be performed. This implies one taking the
time derivative of the constraints and investigating their
role from a dynamical point of view. In principle such
constraints could lead to (A) new equations of motion,
(B) new constraints, or (C) identities. Section VI is
devoted to this involved analysis, with some of the
computational details shifted to the Appendix. We prove
that the dynamical equations given in Sec. IV are
exhaustive in describing the binary and spin evolution,
as the time derivatives of the constraints lead to identities.
We fulfil the task by performing a series of consistency
checks of the system of differential equations at each PN
and spin order.

As an application of the derived formalism in Sec. VII
we analyze the possibility of having orbits which change
from hyperbolic to elliptic and vice versa, in terms of the
eccentricity of the osculating ellipse, thus in a Newtonian
sense. The existence of such evolutions are to be expected,
as general relativity predicts stronger gravity at short
distances than the Newtonian theory, as is well known
from the study of the stellar equilibrium. Indeed, we find
orbits dubbed chameleon, which appear elliptic (locally,
in a Newtonian sense) at short range, but transform into
hyperbolic (in the same sense) at larger distances. Finally
Sec. VIII contains the concluding remarks.
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Throughout the paper an overhat denotes the direction of
the respective vector.

II. DIMENSIONLESS VARIABLES

A. Dynamical characteristics of axially symmetric
compact objects

Compact binary components with axial symmetry are
characterized by their mass m;, their proper rotation
encompassed in their dimensionless spin y; and their
quadrupole coefficient w;.

The mass of neutron stars is typically of 1.4 solar
masses. Black holes on the other hand could have masses
extending from a few solar masses (for stellar mass black
holes), up to 10! solar masses (for the largest mass
supermassive black holes). We will frequently employ the
total and reduced masses m = m;| + m, and y = m;m,/m,
the mass ratio v =m,/m; € [0,1] and its symmetrical
counterpart = u/m € [0,0.25].

Kerr black holes in extreme rotation provide the upper
bound of the dimensionless spin parameter, which for
general relativistic black holes is constrained as y; € [0, 1].
Faster rotation would destroy the horizon, rendering them
into naked singularities. In order to estimate the range
of y; for neutron stars, we proceed as follows. From the
expression of the spin magnitudes S; = (G/c)m?y;
we rewrite the dimensionless spin as a ratio of two
dimensionless parameters: y; = (S;/m;R;c)/(Gm;/c*R;).
For a neutron star of 1.4 solar masses and radius of 10 km
the denominator is (Gm;/c?R;) ~ 0.2. Approximating the
neutron star to leading order by a rigid sphere, the
numerator becomes (S;/m;R;c)~ (2/5)(R;;/c), hence
i = 2(R;Q;/c). Unless the surface rotational velocity R;Q;
of the neutron star is higher than half of the speed of light
(typical observed rotational velocities are much smaller),
for neutron stars y; € [0,1] also holds."

When the quadrupole moment arises from rotation rather
than asymmetric mass distribution, w; = 1 holds for gen-
eral relativistic black holes [36], while for neutron stars
w; € [4, 8], depending on their equation of state [31,37].

B. Keplerian dynamical constants
The Newtonian expressions of the energy, orbital angular
momentum and Laplace-Runge-Lenz vector of a binary
system are

pv*  Gmu

Ey=— 1
w5 (n

'We note that this is not the case for ordinary stars, where
(Gm;/c?R;) has a much smaller value due to their noncompact-
ness. Hence in the dynamics spin-orbit coupling terms containing
i could dominate over general relativistic corrections, while
spin-spin terms with yy, or quadrupole-monopole terms with y?
could become even larger.
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Ly =urxv, (2)
AN = v x Ly — Gmyft. (3)

They obey the constraints

LN . AN - 0,
2ENL?
(Gmp)? + =0 = A3, (4)

and are constants to Keplerian order. As it is well known,
the Keplerian orbit is a conic section characterized by these
constants.

C. Osculating orbit

When general relativistic corrections in the weak field
and slow motion approximation are taken into account as
PN and 2PN corrections; also by including the modifica-
tions to the dynamics due to leading SO, SS and QM
couplings, the orbit ceases to be a conic section in the strict
sense, nevertheless it can be well approximated by a conic
section locally. This local approximant is the osculating
orbit, defined as the Keplerian orbit with the same orbital
state vectors (position and velocity) as for the orbit realized
in the presence of the perturbations. It is easy to see then
that the dynamical constants of the osculating orbit are
Ey, Ly, Ay, restricted by the constraints (4).

The perturbed orbit can be envisaged as a sequence
of conic sections, the orbital elements of which slowly
evolve. One can therefore characterize the osculating orbit
(the instantaneous Keplerian orbit, the orbital parameters of
which evolve in time) by the above introduced five
independent and time-evolving variables. The additional
information encoded in the orbital state vectors is 7.

D. Dimensionless orbital elements and spin variables

The five independent dynamical variables are equivalent
to a similar number of orbital elements. To show this, first
we define two independent variables characterizing the
shape of the osculating orbit, which are both dimensionless
and equally apply for bounded or unbounded orbits. These
are a dimensionless version of the Newtonian orbital
angular momentum and the orbital eccentricity, defined as

cLy
[, = , 5
"= G (5)
Ay
= 6
= Gmp (6)

In these variables the Newtonian expression of the energy
reads [see the second constraint (4)]:

26%—1
a7

(7)

EN:ﬂC
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which is manifestly negative for circular (e, =0) or
elliptical orbits (0 < e, < 1), zero for parabolic orbits
(e, =1) and positive for hyperbolic orbits (e, > 1).
Note that [, is related to the semilatus rectum py =
L% /Gmu? of the conic orbit as [, = c(py/Gm)'/? and
to the periastron rp;, = py/(1 +e,) as

2ro N\ 172
L=(—") ( 172, 8
= () e ®

Note that r,;, = 0 and [, = 0 are equivalent, thus a collision
course is possible only for vanishing orbital angular momen-
tum. For bounded orbits we can also introduce the semi-
major axis a, = py/(1 — e2) = (Gm/c2)2/(1 — ¢2).?

For the three Euler angles, defining the orientation of the
plane of motion and the orientation of the orbit in this plane
we chose the following: the inclination a = arccos (J - Ly)
of the plane of orbit with respect to the reference plane
(which is chosen perpendicular to the total angular momen-
tum J), the longitude of the ascending node —¢,, (measured
from an arbitrary axis X lying in the reference plane to
the ascending node 1, defined by the intersection of the
reference plane with the plane of motion) and the argument
of the periastron y,, (measured from the ascending node
to the periastron in the plane of motion, see Fig. 2. of
Ref. [25]). These three Euler angles together with (L,, e,)
are equivalent with the set of dynamical variables
(Ey,Ln,An), as only five of the latter are independent
due to the constraints (4).

Note that the definition of the above angles is mean-
ingful only when the ascending node and the periastron
can be defined, thus alternative definitions of the angles
are required in the cases (a) of evolutions which are either
nonspinning or the spins are aligned to the orbital angular
momentum, when the ascending node cannot be defined
in the above sense, and (b) for circular orbits, when there
is no periastron. We regard these however as configura-
tions of measure zero in the generic parameter space,
which need special attention. The formalism developed in
this paper is well suited for precessing configurations and
noncircular orbits.

The spin polar and azimuthal angles are «; =
arccos (Si . ﬁN) and y; (when measured from the ascend-
ing node), or {; =y; —y, (when measured from the
periastron). In this paper we employ the latter, as this will
simplify the notations.

Finally we mention the last angular variable necessary
for the description of the compact binary dynamics. The
position of the reduced mass particle is characterized by

its azimuthal angle, which is y, when measured from the

Note that it is possible to define in a similar way a semilatus
rectum py., and radial eccentricity e, in terms of the conserved
energy and z component of the orbital angular momentum of Kerr
orbits, as introduced for bounded orbits in Ref. [15].
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periastron, or y,, + y,, when measured from the ascending
node. The other quantity, which defines its instantaneous
position is the distance r measured from the focal point,
where the potential generated by the (fixed) total mass m is
centered. Its relation with the already introduced quantities
will be discussed next.

E. Parametrization of the radial evolution

The true anomaly parametrization r(y,) of the osculating
orbit is the same as for the Keplerian motion

LZ
r= N ,
u(Gmu + Ay cosy,)

©)

with the important difference being that the dynamical
quantities Ly and Ay evolve with the osculating orbit. The
parametrization obeys

. Ay .
= ﬁsm;(p, (10)
) (Gmp)* + A} +2GmuAy cos g,

v
2
LN

(11)

In terms of osculating orbital elements introduced above,
these relations read

G 2
L (12)
c© I +e.cosy,
. e .
F=cysing, (13)

, 1+ el +2e,cosy,
L

’Uz:C

F. Dimensionless constants of motion

At the level of accuracy discussed in this paper (with PN,
SO, 2PN, SS, QM contributions to the dynamics included)
there are several constants of the motion:

(a) the magnitudes S; = (G/c)muv*=3y; of the spins
S; (as the spins undergo a purely precessional evolu-
tion [21]),

(b) the total energy E=Ey+Epy+ Eso+ Expn+ Ess+
Eqgu of the system, with the various contributions
given in Refs. [22,23,32],

(c) the total angular momentum J = Ly + Lpy + Lgo+
Lypny +S1 +S,, with contributions enlisted in
Ref. [23]; however for the contribution Lgo we adopt
the expression given in Ref. [26], which holds true
in the Newton-Wigner-Price [38] spin supplementary
condition (SSC), employed in this paper.

We introduce the dimensionless versions for the total
energy and angular momentum magnitude as
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E

G —
G et (15)
cJ
= . 1
3= G (16)

Note that unlike other quantities employed in this section
(characteristic to the local approximant of the real orbit,
e.g. to the osculating orbit), the total energy and angular
momentum (also their dimensionless versions) characterize
the real orbit.

It is also possible to define the periastron distance rl‘?ﬁn
and eccentricity eD of the fictitious Keplerian motion with
energy € and orbital angular momentum ¥ through the

relations

&2 czr;;fin Ry
52 = (Cmn) (14 o). (17)
A=Gm e?, 18
U

where A is the Laplace-Runge-Lenz vector of the Keplerian
motion with energy € and orbital angular momentum g,
defined in the usual way as

A= Gmu(l +26F2)"/2, (19)

These relations lead to the expressions of the orbital
elements of the fictitious Keplerian motion in terms of €
and  as

ef = (14263272,

Czr;:jlin _ SZ (20)
Gm 1+ (1+26F2)"/2

To 2PN accuracy both rl‘?ﬁn and e‘? are constants.’
With this we have all of the ingredients to obtain the
dynamics of a spinning, precessing compact binary on

noncircular orbit at 2PN order accuracy.

3Note that similar definitions can be also introduced as

ef = (142622)12,

2.8 2
Cryin Q

Gm 1+ (142622)1/2

(1)

where 8 = cL/(Gmy), with L the magnitude of the total orbital
angular momentum. As L is not a constant when SS and QM
contributions to the dynamics are present, %, and e vary on the
orbit; therefore, they are not particularly useful. Alternatively, an
orbital average L of the magnitude of orbital angular momentum
was introduced and employed in Refs. [30,32] and [39] together
with the corresponding orbital elements in Ref. [24], but only for
closed orbits.
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III. RELATIVISTIC AND SPIN INDUCED
PERTURBATIONS

We will characterize the deviation from Keplerian
evolution in terms of a generic perturbing force, which
receives contributions from 1PN relativistic corrections
(given in terms of relative coordinates in Ref. [20]), the
2PN relativistic, the leading-order SO (in the Newton-
Wigner-Pryce SSC) and SS corrections (all given in
Ref. [23]) and quadrupolar contributions (given in
Ref. [32]). The spins, with the exception of the aligned
case also induce precessions of the spins and of the
orbital plane.

We define the dimensionless versions of the perturbing
force Aa acting on unit mass and of the spin angular
frequencies Q; as follows:

— 2" Aa,
a c4 a
G
0 = 2. (22)
C

The components of Aa and €; expressed in the
system f;) = (AN, Qn =Ly x Ay, Ly) were given in
Appendix B of Ref. [26] in terms of the variables
(r,F,v). Starting from those, by employing the para-
metrization (12)-(14) and by rewriting all quantities in
terms of the dimensionless variables introduced in the
previous section, also by switching to a description in
terms of the spin azimuthal angles {; (rather than y,;),
finally organizing the expressions such that they can
be written in a compact form, which emphasizes their
true anomaly dependence, we explicitly give the pro-
jections of the perturbing accelerations and spin angular
frequencies below.

A. Perturbing force

The dimensionless version of the component of the
perturbing force along the periastron line is

a-Ax=aN+ a3 +a§o + a5 4 oM,

1+ e,cos
afN = ( X” Zc cosk;(p,

I+e cos;(
2PN _ ( VT EMAp) 2PN
aj E Cl(k)COS ;(p,

50 — n(1+ e,cos;gp) (e, +cosy,)
1 2[7
43 4 3)y

2
X kCOSK'k,
k—

1
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4SS — 3n(1+e,cosy,)*
= 8
8

){1){2{—COSK1 COS Ky
1. .
X cosy, + ZSIIIK] sink,[2 cos {(-)cosy,

+cos (x, = {(4)) +5cos (3y, _(:(H)]}’

3(1 + e, cos )t & -
a™M = — 2;8 £ Zwkz/Zk 3x18 cosy,
r k=1

1
- Esinzlck[cos Cx +5cos (2x, = &)l

x cos (y, —Ck)}, (23)
where (1) = {, + {; and the coefficients c{ ?I’c) and cffg are
given as

le?(]» =-2(2-n)e,,

ey =ci- (1+3)

clfg) =6(1 —n)e,

oy =-2e (24)
and

cifo) = [2+ 130+ 217 = n(3 = n)eile,
71
N =y 4[4+ o )e2 = (3 - 29p)et
i = 2 8
cipy) = [Cs + (2 +2Tn)ejle,.,
{c4 01+ 7n>e%} &,
= <—2 13 )

1517
= -1 _3ppes 2s)

with the shorthand notations

Ci=3-n

CZ:—9—7T3’7+2;72,

Cy = —20 — 495 + 812,

C,=-13 —?+ 1612, (26)

The dimensionless version of the perturbing force
component in the plane of motion, but perpendicular to
the periastron line, is
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a-Qn =

1+ e,cos 2 sin
afN — ( )(p Xp ZC COSk}(,,,

aPN + asz + aso + ags + aQM’

2

(I+e cos;( Zsiny
2PN = P p 2 : CzPNCOSk)(p,

oS0 — n(1+ e,cos;(p) siny,
2 2[7

2
X 1273 4 3y, cos k.,
—

1

~ 3n(1 +e,cosy,)

SS
a

2 3
L

X]XZ{—COSKI COS Ky
. L. . .
X siny, + 2 Sinky sink,[2 cos {(_y siny,,

=sin (y, = {(4y) +5sin 3y, — {4+ ))]}’

3n(1 4 e, cosy,)* &

M

ag =— 2;8 P E w32 sing,
r =1

1
— Esinsz[Sin é’k + 5sin (2}{], — gk)]

x cos (y, —Ck)}, (27)
where the coefficients ¢ ( , and czf I‘; are given as
7
N =Ci+ <3 - 7”) e2,
51y = ity
€52) = iy (28)
and
21
3oy = Ca + 17ne7 + S (1 +n)et,
5 = [Cs + (26 + 3n)neile,
3
2PN
-
cgm = cfg‘;. (29)

The dimensionless version of the perturbing force
component perpendicular to the plane of motion has only
spin induced contributions
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A

a-Ly=a$+a$s + oM,

3 2

so Nl +e.cosy,)
a0 = TEEGOLS "

k=3 4 3)y, sink;

x [e,cos &y +4cos (y, — &)
+3er Cos (2)([) - z:k)]’
oSS — 3n(1 + e, cosy,)*

377 8 X1X2|cos Ky sink,
°
X COS ()(p - Cz) + cos k, sin Ky cos (;(p — gl)],
oM — (1 +e, cosy,)*

218

2
X Z w3yt sin 26 cos (y, — &r). (30)
P

An important remark we make here is that the PN order
of various terms can be evaluated from the relative powers
of [, in the respective terms, ;! counting for 0.5PN orders.
As [, is much larger than unity, it is also much larger than
the dimensionless spins y;.

B. The precessional angular velocities

The precessions arise due to the SO, SS and QM
contributions to the dynamics. The components of the
dimensionless angular velocity are

n(l+e,cosy,)?
210
x [3cos (2,

;- Ay = {v¥ =3y sink;

— ;) 4 cosd;] + 3wy,
— ;) +cos{i]},

x sink;[cos (2, (31)
n(l+e,cosy,)?
218

x [3sin (2,

w; - Qn = {v¥ =3y sink;
— ;) +sind;] + 3wy,

x sink;[sin (2y, — {;) + sin{;]}, (32)

n(1+e,cosy,)?
213
n(l+e,cosy,)?

- 2—161/2/"3;(] cosk;, (33)

w; - Ly = (4 + 3372

with j #i. The first term in ;- I:N is due to the SO
interaction. The terms containing w; are due to the QM
interaction, while the other terms containing y; are due to
the SS interaction.

Note that all terms in the equations above carry the same
power of the PN parameter [;2. Whether any of the terms
dominate, depends on the mass ratio.
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IV. 2PN CONSERVATIVE DYNAMICS

In Ref. [26] the evolutions of the independent variables
were derived as a system of first-order coupled ordinary
differential equations. We rewrite below these evolutions
explicitly in terms of the dimensionless variables of this
paper. We will also switch from y; to {;, and switch to a
dimensionless time variable, defined as

3
t=——1 34
o (34)

We will denote by an overdot the derivative with respect
to t (as opposed to Ref. [26], where an overdot was the
derivative with respect to 1):

d Gmd
—_— = 35
dt c dt (35)

With all these changes in the notation and in the choice of
independent variables the equations simplify considerably.

For the osculating orbital elements we obtain the coupled
system of the evolutions:

. 2 N
[—— " | _(a-Ay)si
" 14e,cosy, [=(a- Ax)sing,
+ (a-Qn) cosy,). (36)

L, A .
m [—((1 . AN)(er + COS)([,) Sll’l){p

+ (a- QN)(l + 2e, cosy, + coszﬂ(p)]’ (37)

¢, =

. [, . sin(y, +y
lI/p:— |:((1LN)(PP)

(1+e,cosy,) tan

(1+e,cosy, +sin’y,)

A
+ (a-Ay) c,
A . sSiny,cosy
—(a-Qn)—"—+ ”} , (38)
: - cos (w, +7,)
=I(a-Ly)———, 39
a= Lo ) T (39)
. . sin (w, +x,)
=-[(a-L L_20p . 40
In rAa-Ly) (14 e,cosy,)sina (40)
The spin angles evolve as
ki = —(w; - Ax) sin¢; + (w; - Qn) cos ;
i sin ;
“tfa- Ly =6 (1)
1+e cosgp
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& = —[(w; - Ax) cos & + (@; - Qn) sin ;] cotx;

. [
F (o L) b
PN T (T e,cosy,)

. cos(y,—{;)

x (a . LN) tal’lK

(a-Ay) (1+e,cosy,+sin’y,)
er

A siny,cosy
—(a-Qn) —"—"F1, (42)

€r

while the true anomaly is

. (I4e.cosy,)? [,
Xp = r e,(1+e,cosy,)

x [(a-AN)(1 + e, cosy, + sin’y,)
—(a-Qy) siny, cos y,]. (43)

This latter equation allows one to replace (dimensionless)
time derivatives with derivatives with respect to y, in all
previous evolution equations.

Although not independent from the previous ones, for
completeness we also give the evolutions of the auxiliary
spin azimuthal angles y;:

ir; = —[(@; - Ax) cos¢; + (; - Q) sin &;] cotk;

. ! .
)= —— " (a-L
o) =

sin ()(p + Wp) _ cos ()(p - Cz)
tan o tan k;

, (44)

and of the auxiliary angle y span by the spin vectors:

sinyy = (o) - AN)[~cosk sink, sin&,
+sink; cos &, sin ] + (o - Q)
X [cos k; sink, cos {, — sink; cos k, cos & ]

+ (o - Ly) sink, sink, sin¢ ). (45)

Here we denoted o) = w3 — ;.
These evolution equations in terms of dimensionless
variables stand as the main result of the paper.

V. CONSTRAINTS ON THE VARIABLES

At 2PN order accuracy, with the leading order SO, SS
and QM contributions included, the total energy and total
angular momentum are conserved. These primary con-
straints can be expressed in terms of the dimensionless
dynamical variables for which we derived evolution equa-
tions. Therefore in this section we derive these constraints.
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A. Total energy

Starting from the expression of the total energy, with the
PN and 2PN contributions explicitly given in [23], SO (in
the Newton-Wigner-Price SSC) in [24], SS in [30] and QM
in [32], rewritten in the notations of the present paper as

3 Gm v*?
B = {3 1= 1040 G

nGmr

w12

2 ¢2r 2

6
Eppy = pc? i(1 —n+ 13’72)1]_
16 b

Gm i*

1-3
’7( ’7>ch4

G
(21 =23y — 27p%) == m vt
CrC

_|_
0| —= Al OOI—Aoo|._OO|UJ

Gmuvr

(-5 o ;(2+15)< r>3

Gm\2 i2
(4+69n+12772)<czr) r—z}

c

Gm
(14—5511+4;72)< . ) -
cr
)
+ 2

+
ESO = 0,

G3 4.2
m-n
53 ————x1x2{3cosk; cosk, — cosy

— 3sink; sink, cos (2x, — (1))},

Z 12(2 2i—

x [1 = 3sin?k;co8?(x, — ;)]

Ess = —

sz
EQM —

(40)

with y related to the other variables by the spherical cosine
identity

COSy = COS K| COS Ky + sinky sink, cos{(_,

we find that the osculating orbital elements, spin variables
and true anomaly obey the constraint

€ =Cy + Cpxn + Copn + Css + Coum, (47)

with the contributions

*G and ¢ were reintroduced in all 1PN and 2PN terms on
dimensional grounds. In the SS and QM terms y of Refs. [30] and
[32] was replaced with y,; as to leading order they agree. Also y
is denoted in this paper as v, and &; = 2(w —w;) as —2¢;.
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e2—1
Cy=-—"L ., 48
N oop2 (48)
Cpn = 3 Z‘he Cos )(p’
k=0
Qo =19 =57 +2(9 = 5y)e? +3(1 — 3p)e?.
q = 4[14 = 6n+ (6 — Tn)e2],
q = 8(5—4n),
Copny = sgekcosky
16[9 ; !
so = 67 — 2515+ 1957 + (135 — 1657 + 5972) 2
+3(19 =51 + 335%)e?
+5(1 =7y + 135%)€S,
s; = 2[2(82 — 2651 + 38%?)
+2(96 — 1575 + 851%)e?
+3(12 — 435 + 49%)e?],
s, = 4[126 — 4151 + 106n>
+(66 — 140 + 1251%)e2],
53 = 4[60 — 258y + 11312 + 2p(1 + 3n)e?],
sy = —2(4 + 760 — 571%),
16
55 = 5,130 (50)
n(l+e,cosy,)’
Css = —2—I?)(1)(2
x {2 cosk; cosk, — sink; sink,
X [cosC(_> + 3 cos (2)(p—é'(+))]}’ (51)
and
n(l+e.cosy,)’ 2,2~
x [1 = 3 sin? k; cos? ()(p =& (52)

B. Total angular momentum

The projections along the basis vectors (i,lfl = I:N X
1, ﬁN) of the expression of the total angular momentum
give constraint relations. In the Newton-Wigner-Price
SSC these were given as Eqgs. (B26)-(B28) of [26].
We rewrite these relations in terms of the dimensionless
variables employed in this paper, and also employ
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trigonometric identities to give them in the most simple
form containing the spin azimuthal angles ¢; (rather than
;). We obtain

2
0= Z;(i sin k; [z/Zi‘3 cos (§; +w )
p

B n(4%73 +3)(1 + e, cosy,)
212

xsin (y, +w,)sin (y, —Cl-)}, (53)

2
Jsina = i sSink; [UZi_S sin (¢; + ll/p)
i=1

L 1@+ 3)(1 4 ¢, cosz,)

22

x cos (y, +w,)sin (y, _Ci):|7 (54)

2
Jcosa=1,(1+ epy + €pn) + Z)(,- COS K;
i=1

2i-3
|23 n(4v* = + 3)(12 + e, cosy,) . (55)
202
with
T—n+(1-3n)e; +4(2—-n)e,cosy
€pN = 5 L. (56)
212
and
13
€2pN = —4Zpke’,‘cos";(p,
L
po =59 — 143y + 11? +2(17 — 457 + 119?)e?
+3(1 = Tn + 13n%)et,
P = 4(38 = 920 + 167% + (10 — 33 + 257%)e2),
Py = 2(48 — 1197 + 56%),

For aligned configurations the constraints (53)—(54)
become identities.

We note that all three total angular momentum con-
straints have a leading order and an [;? contribution. It is
instructive to discuss the leading-order contributions to
Eqgs. (53)-(55):

2
0= Z;(i sin k;% 3 cosy; + O(L;2), (58)
i=1

PHYSICAL REVIEW D 91, 024012 (2015)

2
Ssina = Z)(,- sin k;2% 73 siny; + O(172),  (59)
=1

2
Scosa=1,+ Z;{i cosk;* 3 + O(1;72),  (60)
i=1
while the ratio of the last two becomes

2 Jigin e 23 o
Do [ SIK LT sy,

. O(L72). 61
1+>°7  “cos k™ + O (61)

tana =

As y;/1, = O(e'/?), for comparable masses tana =
O(e'/?)sink;, hence a is of 0.5PN order. By contrast,
for small mass ratios tan @ = tanx, /[1 + O(e~'/2)1] which
is approximated as a & k; (not necessarily small) when
O )< 1.

Another useful formula holding to leading order, which
will be explored later on in the paper is

2
[, = ZDZi_3)(i [sink; sin ({; +,) cota—cosk;] + O(L;?).
- (62)

For comparable masses sink;cota = O(1,), hence it is
large, while cosk; is of order unity. By contrast, for small
mass ratios, where a = ki, the two terms are of comparable
unit order; nevertheless the prefactor v7!y; is large, of
order I,.

The equations (47), (53)—(55) are primary constraints for
the 2PN accurate binary dynamics, the consistency of
which with the dynamical equations has to be analyzed.
This will be done in the next section.

VI. CONSISTENCY

According to the general theory of dynamical systems
with constraints, the derivatives of the constraints could
lead to either new dynamical equations, new constraints, or
be identically satisfied. In case of new constraints arising
by this procedure, the check of the consistency conditions
should be repeated. Therefore in the present section we
discuss these consistency conditions.

We will verify the consistency of the above lengthy
system of evolution and constraint equations by taking
the time derivatives of the four dynamical constraints (47),
(53)—(55) derived in the previous section and inserting in
them the evolution of the orbital elements and spin angles
given in Sec. IV. We will do this order by order, starting
with the Keplerian order, then proceeding with the rela-
tivistic 1PN and 2PN contributions, finally discussing the
leading-order consistency for the SO, SS and QM con-
tributions. The calculations will be somewhat simplified by
taking into account that only y, has a Newtonian order
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evolution; the orbital elements and spin angles being
conserved at this order.

A. Time derivative of the total angular
momentum constraint

For calculating the time derivative of the total angular
momentum constraint one has to remember that the
basis (I, = Ly x 1, L) employed for the decomposition
55)—(53)) itself changes, being a precessing basis. Hence
for the consistency condition we need to prove

d A . N
0= E(c‘il + Jamh + Jr, L) (63)
For the evolutions of the basis vectors we start from the
precession relations (12)—(13) given in Ref. [26] for the
basis f(;), and rewrite them in terms of the dimensionless
variables as

fi) = Qa4 x fj), (64)

with the angular velocity vector (redefined by a factor of
dt/dt as compared to Ref. [26])

l+e, CoSyp
1

- [(a-AN)(2+ e, cosy, —cos’y,)

- (a-QN)sin;(p cos;(p]ﬁN}. (65)

Q4 {(a . I:N)(COS)([,AN + sin)(PQN)

Next we take into account that the basis (I,1) is trans-
formed into (A, Q) by a rotation with angle y,:

1= cos WpAN — sin WPQN, (66)

m = sin prN + cos WPQN, (67)

which leads to a precession of the basis vectors (1, i1, Ly)
with the angular frequency vector

Q, =Q, —y,Ly. (68)

(Note, that in contrast with the expression (24) given in
Ref. [26] here the dot refers to the derivative with respect
to the dimensionless time t.) The detailed form of €2; was
also given as Eq. (30) in Ref. [26], which, after a proper
rescaling to account for the evolution in terms of t and
rewritten in terms of the dimensionless variables reads

PHYSICAL REVIEW D 91, 024012 (2015)
_ Ir(a i LN)
1 +e.cosy,

sin + .
N Wy +xp) LN:| ’
tan o

Q; |:COS)(pAN + Sin)(pQN
(69)

or rewritten in the basis (i,lfl, I:N) as

Ir((l . IAJN) a . A
Q = m cos (y, +x )1+ sin (w, + y,)m
. N A
| Sy +25) LN] (70)
tan a

Hence the consistency condition to be proven reads

We rewrite this by inserting the components of the
normalized total angular momentum (i, Fm- i) =

(0, §sina, § cosa) and by exploring Egs. (67) and (70):

A (a-Ly)
0=3i1+3mm+3£NLN+3ﬁ
r p

x cos (y, + x,)(— cosarh + sinaLy). (72)

Hence the desired consistency conditions are

0= i, (73)
3 Ir(a ! IA‘N)

OZSm—SCOS(lmCOS<Wp +)(p), (74)
: . Ir(a ) I:N)

0:3£N+SSIHGWCOS(WP ‘l‘){p) (75)

In order to prove them, for the derivatives of the normalized
total angular momentum we take the derivatives of the
right-hand side of the constraints (53)—(55).

Note that the component Si of the normalized total
angular momentum (which vanishes for nonprecessing
evolutions) is a conserved scalar for precessing evolutions.
We have seen at the end of Sec. V that this constraint
decouples into two independent conditions, each obeyed by
one of the spin directions.

Another remark is that the second terms of the right-hand
side in Egs. (74)—(75) are the sign flipped versions of
the derivatives of the left-hand side expressions of the
constraints (54)—(55), with a taken from Eq. (39). Hence
the same consistency conditions could be obtained by
simply taking the dimensionless time derivative of the
constraints (54)—(55).
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B. Keplerian evolution

With only the leading-order terms due to the vanishing of
a and w;, Eq. (43) reduces to

) (1 +e,cosy,)?
Xp = 713 P . (76)

Combining this with the definition of the true anomaly,
Eq. (12), we obtain Kepler’s second law for the area:

.Gt
rx, = T L. (77)
c

The constraint equations reduce to

et -1
o2
a=0,
3=1. (78)

Then Eq. (39) becomes an identity, Egs. (36)—(37), (41)—(42)
imply constant [,, e,, x; and {; (although at this accuracy
there are no spins, thus x; and ¢; have no interpretation).

With a =0, Egs. (38) and (40) become ill defined,
unless we multiply them with sina, when they give
identities, but no information on y, and ¢,. This is
related to the ill-definedness of the node line 1 when the
two planes coincide. Therefore some 1 has to be chosen
in an arbitrary way to define the argument of the
periastron.

This last remark also holds when only the 1PN or
1PN + 2PN contributions are included, or when the spins
are perpendicular to the orbit (£S¢|| & S,||Ly) thus they
do not precess. In these cases by definition a =0,
consistent with a - I:N = 0 (when spins are present then
due to x; = 0) in Eq. (39). For all these cases the reference
plane and node line should be defined by another vector,
not aligned to J.

C. 2PN level consistency, nonspinning case

We discuss the 1PN and 2PN consistency conditions
together below, by switching off the spin.

1. The energy condition

The time derivative of the total energy, the constraint
equation (47), without the spin and quadrupole contribu-
tions, to 2PN accuracy gives

e, Le2—1 d d
° ¢ +— Cpn + . Cop, (79)

0=¢r o2
“ETL e T at dt

with

PHYSICAL REVIEW D 91, 024012 (2015)
d 1 i<
—Cpy=—594" E kcosk
dat ™ sw{ [, g WO

3 k
) Zd qrer
e =0 (d];r )cos")(p

3
—Zpsing, Z que’;cosk";(p}, (80)
k=0

and

d . 1 LS
E("ZPN = 610 —6I—Zske,cos Ap

5 k
) d
+eé, g (sey) cosy,

5
—Jpsing, Z ksyekcost =y, } (81)
k=0

The 1PN and 2PN contributions to ¢, and i,/I, carry
factors of I;° and I;7, respectively, while 7, has
Newtonian, 1PN and 2PN contributions, carrying factors
of 173, I3 and (7, respectively. Remembering that ;2
represents one relative PN order it is easy to separate
the 1PN and 2PN contributions to the consistency
condition (79). These are the terms scaling with I’ and
[°, respectively (while higher order terms should be

dropped, being beyond the accuracy of the present calcu-
lations). We find at 1PN

0= épNﬁ_Ilr)N (e%_ 1)

I R S
_;'{f,’ siny,,
814

3
> kqeefcostly,. (82)
k=0

and at 2PN

3
0= e2PNEr 4 PN 1 Zd<Qk 5

e
T2 3
[y 8l; = de,

cosy,,

)'(N 5
+ _pz kskelfcosk‘l)(p) (83)

Inserting the evolutions of e,, [, and y,, the 1PN accurate
consistency condition (82) becomes
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__ PN 3 PN
0=a"siny, —ay" (e, +cosy,)

- 3
sin
Zkaqke’,‘cosk‘l;(p. (84)

(1+e,cosy,)?
818

Inserting af™ and af™ we obtain for the coefficients of the
powers 0,1,2 and 3 of the arbitrary cosy, the relations

qie, = 8( + Cg%\l) )
Qe = 4(—c1<1) + C2(1)er + c%)),
8
= 3 (—clfg) -+ cgg)e, + CZPH)),
0 = ¢}y — o) (85)

which can easily be verified to hold with the definitions
(24), (28) and (49) of this paper.

As expected, the 2PN part of the consistency condition
(79), Eq. (83) gives a much more cumbersome equation:

0= (1+e,cosy,)[ai™siny, — a3"™(

3
al sm;(p ek
+ — 8[2 [ kz:qke #COS" Y,

e, +cosy,)]

3 k)

+ (e, +cosy,) Z d
ko e

cosk;(p

3
+ (1 + e, cosy, + sin’y,) quk(er COSZP)IH]
k=0

aPN
8[2 [4cosxp2qke cos )(p

—sin’y, cos y,, z kqy (e, cos y )k

3 k
d
— (1+2e,cosy, + cos’y,) E (Qier) cosk)(p}
=0

de,
(1+e,cosy,)’siny, &
ksiekcosk =1y . 86
+ 16I§ kz:; kCr )(p ( )
Inserting afN, abN, a3PN and a3™N, we can simplify with

siny,, then after a long but straightforward calculation
we obtain a rank 6 polynomial in cosy,, the coefficients
of which have to vanish one by one, as discussed in
Appendix A.

2. The angular momentum conditions

With the method for verifying the consistency shown in
detail above, we can proceed to verify the consistency of
the other constraints.

PHYSICAL REVIEW D 91, 024012 (2015)

For the nonspinning 2PN evolution a =0 =a- I:N,
hence (Jj, Sm- 3r,,) = (0,0, F) and the consistency con-
ditions (73)—(75) simply state that all components of the
dimensionless total angular momentum vector should be
conserved independently (there is no precession involved).
The time derivative of the nontrivial component gives
[the same equation emerges by taking the time derivative
of Eq. (55) with x; = a =0]:

L,

0=""
L

(1 + epn + €2pn) + €pn + €pn- (87)

Following the steps of the proof of consistency of the
energy constraint we obtain, to 1PN order accuracy

2(2=n)e, (1 +e,cosy,)’sing,

0 pu—
[y
+ afNsiny, — a5Ncos ., (88)
then
3 2
0= cm)cosk)(p - Z cg?}{)cosk“;(p
k=0 k=0
+2(2=n)e,(1 +e,cosy,). (89)

This again holds true in each polynomial rank of cosy,,
confirming 1PN level consistency of the total angular
momentum constraint.

At 2PN order accuracy Eq. (87) gives

afN afN
0=— < 212 >sm)(,,+a2PNc05)(,,+2—I262
1+ e, cos sin 3
_{+e 8;5’) “p Z kpyekcost=y . (90)
r k=0
with the notations
1
bl = Zbl(,)cosl)(p,
=0
by =9—Tn+ (1 -3n)e;
bi(1) =10(1 = n)e,, (91)
2
52 = sz(z)cosl)(p,
1=0
byg) = 2(1 = 3n)e,,
b = b1 +e b2
bz(z) =by)- (92)
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By inserting the coefficients, simplifying with siny, we
obtain a fifth-order polynomial in cosy ,:

-2

Mu-

c gcos 2y + ZZC2PNCOSk+1)(p
i
R
+< > e S by
1=0 k= 1=0 k=0

)cos e
(1 +e, COS)(p

2 kake cosly,, (93)

Il
=]

the coefficients of which can be verified to vanish one by
one, as indicated in the Appendix.

Therefore we fulfilled the task to prove the consistency
of the nonspinning evolution and constraint equations up to
2PN accuracy.

D. Consistency of spin and SO contributions

In the Newton-Wigner-Price SSC the total energy does
not contain SO contributions; therefore, the time derivative
of Eq. (47) will not lead to any constraints on the leading
SO part of the dynamics.

In order to proceed with the consistency of the total
angular momentum constraints, by including the contri-
butions linear in the spin, we need to remember that [;2
represents one relative PN order. The right-hand side of
the constraints (53)—(54) contain projections of the spin
and of L§}”, which are linear in the spins. We will
consider only contributions linear in the spins and to
leading order in ;2.

The consistency condition of the constraint (53), given
by Eq. (73), is

2
= E {SIHK [1/2 3 cosy;

(4473 4+ 3)(1 + ¢, cosy,,)

212

x sin (y, +y,)sin (y, +w, — l//i):| } (94)

From among the time derivatives we explore that j(p has a
Newtonian part 7 = O(I;%); then [, = O([;*), ¢, =
O(L;°) and ypN = O(L;?), respectively. We also need
to keep in mind that the spin terms appearing in Eq. (62)
combine to [,. Hence in Eq. (94) we will take into account
the leading-order O(1;°) terms, but also those of O(I;%)

which could combine to O(I;°) terms by virtue of
Eq. (62),
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2

0= E k301213 cos kj cosyr; — E yi sink;
i=1 i=1

i noai
x {(wl RO siny 4y 5 (407 4 3)

d
[(1+4 e,cosy,)sin(y, +y,)
d)(p P pT¥p

sin ey vy = vl | (95)

To the required order the derivatives are

v (I4e.cosy,)?
Xp = 3 ’
p

(96)

so_ "
T

XZ

+4cos (y, +y, —wi)
+3e, cos (2}(17 + Yy — l//k)L (97)

(1+e,cosy,)?sin(y, +w, —w;)

V73 4 3)y sinkle, cos (wy — )

0 = % (1+e,cosy,)’(4+3°72)

416 (1+e,cosy,)?
X [sin

n(y, +w,)cota—cos(y, +y, —y;) cotk]

VA7 4 3 sinyfe, cos (wy - )

XZ

+4cos(y, +y, —wy)
+3e,cos (2, +w, —wi)]. (98)

We get
2
0= Z)(i sink; (40277 +3) { (14e,cosy,)siny;

d
(0 epsosgy)sinGy, ) sinGry vl
P

—TZ V¥ 73y [sink; siny; cota— cosk; sin (y, + )]
=

2

xsin(y, +y,) Z

12573 4 3)y, sinky

=1
x [e,cos (yy—w,)+4cos(y, +w,—w;)
+3e,cos (2y, +w, —yi)], (99)
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which, after exploring the constraint (62) in the third line,
becomes

2
0= Z)(i sink; (40777 + 3){(1 +e,cosy,)siny;

d
o (1 ercoszysinty 4wy sinty v, =)}
p

1 2

—isin(;(p—l—l//p Z 12473 43y sinky
k=1

X [e,cos (l//k_l//p) +4cos ()(17 +l//p _l//k)

+3e,c08 (27, +w, —wi)]. (100)

This can be shown to identically hold, hence to leading
order in the SO contributions the consistency condition
(73) is obeyed.

For the consistency condition (74), we calculate the
derivative Sﬁ, as the right-hand side of Eq. (54). We count
the orders at which the dimensionless variables change,
obtaining to leading order

4 2i-3 3
Z;{lsmk [ PNy 2i- cosu/,+)(1,y’77( U2[2+ )

&l
(101)

(1 +e,cosy,)cos (y, +wy,)sin(r, —
d)(,,

or by inserting the respective time evolutions

n(1+e.cosy,)

S = Z—EZ (4073 + 3)y; sink;

d
[0+ egcoszy)eos (1, 411y ity =€)
29’

+ (1 +e,cosy,) cos (Wp+Ci)]. (102)

Then as a3° = O(I;7) and to leading order Fcosa =1,
the second term in Eq. (74) is also O(L;°). As the spin
magnitudes are arbitrary constants, to leading order the
consistency condition (74) splits into two equations, one for
each spin direction:

d .
0= 25[(1 +e,cosy,)cos (y, +w,)sin(y, — ;)]
p

+2(1 +e,cosy,)cos (y, + ;) —cos (y, +x,)
x [e,cos{; +4cos (y, — ;) + 3e,cos (2x, — ;)]
(103)
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This can be shown to identically hold, hence to leading
order in the SO contributions the consistency condition (74)
is obeyed.

Finally for the consistency condition (75) we calculate

the derivative SI:N as the right-hand side of Eq. (55), with

only the Newtonian and SO terms included. We again
explore the orders at which the dimensionless variables
change, obtaining

2

. e, sin .
Sty =504 N%Z (40773 + 3)y; cosk; = 0.
i=1

(104)

The second identity emerges by inserting the explicit
expressions of [5°, a$°, a$® and #Y and holds at
O(1;7?). Then as a3° = O(1;7) and Jsina = O(1), the
second term in Eq. (75) is O((;%), to be dropped. Hence to
leading order in the SO contributions this last consistency
condition is also obeyed.

Remarkably by Eq. (104) we have proven that in the

basis (I, 1, Ly) not only i, but also 3t is conserved to
leading order. This indicates how well this precessing basis
is adapted to the dynamics of the binary.

E. Consistency of SS contributions

The time derivative of the Keplerian 4+ SS part of the
energy constraint (47) gives

sS Ss
0 = a}®siny, —a3>(e, +cosy,)
4
_ 3n(1 +e,cosy,)
8
218
x {2e, cosk; cos k, siny,, — sink sink;,

—C(+))}
+2(1+e,cosy,)sin(2x, = {(4))} -

X1X2

x {e,siny,[cos {(_y + 3cos (2,
(105)

After inserting the dimensionless perturbing force com-
ponents, it is not difficult to verify that the coefficients of
cosk;cosk, and efsink;sink, (with k=0,1,2) all
vanish; therefore, the above equation is an identity.

The total angular momentum does not contain SS con-
tributions, therefore the time derivatives of Egs. (53)—(55)
do not impose any constraints at the leading SS order of the
dynamics.

F. Consistency of QM contributions

The time derivative of the Keplerian + QM part of the
energy constraint (47) gives the QM order equation:
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M . M
0=aMsiny, —aP(e, +cosy,)

3
A7V
208 i

x{2(1+e,cosy,) sin® k; cos (xp —Ci)sin(y, = ;)
—e,siny,[1 — 3sin®k; cos? (y, — )]} (106)

3n(1 + e, cosy,)* 22: 5 i
w =
i-1

After inserting the dimensionless perturbing force compo-
nents, it is not difficult to verify that the coefficients of
sink; and efsin?k; (with i =1,2 and k=0,1,2) all
vanish; therefore, the above equation is an identity.

The total angular momentum does not contain QM
contributions; therefore, the time derivatives of Eqs. (53)—
(55) do not impose any constraints at the leading QM order
of the dynamics.

VII. CHAMELEON ORBITS

In this section we investigate highly eccentric orbits,
with e, = 1. Such orbits could be induced by three-body
interactions, and also could arise in the central regions of
galaxies. Stellar orbits in these regions were already
investigated in order to test the spin of the central super-
massive black hole [40]. Gravitational radiation from
such highly eccentric orbits was recently discussed in
Refs. [15-19,41].

Our aim here is to apply the equations we derived for the
study of conservative dynamics in order to test general
relativistic features of gravity. Indeed, it is well known
(from example from the general relativistic Oppenheimer-
Volkoff equation) that general relativity predicts stronger
gravity at short distances, than the Newtonian theory does.
Therefore we expect that for sufficiently large values of the
PN parameter the highly eccentric orbits could produce the
following feature. Orbits which (in terms of the eccentricity
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FIG. 1 (color online).
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e, of the osculating orbit) are hyperbolic, could become
elliptic close to the periastron. Another way to see that is
due to the fact that the potential well deepens faster in
general relativity than in Newtonian gravity. Such orbits
locally look hyperbolic at large distances and elliptic at
short distances. Hence we call them chameleon orbits.

It was shown earlier [18] that, due to gravitational
radiation, hyperbolic orbits can turn into elliptic orbits.
Our analysis shows a similar effect already at the
conservative level. We were able to illustrate this behavior
already by including the 1PN corrections to the Keplerian
dynamics, by evolving numerically the system of equa-
tions (36)—(37) and (43). For this case of zero spins
(r1 = x» = 0) the system of differential equations is closed.
The chameleon behavior is presented on Fig. 1, both for
equal mass binaries v = 1 (left panel) and for a highly
asymmetric system, with mass ratio v = 1/30 (right panel).
The initial values were chosen at the periastron as
e,(x, =0) =096 and &(y, =0) = Gm/c*ry, = 0.01
in both cases. Then /,(y, = 0) is derived from (8). The
function e,(y,) is symmetric to the periastron and its
asymptotic values are larger for decreasing mass ratios. The
orbits Rcosy, vs Rsiny, with R = c’r/Gm are repre-
sented by the green curve on Fig. 1. The domains with
e, <1 and e, > 1 are also indicated.

We then proceeded to study the modifications induced
by the spins on these orbits. For this we supplemented the
IPN corrections with the leading-order SO contribution.
For simplicity we have chosen nonprecessing configura-
tions, with the spins of the components either aligned or
antialigned with the orbital momentum. In this case the
angles x; and x, remain constants during the motion and
the system of equations (36)—(37) and (43) is again closed.
The orientations of the orbital angular momentum and
spin vectors are indicated by arrows on the panels. Both
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Chameleon orbits due to the 1PN order effects are shown for equal (v = 1, left panel) and asymmetric

(v = 1/30, right panel) mass binaries. The chameleon behavior is characterized by the trespassing of the function e, (y,) across the value
1 (indicated in blue). Initial conditions are fixed at the periastron as e,(y, = 0) = 0.96 and &(y, = 0) = Gm/c*ry;, = 0.01. The
asymptotic values of e, are given (in blue) on the left and right sides on each panel. The orbits R cos y,, vs Rsiny,, with R = c?r/Gm are
shown by the (green) curve in the smaller boxes. The domains with e, < 1 and e, > 1, respectively, are also indicated.
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dimensionless spin parameters are taken as y; = 0.9982,
which is the canonical spin limit, achieved by black holes
with radiating accretion disks leading to photon capture
[42]. The initial conditions were the same as for the
chameleon orbits represented on Fig. 1. For antiparallel
spins the two SO contributions cancel in the equations;
therefore, the orbit is identical to the one represented on the
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left panel of Fig. 1. When the spins are parallel, the orbits
become asymmetric with respect to the periastron, as
shown on Fig. 2. Then a further distinction comes from
the alignment or antialignment of the spins with the orbital
angular momentum. In the antialigned case (left panel), the
asymptotic value of e, (y),) is larger before the periastron
than after it. For spins aligned with Ly (right panel) the
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momentum.
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evolution of e, shows an opposite trend, and also the
difference between the asymptotic values becomes slightly
smaller.

In Fig. 3 we show various chameleon orbits due to the
1PN and SO contributions in the equations of motion for
unequal mass (v = 1/30) spinning binaries, again for
xi = 0.9982. Each of the spins could be either aligned
or antialigned with the orbital angular momentum. The
various possibilities are represented by arrows on the panels
of the figure. When the spins are parallel with each other
(upper left and lower right panels), the evolutions occur in a
similar asymmetric manner as in the case of equal masses,
but the difference between the asymptotic values of e, is
enhanced by the small mass ratio. The asymmetric char-
acter (e.g. which asymptotic value of e, is bigger) of the
orbits is determined by the orientation of the spin of the
larger mass with respect to the orbital angular momentum,
as shown on the upper right and lower left panels. The
orientation of the second spin has but little influence on the
precise asymptotic values of e,., while the generic shape of
the chameleon evolutions is unaffected, as can be seen by
comparing the upper panels or the lower panels.

VIII. CONCLUDING REMARKS

In this paper we have considered the conservative
evolution of spinning compact binaries up to the second
post-Newtonian order accuracy, by including the leading-
order spin-orbit, spin-spin and mass quadrupole-monopole
contributions. The novel feature of the discussion is that it
had been presented in terms of suitably chosen dimension-
less variables. These are (i) the variables replacing the
traditional orbital elements of celestial mechanics: a
dimensionless version of the orbital angular momentum,
the eccentricity and three Euler angles characterizing the
orientation of the orbit and the orbital plane with respect to
the total angular momentum vector, and (ii) dimensionless
spin magnitudes (smaller than one for both black holes and
neutron stars) together with the spin azimuthal and polar
angles. The preferred reference system of this analysis is
tied to the orbital angular momentum and periastron.

As a main result we derived a system of first-order
differential equations in a compact form, for a set of nine
dimensionless variables encompassing both the orbital
elements and the spin angles (the spin magnitudes being
conserved). These are supplemented by the evolution
equation of the true anomaly, which closes the differential
system.

These evolutions are constrained by the conservation
laws of energy and total angular momentum vector holding
at 2PN order. As required by the generic theory of con-
strained dynamical systems we analyzed the consistency
of the constraints, e.g. their compatibility with the evolution
equations, and proved that they are preserved by the
evolution.

PHYSICAL REVIEW D 91, 024012 (2015)

We applied the formalism to show the existence of
orbits with unusual features. Close to the periastron, the
osculating orbits of these trajectories with eccentricity
close to one change from hyperbolic to elliptic, then back
to hyperbolic. Hence these orbits (as characterized by the
eccentricity of their osculating orbit) look open, then
closed, then open again during the passage through the
periastron. These chameleon orbits evolve from elliptic
(locally, in a Newtonian sense) close to the periastron
into hyperbolic (in the same sense) at large distances.
Such a property emerges due to the fact that general
relativity predicts stronger gravity (deeper potential wells)
at short distances than Newtonian theory does, as also
illustrated by the hydrostatic equilibrium in relativis-
tic stars.

We analyzed the chameleon orbits as function of mass
ratios and spin orientations, for aligned and antialigned
spin and orbital angular momentum configurations.
Without spin, these orbits are symmetric with respect to
the periastron. The farther the mass ratio is from unity, the
larger is the change in the eccentricity of the osculating
orbit, hence the easier to find such chameleon orbits.

The presence of spins cannot be detected when the
masses are equal and the spins are antialigned with each
other. In all other cases with spin, they induce an asym-
metry with respect to the periastron. One aspect of this
asymmetry is that the minimum of the eccentricity is not
in the periastron, as can be seen on Figs. 2-3. As a rule we
found that the alignment of the total spin S; +S, with
the orbital angular momentum shifts the minimum eccen-
tricity point of the trajectory before the periastron, while
the antialignment shifts it after the periastron. These
results hold both in the equal mass and in the asymmetric
mass cases.

This feature of relativistic orbits is complementary to
how the rotation or counterrotation of a particle in circular
orbit about a rotating black hole affects the location of
the innermost stable orbit. In our case corotation apparently
speeds up the (reduced mass) particle, while counter-
rotation slows it down, after leaving the periastron.
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APPENDIX: COMPUTATIONAL DETAILS
FOR VERIFYING THE 2PN ACCURATE,
NONSPINNING CONSISTENCY CONDITIONS

In this appendix we give computational details for
the proof of the 2PN accurate consistency conditions in
the absence of spins.
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First we discuss the energy consistency condition (86).
After inserting the acceleration components afN, abN, a3PN
and a3™, then simplifying with siny, the coefficients of
the sixth order polynomial in cos y r enlisted below, have to
vanish.

The terms without cos y, give

— 2ch% %

2PN 490
— 16¢,c5 2(0) de,

2(0)

€, — 4q0) ’

which add up to zero after inserting the definitions of the
¢2PN
qi> S;-

. PN
coefficients Citry Site) >
The coefficient of cosy, gives

0=se, + 16cf(

dqy
PN
+2¢)() <2CI1 + de, (A1)

0 =2s,e2 + €%+ 16(02PN — 2

2(0)
+ 16e C2PN 16e CZPN 16e%c 2PN
dq,  dq dQO
_ 9PN _~.PN %o
263(0) (de, de, er =20 de,

dq
+ 2@%) - C%)) {2(% -2qp) + d_e(:er:|

dq dq
de, Pt der]

+ 2¢77, {Z(Zqz qi)e, + (A2)

adding up to zero after inserting the definitions of the
coefficients CF(I:), C%(]ZI;I, is Si-

The coefficient of cos? Xp gives

0 = 3s3€; + 2sye; + 16(02?1‘)I - czfl\)l)

_ 2PN _ 16,202PN C2PN _
16¢,¢55) — 16¢7¢5}) + 16¢,(cy(}) —

dq, dqq
+ 2Cl])?g)> <6q3 e, =+ d—er> e, — 2CPN
-2 PN

dq; | dqo
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2(2)der
dq, dqo

PN PN 2
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2PN )

_ 9PN dq, ,

20) ge . €r

dq
+ 2(0%) - Clzjﬁ)) [2(% —2qp) + d_e?er:| ; (A3)

where the terms in the last line cancel by virtue of the

relations between the coefficients cf(%, while the first five

lines add up to zero after inserting the definitions of the

coefficients cf(lz) 2(P 131 q;» S;-
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The coefficient of cos? Xp gives
0 = dsyef + 3s3ef + 16(cT3) — c3))

— 16,2 — 1622 + 16¢, (2 — c2PN)

dq; | dqo dq1
_9ePN Ao\ _ N 41 o
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PN dq, PN
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and the terms in the last two lines cancel by virtue of the
relations between the coefficients cb ( ) while the first four

lines add up to zero after inserting the definitions of the
coefficients cf(lz), C?(IZI;I, Qi» Si-

The coefficient of cos* Xp gives

0 = 4s4e) — 16e%c 21(’N + 16¢,(c7y 2PN cgfg)
dq
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dq,
6 r
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and the terms in the last three lines cancel by virtue of the

relations between the coefficients cf(%, 02531 s;, while the

first two lines add up to zero after inserting the definitions
of the coefficients cﬁ%, cf(lfj, Qis S;
The coefficient of cos’ Xp gives
0 = e2(5s5ef — 16021(2\;) + 16(0%}’51‘)I - c%l(’g)
+ 16e,(c 21(31\)1 2531\)1) + 4(0113?;) - cgg))qﬂf

dq
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where all terms cancel by virtue of the relations between the
coefficients ¢PN., ¢2PN s..
i(k)> “i(k)> "t

The coefficient of cos® Xp gives

0= 4(C2PN 2PN) + ( PN

1(5) ~ S2a) Ci3) ~ (A7)

PN 2
2 )q3 ey,
where all terms cancel by virtue of the relations between the

2PN
coefficients c( 1 Citk) -
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In summary all six of these equations reduce to identities, confirming the consistency condition arising from energy

conservation.

The consistency condition (93), arising from the total angular momentum conservation takes the explicit form

0 =3¢ hcosy,, with the coefficients

1
hio) = baro)C3fo) = biio)Ciy) = 2¢1(0) ~ g Prer

1 1
1y = bagoe37)) = Brioyeifyy + a3ty = b€y + 2(c3) = i) = <§P2 + ZP1> e

4 2

3001
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hay = b)) = biayely) + 2(c3 = ciiyy)

o = 2y el

3
N + 2(C§PN _ Csz) _2

@ ~€10) 41’3’3?1

(A8)

2PN

all of which vanishing by virtue of the relations between the coefficients Cfgz), Cik) - bj(x) and p;. Therefore the consistency

condition arising from total angular momentum conservation also holds.
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