
J Math Chem (2013) 51:2187–2195
DOI 10.1007/s10910-013-0207-y

ORIGINAL PAPER

Vector algebra and molecular symmetry: a tribute
to Professor Josiah Willard Gibbs

Gyula Tasi · László Nagy-Gyevi ·
Roland Tóbiás · Tamás S. Tasi

Received: 27 April 2013 / Accepted: 6 June 2013 / Published online: 19 June 2013
© Springer Science+Business Media New York 2013

Abstract Vector algebra, as developed by Josiah Willard Gibbs, is much simpler
than matrix or tensor algebra, therefore, it is more suitable to introduce the students
of chemistry into the wonderful world of molecular symmetry. A program based on
elementary vector algebra has been written to determine all symmetry elements and
symmetry operations of rigid molecular structures. The program also contains data
for 57 point groups common in chemistry. Therefore, it automatically supplies the
particular point group to which the structure belongs. Since the locations of the nuclei
related to the symmetry elements are also revealed by the program, even the detailed
notation of the framework group of the molecular structure can be deduced. The
program can be a great help in determining the symmetries of the normal modes of
vibration, too.
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1 Introduction

Symmetry is an important property of molecular shapes [12]. A great number of
papers have dealt with the symmetry aspects of molecules in the chemical education
literature [1,2,5,6,10,14–17,20,21]. For the description of the static symmetry of
rigid molecules, the point groups [4] as well as the framework groups [18] are used in
chemical education. It is worth noting that framework groups contain more information
on molecular shapes than point groups [12].
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By static symmetry of a molecule, we mean the symmetry of its equilibrium geom-
etry [7] in ground electronic state. The geometry of a molecule can be specified, for
example, via the Cartesian coordinates of its nuclei. These coordinates, however, can
also be viewed as a set of position vectors in the common 3-D Cartesian space.

For a symmetric molecular structure, there exist symmetry elements, geometrical
entities (points, lines and planes), and symmetry operations, geometrical transforma-
tions (inversion, rotations (proper rotations), reflections and rotoreflections (improper
rotations)) which move the nuclear framework of the molecule into a position indis-
tinguishable from the original one. It is worth noting that the symmetry operations and
not the symmetry elements form the various point groups as defined by Schönflies [4].

In general, matrix algebra is used to determine the main symmetry elements and
symmetry operations of a nuclear arrangement. Then, with the help of a simple flow-
chart [5,16,6], it is a relatively easy task to pick the particular point group to which
the molecule belongs [19]. The main point of this procedure is the computation of the
molecular inertial tensor which is a 3 by 3 symmetric matrix with real numbers as
elements. The authors of a recent paper [9] follow the same strategy even to determine
all the symmetry elements. However, vector algebra is much simpler than matrix or
tensor algebra, it is therefore more suitable to introduce the students of chemistry into
the wonderful world of molecular symmetry. It was Josiah Willard Gibbs (1839–1903)
who created the modern vector algebra and vector analysis between 1879 and 1884
[8]. In his works all the properties of the scalar and vector products are fully developed.

It can occur that for larger molecules with peculiar symmetries we might not be
able to recognize some important symmetry elements. Furthermore, if we want to
build up the particular framework group to which our molecular structure belongs,
we must know all the symmetry elements and the precise locations of the nuclei
related to them. The same is true when we want to learn the symmetries of the normal
modes of vibration. To compute the characters of the symmetry operations in the
reducible representation generated by the normal coordinates, we need to know the
nuclei which are unmoved by the symmetry operations. In the aforementioned cases,
a simple flowchart does not meet our needs.

In the geometry of 3-D space there are points, lines and planes [11]. All these
geometrical entities can be represented by vectors in vector algebra: a point as a
position vector (�P0), a line as a position vector with a direction vector (�P0 and �d), and a
plane as a position vector with a normal vector (�P0 and �n). Geometrical transformations
(inversion, reflection and rotation) simply manipulate the geometrical objects. Since
the centre of mass (COM) of a molecule remains fixed in space under all symmetry
operations, it is a common point of all axes and planes of symmetry. Accordingly, the
COM can be used to define every symmetry element.

A program based on elementary vector algebra has been developed to determine
all symmetry elements and symmetry operations of nuclear arrangements. It also
contains data for 57 point groups common in chemistry. Therefore, it automatically
supplies the particular point group to which the structure belongs. Since the locations
of the nuclei related to the symmetry elements are also revealed by the program, even
the detailed notation of the framework group of the given molecular structure can
be deduced. The program can be a great help in determining the symmetries of the
normal modes of vibration. The language of the program is standard FORTRAN 77
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with some extensions accepted even by the popular GNU compiler. The program can
be easily extended with further capabilities. The source code can be obtained free of
charge from the corresponding author upon request.

2 A brief outline of vector algebra from the viewpoint of molecular symmetry

The nuclei of a molecule are points scattered in the 3-D Cartesian space. They can
also be viewed as a set of position vectors. Besides addition and subtraction of vectors,
there are only two operations in vector algebra which we need in the study of molecular
symmetry: scalar (dot, inner) product and vector (cross, outer) product of two vectors.

Let �P1 = (x1, y1, z1) and �P2 = (x2, y2, z2) be two position vectors in the 3-D

Cartesian space with lengths
∥
∥
∥�P1

∥
∥
∥ and

∥
∥
∥�P2

∥
∥
∥, respectively, and let α (0 ≤ α ≤ π ) be

the angle between them. Then their scalar product is defined as follows:
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The vector product �P1 × �P2 results in a third vector, �P3 = (x3, y3, z3), with
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and �P3 is perpendicular to both �P1 and �P2, and the triple (�P1, �P2, �P3) obeys the right-
hand rule. The components of �P3 can be obtained from those of �P1 and �P2:

�P3 = (y1z2 − z1 y2, z1x2 − x1z2, x1 y2 − y1x2)

If the length (norm) of a vector is equal to one, it is said to be normalized.
At the beginning of the analysis of the symmetry of a nuclear arrangement, the

COM of the molecule, �Pcom = (xcom, ycom, zcom), is computed:

xcom =
∑N

i=1 mi xi
∑N

i=1 mi
; ycom =

∑N
i=1 mi yi

∑N
i=1 mi

; zcom =
∑N

i=1 mi zi
∑N

i=1 mi

where N is the number of the nuclei, xi , yi and zi are the Cartesian coordinates of
nucleus i , and mi is the mass of nucleus i considering the most stable isotope of the
atom. Next, the origin of the 3-D Cartesian system is shifted to the COM. This is
achieved via the subtraction of �Pcom from the position vectors of the nuclei.

In our real world, symmetry is never perfect, and the geometry of a molecule is more
or less distorted, i.e., it deviates from the perfect ideal one. To measure this distortion,
we shall use a distortion parameter, an error limit, within which our statements are
valid. For a particular point group or framework group, smaller distortion parameter
means more precise molecular geometry. In what follows, the application of such a
distortion parameter is tacitly implied in our investigations and statements.

It is easy to check the existence of the centre of symmetry (inversion centre, i): we
should invert the coordinates of the nuclei, and then compare the new configuration
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to the original one. If they coincide, the molecule has inversion centre. If the position
vector of one of the nuclei is null (zero) vector, i.e., it has length of zero, that nucleus
is then located in the COM.

If all nuclei lie on the same line, the molecule should be linear. In vector algebra
this means that the absolute value of the scalar product of any two position vectors of
the nuclei divided by the lengths of them is equal to one:

∣
∣
∣
∣
∣
∣

�Pi · �P j
∥
∥
∥�Pi

∥
∥
∥

∥
∥
∥�P j

∥
∥
∥

∣
∣
∣
∣
∣
∣

= 1

Another possibility is to compute the vector product �Pi × �P j , and check whether
the result is null vector or not. If it is null vector, the two vectors should be collinear.
Of the linear point groups C∞v and D∞h only the latter one has inversion centre.

Another important property of molecular structures is planarity. If all nuclei lie in
the same plane, the molecule must be planar. Two, not collinear, position vectors i and
j define a plane with normal vector �n = �Pi × �P j . If the following equation holds for
each nucleus k:

�n · (�Pk − �Pcom) = 0

our molecule should be planar: the position vector of each nucleus lies in the molecular
plane.

If the molecule is planar and it has inversion centre, it must also have a proper
rotational axis Cn perpendicular to the plane and passing through the inversion centre.
The normal vector �n of the plane can be considered to be the unit direction vector
of the rotational axis (�d = �n). Now we have to find the smallest angle φ by which
rotating all position vectors of the nuclei in space about the axis represented by the
unit vector �d, the new configuration is indistinguishable from the original one. The
largest n for the given rotational axis is then simply equal to 2 π/φ.

Let us consider the general case: rotation of the position vector �Pk of nucleus k in
space by angle φ about the axis passing through the origin and represented by the unit
vector �d as its direction. The new position �P′

k of �Pk can be easily derived:

�P′
k = �Pk + sin(φ)

(�d × �Pk

)

+ (1 − cos(φ))
(�d × (�d × �Pk)

)

By systematic variation of n(=2, 3, . . .) we can determine every proper rotational
axis and rotational operation related to the given rotational axis.

Our final goal is to determine every symmetry element for a given nuclear arrange-
ment. To achieve this goal, we should partition the set of the nuclei into classes, i.e.,
special disjoint subsets, based on their atomic numbers. The union of such classes is
the whole set of the nuclei. Of course, atomic mass numbers must also be considered
if we want to deal with isotopomers.

Now we are in a position to determine all planes of symmetry. For possible planes
of symmetry, every class of the nuclei is investigated. In a given class we consider
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every (�Pi , �P j ) pair of the position vectors of the nuclei. Then planes defined by �P0
and �n are created in the following way:

�P0 =
�Pi + �P j

2

�n =
�P j − �P0

∥
∥
∥�P j − �P0

∥
∥
∥

If the plane contains the COM, reflections of all the position vectors of the nuclei
are performed about it. If the new configuration is indistinguishable from the initial
one, a new plane of symmetry is found. For every pair of the nuclei, two further planes
with normal vectors �n1 = �Pi × �P j and �n2 = �n × �n1, respectively, are also checked,
if they are not null vectors, for possible planes of symmetry.

Let us consider now the general reflection operation about the plane defined by
�P0 = (x0, y0, z0) and �n = (a, b, c). Let �Pk = (xk, yk, zk) be the original position
vector of nucleus k. By performing the reflection operation, the new �P′

k = (x ′
k, y′

k, z′
k)

position of �Pk can be easily obtained:

x ′
k = xk + 2λa

y′
k = yk + 2λb

z′
k = zk + 2λc

where

λ =
�n ·

(�P0 − �Pk

)

‖�n‖

The distinct proper rotational axes can be obtained in three steps. First, the position
vectors of the nuclei as direction vectors are checked one by one for possible Cn axis
(n ≥ 2). Next, every (�Pi , �P j ) pair of the position vectors of the nuclei is investigated
for possible C2 axis in each class. The unit direction vector of the rotation axis is
simply the normalized form of vector (�Pi + �P j )/2 in this case. In the third step, the
remaining Cn axes (n ≥ 3) are to be determined. To carry out this analysis, three
nuclei, (�Pi , �P j , �Pk), are selected in a given class, and they are considered to be as
three adjacent vertices of a regular polygon. By computing -with the help of a dot
product- the angle between the vectors �P j − �Pi and �Pk − �P j , we can easily determine
the type of the regular polygon, and then check the existence of the corresponding Cn
(n ≥ 3) axis. All unique 3-tuples should be investigated in such a way in each class.

Having the directions of the distinct proper rotational axes, all the proper rotations,
the distinct improper rotational axes, and improper rotations can be easily generated
by simple rotations.
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If all symmetry elements and symmetry operations are in our hands, we should find
the principal axis with possible C2 axes perpendicular to it as well as the horizontal,
vertical and dihedral planes of symmetry.

The source code contains data for 57 point groups common in chemistry, therefore,
it is easy to identify, without further analysis, the particular point group to which our
structure belongs.

Furthermore, for every symmetry element the position vectors of the nuclei which
lie in it should be determined. These nuclei are unmoved by the symmetry operations
related to the given symmetry element. Special attention should be paid to improper
rotational axes and operations. Finally, we will have enough information to deduce
the correct notation of the framework group related to our molecular structure.

It is to be seen that everything can be done by simple vector algebra in the study of
the symmetry of nuclear arrangements: it is not necessary to use more involved matrix
or tensor algebra. The details are to be found in the source code of the program.

3 An example for illustration: the molecule N4S4

Let us consider an instructive example from a standard book in spectroscopy [3]:

The positions of the atoms in the molecule N4S4 have been determined by x-ray diffraction.
In terms of a set of Cartesian coordinates x, y, z placed within the molecule, these are

N1 : x = b, y = 0, z = 0; N2 : 0, b, 0;

N3 : −b, 0, 0; N4 : 0, −b, 0;

S1 : a, −a, a; S2 : −a, a, a;

S3 : a, a,−a; S4 : −a,−a, −a;

Here the numbers a and b are unrelated parameters of the order of a few angstroms in size.

(a) To what point group does the molecule belong?

(b) What are the symmetries of the normal modes of vibration?

(c) How many different vibrational frequencies does the molecule have?

(d) How many bands should appear in the infrared spectrum as fundamentals?

(e) Assume the parameter a = 3Å = 1.5b. Compute the moments of
inertia as well as A, B, and C . What kind of rotor is the molecule (linear
rotor, spherical top, oblate or prolate symmetric top, near oblate or near
prolate asymmetric top)?

With 2-D, “paper and pencil”, chemistry, it is not always easy to find all symmetry
elements and to determine the positions of the nuclei related to them. Let us make an
input file (n4s4.inp) from the atomic Cartesian coordinates (see the table below).

It is easy to create an executable program from the source code on every platform:
we need only a good fortran compiler. For now we use the GNU fortran compiler
under Linux operating system [13]:

>gfortran −o symmetry.exe symmetry.f
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7 2.0 0.0 0.0 ! Atomic number and coordinates

7 0.0 2.0 0.0

7 −2.0 0.0 0.0

7 0.0 −2.0 0.0

16 3.0 −3.0 3.0

16 −3.0 3.0 3.0

16 3.0 3.0 −3.0

16 −3.0 −3.0 −3.0

To run the executable program, we should enter the following statement:
>symmetry.exe < n4s4.inp > n4s4.out
The output is redirected to the file n4s4.out. According to the output file, the

molecule has three C2 axes (one C2 and two C’2 ⊥ C2) and two σd planes of symmetry.
The C2 axis does not contain atoms, however, each C’2 axis and each σd plane contains
two nitrogen and two sulphur atoms, respectively. Two improper rotations can be
generated about the C2 axis: S4 and S3

4. The results reveal the point group and the
framework group of the molecular structure:

D2d =
{

E,C2, 2C′
2, 2σd, S4, S3

4

}

= [

2C′
2 (N1.N1) , 2σd (S2)

]

We can now determine the characters of the symmetry operations in the reducible
representation �3N generated by the normal coordinates [4]:

D2d E 2S4 C2 2C′
2 2 σd

m 8 0 0 2 2

�3N 24 0 0 −2 2

In the second line, m gives the number of unmoved atoms related to the given
symmetry operation. With the help of the character table of D2d, we can decompose
the reducible representation �3N into irreducible ones (irreps) [14]:

�3N = 3�A1 ⊕ 3�A2 ⊕ 2�B1 ⊕ 4�B2 ⊕ 6�E

To get the irreps of the vibrational normal coordinates, �v, the irreps of the trans-
lational (�t) and rotational (�r) normal coordinates should be subtracted from �3N:

�v = �3N − �t − �r = 3�A1 ⊕ 2�A2 ⊕ 2�B1 ⊕ 3�B2 ⊕ 4�E

It is to be seen that there are 14 different vibrational frequencies. According to the
character table, only the normal modes of vibration with B2 and E symmetries are
infrared active. This means that seven bands should appear in the infrared spectrum
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of the molecule as fundamentals. The last question of the problem is out of the scope
of the present paper: it cannot be answered without the analysis of the inertial tensor
of the molecule.

The equilibrium molecular structure of allene also belongs to the D2d point group,
however, the locations of the nuclei related to the symmetry elements are quite dif-
ferent in this molecule. This, of course, will be manifested in the notation of the
framework group to which the molecular structure belongs. The program correctly
reveals the positions of the nuclei related to the symmetry elements. (The analysis of
the equilibrium molecular structure of allene is also available in the supplementary
material.) One carbon nucleus is in the COM, therefore, this atom is embedded in
every symmetry element. Two more carbon nuclei lie in the C2 axis. The remaining
proper and improper rotational axes have only one atom. As for the two σd planes, both
contain five atoms from which two are hydrogen. Based on these facts, the notation
of the framework group of allene can be easily deduced:

D2d = [O (C1), C2 (C1.C1), 2σd (H2)]

It is to be seen that this notation is very different from that of the molecule N4S4
even though both molecules belong to the same point group.

4 Conclusions

Modern vector algebra created by Josiah Willard Gibbs at the end of nineteenth cen-
tury can be successfully used to analyse the structure of rigid molecules. The method
presented in the paper is much simpler than those based on matrix or tensor algebra.
The FORTRAN language has been chosen to implement the procedure. The program
determines all symmetry elements and symmetry operations, and supplies the partic-
ular point and framework groups to which the structure belongs. It can also be a great
help in determining the symmetries of the normal modes of vibration, too.
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