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Abstract

In this work we investigate the online k-server problem where each
request has a penalty and it is allowed to reject the requests. The
goal is to minimize the sum of the total distance moved by the servers
and the total penalty of the rejected requests. We extend the work
function algorithm to this more general model and prove that it is
(4k − 1)-competitive. We also consider the problem for special cases:
we prove that the work function algorithm is 5-competitive if k = 2
and (2k + 1)-competitive for any k ≥ 1 if the metric space is the line.
In the case of the line we also present the extension of the double-
coverage algorithm and prove that it is 3k-competitive. This algorithm
has worse competitive ratio than the work function algorithm but it is
much faster and memoryless. Moreover we prove that for any metric
space containing at least k + 1 points no online algorithm can have
smaller competitive ratio than 2k + 1, and this shows that the work
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function algorithm has the smallest possible competitive ratio in the
case of lines and also in the case k = 2.

Keywords: Online algorithms, competitive analysis, k-server prob-
lems

1 Introduction

The k-server problem can be formulated as follows. In the problem a metric
space M is given with k mobile servers that occupy distinct points of the
space and a sequence of requests (points). Each of the requests has to be
served, by moving one server from its current position to the requested point.
The goal is to minimize the total cost, that is the sum of the distances covered
by the k servers. In the online version of the problem the requests arrive one
by one and an online k-server algorithm serves each request immediately
when it arrives, without any prior knowledge about the future requests. The
online k-server problem has applications in planning maintenance service.
The model can be also applied to upkeep or design of computer or sensor
networks. In many of these applications it is a straightforward idea to allow
the servers not to serve some of the requests. In this new model which is called
k-server problem with rejection the i-th request is a pair %i = (ri, pi), where
ri is a point of the space and pi > 0 is the penalty for the rejection. Each
request can be served the same way as in the classical k-server problem, or
optionally it also can be rejected at the penalty given along with the request.
The cost of an algorithm is the sum of the distances covered by the k servers
plus the sum of the penalties of the rejected requests. In this paper we study
the online version of the k-server with rejection problem where the requests
arrive one by one.

Typically, the quality of an online algorithm is judged using competitive
analysis. An online algorithm for a minimization problem is asymptotically
c-competitive if its cost is never more than c times the optimal cost plus
an additive absolute constant which is independent of the input. Without
allowing the additive constant the algorithms are called competitive in the
absolute sense. Here we use the asymptotic competitive ratio as it is usually
done in the case of the online k-server problem.

Related works: The online k-server problem is one of the most known
online problems. The problem is introduced in [15], where the first important
results are presented. In [15] it is proved that k is a lower bound for every
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metric space with at least k+1 points, and in [14] the work function algorithm
is presented which is (2k−1)-competitive for every metric space. The k-server
conjecture states that there exists an algorithm that is k-competitive for any
metric space. The problem was also investigated for special metric spaces.
In the case of uniform space, where the problem is equivalent to the paging
problem, a k-competitive algorithm is given in [18]. If the metric space is a
line then a k-competitive algorithm is given in [5].

The idea of allowing the algorithm to reject some parts of the input ap-
peared in other online problems as well. The most closely related problem
is online paging with rejection, which problem is the k-server problem with
rejection for uniform space and studied in [12]. There a (2k+ 1)-competitive
algorithm is presented and it is shown that no algorithm with smaller com-
petitive ratio exists. The more general caching with rejection problem is also
considered in [12]. A (2k+1)-competitive algorithm is given in the bit model
and in the cost model and a (2k + 2)-competitive algorithm is presented for
the general caching problem.

The first online model with rejection appeared in online scheduling [2].
In this model the algorithm is allowed to reject the jobs and the objective
is to minimize the sum of the makespan of the schedule of accepted jobs
and the total penalty of the rejected jobs. After the first paper some further
online scheduling models with rejection were investigated. In [17] the problem
where it is allowed to preempt the jobs is considered, in [9] and [16] the
online scheduling problem with rejection where the algorithm has to purchase
the machines is investigated. Online bin packing with rejection, where it is
allowed to reject the items and the cost is the sum of the number of used
bins and the total penalty of the rejected items is investigated in [8] and [11].
Online graph coloring with rejection is studied in [10].

Our results: We extend the work function algorithm to this more general
model and we prove that it is (4k − 1)-competitive. We also consider the
problem in special cases: we prove that the work function algorithm is 5-
competitive if k = 2 and (2k+1)-competitive for the line. The work function
algorithm is very difficult and has large memory requirements, therefore we
also analyse a simpler, memoryless algorithm in the case of the line. This is
an extension of the double-coverage algorithm into this more general model,
and we show that it is 3k-competitive. Moreover we prove that for any metric
space containing at least k+ 1 points no online algorithm can have a smaller
competitive ratio than 2k + 1.
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2 Notions and notations

For an arbitrary online algorithm A and an input sequence or subsequence
% the cost of the solution given by A is denoted by A(%). Moreover for an
input sequence % let OPT (%) denote the cost of the optimal offline solution.
Then an online algorithm A is called c-competitive if there exists a constant
b such that A(%) ≤ c ·OPT (%) + b for any input sequence %.

We will consider the online k-server problem with rejection problem as
the special case of the metrical task system problem defined in [4]. Therefore
first we recall the basic definitions and some fundamental results from the
area of metrical task systems. In the metrical task system a finite metric
space S of states is given. For notational convenience, if z, y ∈ S, we denote
the distance from z to y as zy. In the metrical task system problem we have
to execute a sequence of tasks and the cost of executing a task depends on the
state where we are. Our goal is to minimize the total cost which is the sum
of the execution costs and the state transition costs defined by the distances
in S. Thus in a metrical task system problem we have an initial state x0 ∈ S
and a sequence of tasks τ = τ1, . . . , τm is given. Each task is a function from
S to R+ ∪∞. We denote by τ̄i the prefix of the first i tasks. Any sequence
x = x0, x1, . . . , xm, where xi ∈ S, is called a schedule, or a service schedule
for x0, we use x̄i to denote the prefix of the first i+1 elements of the schedule.
We define

cost(x0, τ , x) =
m∑
i=1

(xi−1xi + τi(xi)).

Then the MTS problem is to find a service schedule with minimal cost. We
will use OPT (x0, τ) to denote this cost.

In the online MTS problem the tasks arrive one by one, and an online
MTS algorithm has to execute each task changing into a selected state with-
out any information about the further tasks. We will use the online work
function algorithm which was developed for the solution of the online MTS
problem. The work function is defined for every i = 1, . . . ,m for each state
x ∈ S and this is the minimal cost of serving all requests up to i, and finishing
at state x. We can define this function wi from S to R+∪∞ for i = 1, . . . ,m
as follows:

wi(x) = min
xi∈S
{cost(x0, τ i, xi) + xix}.
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We also use the work function for i = 0, it is defined as w0(x) = x0x.
We say that w is reachable work function if there exist x0 ∈ S and

τ1, . . . , τi tasks such that w = wi.
We will use the following properties of the work function (see [7] for their

proof):

wi(x) ≤ wi(y) + xy, (1)

wi(x) = min
y∈M
{wi−1(y) + τi(y) + yx}. (2)

The work function algorithm (WFA) keeps track of the work function at
each step. If the current state is si−1 WFA chooses the state x that minimizes
the value wi(x) + si−1x, i = 1, . . . ,m at the ith step. The first part of the
sum minimized by the algorithm is the total service cost ending at the state
x (an algorithm which considers only this part is called retrospective), the
second part is the simple greedy decision where the goal is to minimize the
cost of the state transition.

In the analysis of the work function algorithm usually the extended cost
is used. The basic idea is to consider the maximal changes in the value of the
work function instead of investigating the actual states. It can be defined as
follows.

Definition 1 Let ∇i = supx{wi(x)−wi−1(x)}. The extended cost is∇(x0, τ) =∑m
i=1∇i.

We can use this extended cost to bound the competitive ratio of WFA as
the following lemma states.

Lemma 2 ([7]) For each metrical task system, start state x0 and task se-
quence τ , the following inequality holds: WFA(x0, τ) ≤ 2·∇(x0, τ)−OPT (x0, τ).

Now we return to the k-server problem and the k-server problem with
rejection. Recall that in the k-server problem we have a metric spaceM and
k servers. In the online version request arrive one by one, and we have to
send at least one server to the point where the request arrive without any
information about the further requests. The k-server problem is a special case
of the MTS problem, since it can be defined as an MTS problem on the metric
space of the server configurations (see [7]). We call the k-element multisets
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of the metric space configurations, each element of the configuration gives a
position of a server. For two configurations A and B of the servers let the
distance of these configurations be the minimal total moving distance which is
enough to move the servers from A to B. This distance is called the minimum
matching distance. The matching between the points in the configuration
which results the minimal distance is called the minimal matching between
the configurations. It is easy to see that the set of configurations with this
distance forms a metric space. The k-server problem can be described as an
MTS on this metric space using τi(X) = 0 if ri ∈ X and τi(X) =∞ if ri 6∈ X
for any configuration X.

Our first important observation is that the k-server problem with rejection
is also an MTS on the space of the configurations of the servers with minimum
matching metric. In this case we have τi(X) = 0 if ri ∈ X and τi(X) = pi
if ri 6∈ X. We will consider the k-server problem with rejection as this MTS
problem. We can apply the result about the general MTS problems, but they
usually do not give good bounds for the k-server problem with rejection since
they do not use the special structure. One important property is that we can
suppose that in each step only one serve moves, therefore we only have to
consider the configurations which differs only in one point. We note that it
would be possible to define the work function and the work function algorithm
directly to the k-server problem with rejection. The work function is the
minimal cost of serving a request sequence (also allowing the rejection) and
ending at a particular configuration. If the servers are at the configuration
X before serving the request ri then the WFA algorithm either chooses the
server s where the function wi−1(X \ {s}∪{ri}) + sri is minimal to serve the
request or rejects it if wi−1(x) + pi is smaller than this minimum. But we
will use some general result on the work function algorithm from the area of
MTS therefore we decided to handle the k-server problem with rejection as
an MTS while we present the results about WFA.

In the rest of the paper we use capital letters for the configurations and
small letters for the points from the metric space of the servers. For a pair
a,B of a point and a configuration

∑
b∈B ab is denoted by aB. Furthermore

for a multiset B and points a,b we will use A− a+ b to denote A \ {a} ∪ {b}
We suppose that the starting configuration contains different points. Then

the work function algorithm moves only one server to the request point if it
has no server there, thus it is always in such configurations where all the
points are different. By this observation it follows that one could define the
configurations as sets instead of multisets. As in many papers on the k-server
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problem ([3],[7],[13], [14]) we allow multisets for the sake of simpler notations
and proofs. Using multisets we can avoid the case disjunction when we use
formulas like X − a+ b.

On the other hand using only the configurations where the servers occupy
different points of the space can be useful as our first observation on the WFA
for the k-server with rejection problem shows.

Proposition 3 WFA is (2k + 1)-competitive for the k-server problem with
rejection on the metric spaces containing exactly k + 1 points.

Proof. As we noted above we can suppose that the servers are at different
points, but this yields that they can form only k+ 1 different configurations.
If we consider the equivalent MTS problem problem then its metric space
contains k + 1 points. On the other hand it is known that WFA is (2n− 1)-
competitive for an n-state MTS (see [7]). We can apply this result and we
obtain immediately that WFA is (2k+1)-competitive for the k-server problem
with rejection in the case of these special metric spaces. 2

We defined the MTS problem only on finite metric spaces. On the other
hand the k-server problem is also investigated in infinite spaces. Later in
this paper we will study the behavior of WFA on the line. The algorithm
can be used on infinite metric spaces as follows. We can observe as it is
done in [6] and [13] that the work function can obtain the minimal value
only on the configurations which contain such points which are in the initial
configuration or requested in the input. Therefore we can restrict the infinite
space of configurations in each step to this finite subspace and we can use
the algorithm as it is described above.

3 General metric spaces

Koutsoupias and Papadimitriou [14] showed that WFA is (2k−1)-competitive
for the k-server problem. Extending their ideas into this more general model
we can prove the following theorem.

Theorem 4 WFA is (4k − 1)-competitive for the k-server problem with re-
jection.

Consider an initial configurationX0 and a request sequence (r1, p1), . . . , (rm, pm).
The following property of the work function plays crucial role in our proof.
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Proposition 5 For an arbitrary configuration X and 1 ≤ i ≤ m

wi(X) = min{wi−1(X) + pi, min
x∈X
{wi−1(X − x+ ri) + rix}}.

Proof. Considering the right side of the equality (2) we obtain that wi(X) ≤
min{wi−1(X) + pi, minx∈X{wi−1(X − x+ ri) + rix}}, since here we take the
minimum on a smaller set. On the other hand, again by property (2) we can
suppose that wi(X) = wi−1(Y ) + τi(Y ) + Y X for some Y . If ri 6∈ Y then by
property (1) we obtain that wi(X) = wi−1(Y ) + pi + Y X ≥ wi−1(X) + pi. If
ri ∈ Y then let x be the point which is matched to ri in the minimal matching
between X and Y . Then XY = (X−x)(Y − ri) +xri = (X−x+ ri)Y +xri.
Therefore wi(X) = wi−1(Y )+(X−x+ri)Y +xri ≥ wi−1(X−x+ri)+xri by
property (1). Note that the proposition is also valid in the case when ri ∈ X,
in this special case the minimum is attained at x = ri and wi(X) = wi−1(X).

2

To analyse the algorithm we need the property of quasiconvexity. As it is
stated in [14] the basic idea behind the quasiconvexity is that it ensures that
optimal solutions can be transformed into each other by sequences of swaps.

Definition 6 The work function w is quasiconvex, if for all configurations
X, Y there is a bijection f : X → Y with the following properties:
(*) f(X ∩ Y ) = X ∩ Y ,
(**) if X = A ∪B and A ∩B = ∅ then

w(X) + w(Y ) ≥ w(A ∪ f(B)) + w(f(A) ∪B).

Lemma 7 If w is reachable work function then w is quasiconvex.

Proof. If w is a work function and g satisfies (**) then we can transform
g into some f satisfying (*) and (**). Suppose that there is u ∈ X ∩ Y
such that g(u) 6= u. Define g′(u) = u, g′(g−1(u)) = g(u) and g′(z) = g(z)
for z ∈ X − {u, g−1(u)}. Without loss of generality we can assume that
g−1(u) ∈ A. If u ∈ A then g(A) = g′(A), therefore w(X) + w(Y ) ≥ w(A ∪
g′(B)) +w(g′(A)∪B). If u 6∈ A then using (**) for the sets A+ u, B− u we
obtain that

w(X) + w(Y ) ≥ w((A+ u) ∪ g(B − u)) + w(g(A+ u) ∪ (B − u))

= w(A ∪ g′(B)) + w(g′(A) ∪B)
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and g′ has at least one additional fixed point in X ∩ Y to g. By repeating
this process, we obtain a quasiconvex f .

We prove that a function satisfying (**) exists by induction on the number
of the requests. Let w = w0 and X, Y be two configurations and hX : X →
X0, hY : Y → X0 be the minimum matching bijections (note that X0 is
the starting configuration). Now define the following function form X to
Y : g0 = h−1Y ◦ hX . Let X = A ∪ B and consider the sum w0(A ∪ g0(B)) +
w0(g0(A)∪B). The first part is the cost of the minimal matching between X0

and A ∪ g0(B) and the second is the cost of the minimal matching between
X0 and g0(A) ∪ B. On the other hand w0(X) + w0(Y ) is the sum of the
costs of the minimal matchings between the configurations X,X0 and Y,X0.
Denote these matchings by M1 and M2. Then the edges from M1 can be
used as edges between X0 and B and between X0 and A. Since g0 is a
bijection we obtain that g0(A) ∪ g0(B) = Y , and the edges in M2 can be
used for g0(A) and g0(B). By the definition of g0 it follows that the edges
which leads to the elements of A in M1 and the edges which lead to the
element of g0(B) in M2 have different endpoints in X0. This yields that
using the edges in M1 and M2 we also can obtain two matchings between
the configurations X0, A ∪ g0(B) and X0, g0(A) ∪ B. And this proves that
w0(X) + w0(Y ) ≥ w0((A ∪ g0(B)) + w0(g0(A) ∪ B). Therefore we obtained
that g0 satisfies (**), so there is an f0 satisfying (*) and (**).

Let us now assume that wi−1 is quasiconvex. Let X and Y be arbitrary
configurations and choose an arbitrary A ⊆ X and let B = X − A. By
Proposition 5 we get 3 cases.

Case 1. Suppose that wi(X) = wi−1(X) + pi and wi(Y ) = wi−1(Y ) + pi.
By induction, for wi−1 there is a bijection fi−1 : X → Y that satisfies (*)
and (**). Set fi = fi−1. Then

wi(X) + wi(Y ) = wi−1(X) + wi−1(Y ) + 2pi

≥ wi−1(A ∪ fi−1(B)) + wi−1(fi−1(A) ∪B) + 2pi

= wi−1(A ∪ fi(B)) + wi−1(fi(A) ∪B) + 2pi

≥ wi(A ∪ fi(B)) + wi(fi(A) ∪B),

where first we used the quasiconvexity of wi−1 for configurations X, Y and
sets A,B and the last inequality follows from Proposition 5.

Case 2. Suppose that wi(X) = wi−1(X − x + ri) + rix and wi(Y ) =
wi−1(Y ) + pi. Without loss of generality we can assume that x ∈ A. By
induction, for wi−1 there is a bijection fi−1 : (X − x+ ri)→ Y that satisfies
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(*) and (**). Set gi(x) = fi−1(ri) and gi(z) = fi−1(z) if z 6= x. Then

wi(X) + wi(Y ) = wi−1(X − x+ ri) + rix+ wi−1(Y ) + pi

≥ wi−1((A− x+ ri) ∪ fi−1(B)) + rix+

wi−1(fi−1(A− x+ ri) ∪B) + pi

= wi−1((A− x+ ri) ∪ gi(B)) + rix+

wi−1(gi(A) ∪B) + pi

≥ wi(A ∪ gi(B)) + wi(gi(A) ∪B),

where first we used the quasiconvexity of wi−1 for configurations X−x+ri, Y
and sets A− x+ ri, B, and the last inequality follows from Proposition 5.
Case 3. Suppose that wi(X) = wi−1(X−x+ri)+rix and wi(Y ) = wi−1(Y −
y + ri) + riy. Without loss of generality we can assume that x ∈ A. By
induction, for wi−1 there is a bijection fi−1 : (X−x+ ri)→ (Y − y+ ri) that
satisfies (*) and (**). Set gi(x) = y and gi(z) = fi−1(z) if z 6= x. Then

wi(X) + wi(Y ) = wi−1(X − x+ ri) + rix+ wi−1(Y − y + ri) + riy

≥ wi−1((A− x+ ri) ∪ fi−1(B)) + rix+

wi−1(fi−1(A− x+ ri) ∪B) + riy

= wi−1((A− x+ ri) ∪ gi(B)) + rix+

wi−1((gi(A)− y + ri) ∪B) + riy

≥ wi(A ∪ gi(B)) + wi(gi(A) ∪B).

where we used the quasiconvexity of wi−1 for configurations X − x+ ri, Y −
y + ri and sets A− x+ ri, B

Therefore there is an fi satisfying (*) and (**). 2

Next we define the (w, x)-minimizer configurations. These configurations
will play important role in the proof. We will show later that the extended
cost can be assigned to a minimizer.

Definition 8 A configuration X is called (w, x)-minimizer if

w(X)−
∑
y∈X

yx = min
Y
{w(Y )−

∑
y∈Y

yx}.

Lemma 9 There exists a (wi, x)-minimizer X such that wi(X) = wi−1(X)+
τi(X).
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Proof. Suppose that Y is (wi, x)-minimizer. Then we have a configuration X
such that wi(Y ) = wi−1(X)+τi(X)+XY . Considering one such configuration
we obtain that

wi(Y )−
∑
y∈Y

yx = wi−1(X) + τi(X) +XY −
∑
y∈Y

yx

≥ wi−1(X) + τi(X)−
∑
y∈X

yx

≥ wi(X)−
∑
y∈X

yx,

first we use XY −
∑

y∈Y yx ≥ −
∑

y∈X yx by the triangle inequality and then
we use Proposition 5. On the other hand, since Y is a (wi, x)-minimizer,
equality holds in all places above, so wi(X) = wi−1(X) + τi(X) holds too.

2

Now we are ready to prove the most important property of the (wi, x)-
minimizers. This lemma is usually called duality lemma since it connects
a maximum property (maximal extended cost) into a minimal property of
minimizers. It shows that the extended cost of serving the request ri occurs
at the (wi, x)-minimizers. We can state this lemma as follows.

Lemma 10 For every (wi−1, ri)-minimizer X we have that

(a) X is also a (wi, ri)-minimizer,

(b) ∇i = wi(X)− wi−1(X).

Proof. (a) Let X be a (wi−1, ri)-minimizer and Y be such a (wi, ri)-minimizer
which satisfies Lemma 9.
If ri ∈ Y then wi(Y ) = wi−1(Y ) by Lemma 9. Furthermore using Lemma
7 for the configurations Y,X we obtain that there is a bijection f from Y
to X which satisfies (*) and (**). Let x = f(ri). Then we can use (**) to
the sets {ri}, Y − ri and by f(ri) = x we obtain that wi−1(Y ) + wi−1(X) ≥
wi−1(Y − ri + x) + wi−1(X − x+ ri) holds. Then we have
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wi(Y )−
∑
y∈Y

yri = wi−1(Y )−
∑
y∈Y

yri

≥ wi−1(Y − ri + x) + wi−1(X − x+ ri)− wi−1(X)−
∑
y∈Y

yri

= wi−1(Y − ri + x)−
∑

y∈Y−ri+x

yri +

xri + wi−1(X − x+ ri)− wi−1(X)

≥ wi−1(X)−
∑
y∈X

yri + wi(X)− wi−1(X)

= wi(X)−
∑
y∈X

yri,

where the second inequality holds since X is a (wi−1, ri)-minimizer and by
Proposition 5. And this proves that X is also an (wi, ri)-minimizer in this
case.
If ri 6∈ Y then wi(Y ) = wi−1(Y ) + pi by Lemma 9. So

wi(Y )−
∑
y∈Y

yri = wi−1(Y )−
∑
y∈Y

yri + pi

≥ wi−1(X)−
∑
y∈X

yri + pi

≥ wi(X)−
∑
y∈X

yri,

where the first inequality holds since X is a (wi−1, ri)-minimizer and the
second inequality follows from Proposition 5. And this proves that X is also
a (wi, ri)-minimizer in this case.

(b) Let X be a (wi−1, ri)-minimizer and Y an arbitrary configuration.
If wi(X) < wi−1(X)+pi then there is an x ∈ X such that wi(X) = wi−1(X−
x+ri)+rix. Furthermore using Lemma 7 for the configurations X−x+ri, Y
we obtain that there exits a bijection f from X − x+ ri to Y which satisfies
(*) and (**). Let y = f(ri) and use (**) for the sets {ri}, X − x. Then we
obtain that

wi−1(X − x+ ri) + wi−1(Y ) ≥ wi−1(X − x+ y) + wi−1(Y − y + ri).
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Then

wi(X) + wi−1(Y ) = wi−1(X − x+ ri) + wi−1(Y ) + rix

≥ wi−1(X − x+ y) + wi−1(Y − y + ri) + rix

= wi−1(X − x+ y)−
∑

z∈X−x+y

riz +

wi−1(Y − y + ri) + rix+
∑

z∈X−x+y

riz

≥ wi−1(X)−
∑
z∈X

riz + wi−1(Y − y + ri) + riy +
∑
z∈X

riz

≥ wi−1(X) + wi(Y ),

where the second inequality holds since X is a (wi−1, ri)-minimizer and the
third inequality follows from Proposition 5. Considering the left and right
sides of this inequality we obtain that wi(X)−wi−1(X) ≥ wi(Y )−wi−1(Y ).
If wi(X) = wi−1(X) + pi then

wi(X)− wi−1(X) = pi ≥ max
Y
{wi(Y )− wi−1(Y )} = ∆i

by Proposition 5.
2

Now define the following potential function on the configurations.

Ψi(X) = kwi(X) +
∑
x∈X

min
Y

{
wi(Y )−

∑
y∈Y

yx

}
,

Furthermore let

Ψi = min
X

Ψi(X).

Then we have the following bound on the extended cost.

Theorem 11 There is a constant C such that ∇(X0, τ) ≤ 2k ·OPT (X0, τ)+
C.

Proof. First we show that ∇i ≤ Ψi − Ψi−1. Suppose that Ψi = Ψi(X) and
Y is a configuration which satisfies Lemma 10.
If ri ∈ X then let Zx be a (wi, x)-minimizer for each x ∈ X. Using the
definition of Ψ and Y we obtain that

13



Ψi −∇i = kwi(X) +
∑
x∈X

(
wi(Zx)−

∑
z∈Zx

xz

)
+(

wi−1(Y )−
∑
z∈Y

riz

)
−

(
wi(Y )−

∑
z∈Y

riz

)

= kwi(X) +
∑

x∈X−ri

(
wi(Zx)−

∑
z∈Zx

xz

)
+

(
wi−1(Y )−

∑
z∈Y

riz

)

≥ kwi(X) +
∑
x∈X

(
wi−1(Zx)−

∑
z∈Zx

xz

)
≥ Ψi−1,

where the last inequality is valid since the work function increases monoton-
ically (wi(Z) ≥ wi−1(Z)) and since Y is a (wi−1, ri)-minimizer. If ri 6∈ X
then wi(X) = wi−1(X) + pi, and since the work function increases mono-
tonically we obtain that Ψi(X) ≥ Ψi−1(X) + kpi ≥ Ψi−1 + ∇i, because
pi ≥ wi(Y )− wi−1(Y ).

By summation over the request sequence we get that∇(X0, τ) =
∑m

i=1∇i ≤
Ψm − Ψ0, where m is the number of the requests. Let A be the last con-
figuration of the optimal offline algorithm and note that X0 is the initial
configuration. Then by Property 1 we obtain that

Ψm ≤ kwm(A) +
∑
x∈A

min
Y

{
wm(Y )−

∑
y∈Y

yx

}
≤

kwm(A) +
∑
x∈A

wm(A) ≤ 2k · wm(A) ≤ 2k ·OPT (X0, τ)

and the lemma follows. We need the additive constant since Ψ0 might be
negative, but it is independent of the input sequence. 2

By Lemma 2 we get the statement of Theorem 4 immediately.
Remark There is a gap of multiplicative factor 2 in our analysis of WFA

in the same way as in the case of the original k-server problem. We think so
that the reason is the same (we loose this factor by using the extended cost),
and we conjecture that WFA is (2k + 1)-competitive for the problem.
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4 The special case of k = 2

In this section we consider the special case of k = 2. Then each configuration
has two points, thus the metric space in the MTS problem contains the
two element multisets of M. We prove that WFA is 5-competitive in this
case. Consider again an initial configuration X0 and a request sequence
(r1, p1), . . . , (rm, pm). Let wi be the work function. We define a new potential
function. This function is defined on the points of the metric space as follows.

Ψi(x) = min
{ab}∈S

{wi(xa) + wi(xb)− ab}+ min
{cd}∈S

{wi(cd)− xc− xd},

Furthermore let

Ψi = min
x∈M

Ψi(x).

This function satisfies the following inequality which will be used in the
proof of the competitiveness.

Lemma 12 For any x ∈M we have

Ψi(x) ≥ min{Ψi(ri),Ψi−1(x) + pi}

Proof. Let {ab} be the configuration that minimizes the first part of the
potential function and denote a (wi, x)-minimizer by Z which satisfies Lemma
9. So wi(Z) = wi−1(Z) + τi(Z) and

Ψi(x) = wi(xa) + wi(xb)− ab+ wi(Z)−
∑
z∈Z

xz

= wi(xa) + wi(xb)− ab+ wi−1(Z) + τi(Z)−
∑
z∈Z

xz

Now by Proposition 5

wi(xa) = min


wi−1(xa) + pi

wi−1(xri) + ria

wi−1(ria) + xri

wi(xb) = min


wi−1(xb) + pi

wi−1(xri) + rib

wi−1(rib) + xri

We prove the lemma by case disjunction.
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(1.) If ri ∈ Z then wi(Z) = wi−1(Z). Let Z = {zri}. Now we’ve got 9 cases,
although by symmetry only the following 6 need to be considered.

(a) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(xb) + pi, then

Ψi(x) = wi−1(xa) + pi + wi−1(xb) + pi − ab+ wi(zri)− xz − xri
= wi−1(xa) + wi−1(xb)− ab+ wi−1(zri)− xz − xri + 2pi

≥ Ψi−1(x) + 2pi

where the inequality comes from the definition of the potential function.

(b) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(xri) + rib, then

Ψi(x) = wi−1(xa) + pi + wi−1(xri) + rib− ab+ wi(zri)− xz − xri
≥ (wi−1(xa) + wi−1(xri)− ari) + (wi−1(zri)− xz − xri) + pi

≥ Ψi−1(x) + pi

where the first inequality comes from the triangle inequality (rib−ab ≥ −ari)
and the second one follows from the definition of the potential function.

(c) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(xa) + pi + wi−1(rib) + xri − ab+ wi(zri)− xz − xri
≥ wi−1(xa) + wi−1(xb)− ab+ wi−1(zri)− xz − xri + pi

≥ Ψi−1(x) + pi

where the first inequality holds because of Property (1) (wi−1(rib) + xri ≥
wi−1(xb)) and the second one follows from the definition of the potential
function.

(d) If wi(xa) = wi−1(xri) + ria and wi(xb) = wi−1(xri) + rib, then

Ψi(x) = wi−1(xri) + ria+ wi−1(xri) + rib− ab+ wi(zri)− xz − xri
= wi(xri) + ria+ wi(xri) + rib− ab+ wi(zri)− xz − xri
≥ wi(xri) + wi(zri)− xz + wi(xri)− xri − riri
≥ Ψi(ri)
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where the first inequality holds since ria+ rib− ab ≥ 0 (triangle inequality)
and the second one comes from the definition of the potential function.

(e) If wi(xa) = wi−1(xri) + ria and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(xri) + ria+ wi−1(rib) + xri − ab+ wi(zri)− xz − xri
= wi(xri) + ria+ wi(rib) + xri − ab+ wi(zri)− xz − xri
≥ wi(xri) + wi(zri)− xz + wi(rib)− rib− riri
≥ Ψi(ri)

where the first inequality follows from triangle inequality (ria − ab ≥ −rib)
and the second one comes from the definition of the potential function.

(f) If wi(xa) = wi−1(ria) + xri and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(ria) + xri + wi−1(rib) + xri − ab+ wi(zri)− xz − xri
= wi(ria) + xri + wi(rib) + xri − ab+ wi(zri)− xz − xri
≥ wi(ria) + wi(rib)− ab+ wi(zri)− zri − riri
≥ Ψi(ri)

where the first inequality holds since xri − xz ≥ −zri (triangle inequality)
and the second one comes from the definition of the potential function.

(2.) If ri /∈ Z then wi(Z) = wi−1(Z) + pi. Let Z = {zv}. Again we have 9
cases, although by symmetry only 6 need to be considered.

(a) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(xb) + pi, then

Ψi(x) = wi−1(xa) + pi + wi−1(xb) + pi − ab+ wi(zv)− xz − xv
= wi−1(xa) + pi + wi−1(xb) + pi − ab+ wi−1(zv) + pi − xz − xv
≥ Ψi−1 + 3pi

where the inequality comes from the definition of the potential function.

(b) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(xri) + rib, then

Ψi(x) = wi−1(xa) + pi + wi−1(xri) + rib− ab+ wi(zv)− xz − xv
= wi−1(xa) + pi + wi−1(xri) + rib− ab+ wi−1(zv)− xz − xv + pi

≥ wi−1(xa) + wi−1(xri)− ria+ pi + wi−1(zv)− xz − xv + pi

≥ Ψi−1(x) + 2pi
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where the first inequality comes from the triangle inequality (rib−ab ≥ −ria)
and the second one follows from the definition of the potential function.

(c) If wi(xa) = wi−1(xa) + pi and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(xa) + pi + wi−1(rib) + xri − ab+ wi(zv)− xz − xv
= wi−1(xa) + pi + wi−1(rib) + xri − ab+ wi−1(zv)− xz − xv + pi

≥ wi−1(xa) + pi + wi−1(xb)− ab+ wi−1(zv)− xz − xv + pi

≥ Ψi−1(x) + 2pi

where the first inequality holds because of Property (1) by (wi−1(rib)+xri ≥
wi−1(xb)) and the second one follows from the definition of the potential
function.

(d) If wi(xa) = wi−1(xri) + ria and wi(xb) = wi−1(xri) + rib, then

Ψi(x) = wi−1(xri) + ria+ wi−1(xri) + rib− ab+ wi(zv)− xz − xv
= wi−1(xri) + ria+ wi−1(xri) + rib− ab+ wi−1(zv) + pi − xz − xv
≥ wi−1(xri) + ria+ wi−1(xb)− ab+ wi−1(zv) + pi − xz − xv
≥ wi−1(xri) + wi−1(xb)− rib+ wi−1(zv) + pi − xz − xv
≥ Ψi−1(x) + pi

where the first inequality follows from Property (1) (wi−1(xri)+rib ≥ wi−1(xb)),
the second one holds since ria−ab ≥ −rib (triangle inequality) and the third
one comes from the definition of the potential function.

(e) If wi(xa) = wi−1(xri) + ria and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(xri) + ria+ wi−1(rib) + xri − ab+ wi(zv)− xz − xv
= wi−1(xri) + ria+ wi−1(rib) + xri − ab+ wi−1(zv) + pi − xz − xv
≥ wi−1(xri) + ria+ wi−1(xb)− ab+ wi−1(zv) + pi − xz − xv
≥ wi−1(xri) + wi−1(xb)− rib+ wi−1(zv) + pi − xz − xv
≥ Ψi−1(x) + pi

where the first inequality follows from Property (1) (wi−1(rib)+xri ≥ wi−1(xb)),
the second one holds since ria−ab ≥ −rib (triangle inequality) and the third
one comes from the definition of the potential function.
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(f) If wi(xa) = wi−1(ria) + xri and wi(xb) = wi−1(rib) + xri, then

Ψi(x) = wi−1(ria) + xri + wi−1(rib) + xri − ab+ wi(zv)− xz − xv
= wi−1(ria) + xri + wi−1(rib) + xri − ab+ wi−1(zv) + pi − xz − xv
≥ wi−1(xa) + wi−1(xb)− ab+ wi−1(zv) + pi − xz − xv
≥ Ψi−1(x) + pi

where the first inequality follows from Property (1) (wi−1(ria)+xri ≥ wi−1(xa))
and (wi−1(rib) + xri ≥ wi−1(xb)) and the second one comes from the defini-
tion of the potential function. 2

Using Lemma 12 we can prove the following bound on the extended cost.

Theorem 13 There is a constant C such that ∇(X0, τ) ≤ 3 ·OPT (X0, τ) +
C.

Proof. First we show, that ∇i ≤ Ψi−Ψi−1. Let Ψi = Ψi(x).Then by Lemma
12 we get two cases.

1. Suppose that Ψi(x) ≥ Ψi(ri). Then let A be a (wi, ri)-minimizer from
Lemma 10, so ∇i = wi(A)−wi−1(A) and A is a (wi−1, ri)-minimizer as well.
Then for some b and c

Ψi −∇i = Ψi(x)−∇i ≥ Ψi(ri)−∇i

= wi(rib) + wi(ric)− bc+ wi(A)− riA− wi(A) + wi−1(A)

= wi(rib) + wi(ric)− bc+ wi−1(A)− riA
= wi−1(rib) + wi−1(ric)− bc+ wi−1(A)− riA
≥ Ψi−1(ri) ≥ Ψi−1

2. Suppose that Ψi(x) ≥ Ψi−1(x) + pi. Then

Ψi = Ψi(x) ≥ Ψi−1(x) + pi ≥ Ψi−1 +∇i,

because from Proposition 5 comes that wi(A) ≤ wi−1(A) + pi.

By summation over the request sequence we get that∇(X0, τ) =
∑m

i=1∇i ≤
Ψm −Ψ0, where m is the number of the requests. Let A = (x, y) be the last
configuration of the optimal offline algorithm. Then

Ψm ≤ Ψm(x) ≤ wm(A) + wm(A)− xy + wm(A)− xA
≤ 3wm(A) = 3OPT (X0, τ),
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and Ψ0 is a constant which is independent of the input.
2

By Theorem 13 and Lemma 2 we immediately obtain the main result of
this section.

Theorem 14 WFA is 5-competitive if k = 2.

5 The Line

In this section we consider the special case of the line. We prove that WFA
is (2k + 1)-competitive for the k-server problem with rejection and for that
we use the same technique which was used in [3]. First we assume that
all requests are in a fixed interval [a, b]. Let us denote the configuration
that contains ` copies of a and k − ` copies of b as {a`bk−`}. We shall call
these configurations extreme. There are exactly k+1 extreme configurations,
because ` = 0, . . . , k. The next lemma shows that we can generally assume
that minimizers are extreme configurations.

Lemma 15 Assume that all requests are in the interval [a, b]. For any point
z ∈ [a, b] and any work function wi, there is an ` ∈ {0, . . . , k} such that
{a`bk−`} is a minimizer of z with respect to wi.

Proof. Let X be a minimizer of z with respect to wi with all points in the
interval [a, b]. Assume that there is a point x ∈ X in the interval [a, z]. Then
X − x+ a is also a (wi, z)-minimizer because

wi(X − x+ a)−
∑

y∈X−x+a

zy ≤ (wi(X) + ax)−
∑

y∈X−x+a

zy

= (wi(X) + ax)− (
∑
y∈X

zy + ax) = wi(X)−
∑
y∈X

zy

where the first inequality follows from Property (1) and the second from the
fact that az = ax+ xz. Similarly, we can exchange all points of X for either
a or b. 2

Theorem 16 There is a constant C such that ∇(X0, τ) ≤ (k+1)·OPT (X0, τ)+
C.
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Proof. First we show this statement for a fixed interval [a, b], to present the
main idea and then we extend it to the infinite line.
Define a new potential Ψi for the line which is the sum of the values of wi

on the extreme configurations:

Ψi =
k∑

j=0

wi({ajbk−j}).

By Lemma 15, there is an ` such that {a`bk−`} is a minimizer of ri+1

with respect to wi. The increase of the potential, Ψi+1 − Ψi, is equal to the
increase of the work function on all extreme configurations. Since the work
function increases monotonically (wi+1(X) ≥ wi(X)), we obtain that

Ψi+1 −Ψi ≥ wi+1({a`bk−`})− wi({a`bk−`}),

which is the extended cost (∇i+1) used to service ri+1. By summation over
the request sequence we get that ∇(X0, τ) ≤

∑m
i=1∇i ≤ Ψm −Ψ0, where m

is the number of the requests.
By property 1 we have w(X)−w(Y ) ≤ XY and since we are in the interval
[a, b] we have XY ≤ k · ab. So

Ψm =
k∑

j=0

wm({ajbk−j})

≤ (k + 1) · (OPT (X0, τ) + k · ab)
= (k + 1) ·OPT (X0, τ) + k · (k + 1) · ab

On the other hand Ψ0 ≥ 0, thus the total extended cost is bounded above
by (k + 1) ·OPT (X0, τ) + C for some constant C.

We now turn to the infinite line. We have to compute the constant and
show that it depends only on the initial configuration. Let us first observe
that we can again assume that all requests are in an interval [a, b] where a is
the leftmost request and b is the rightmost one. But now we can not assume
that ab is constant (since it depends on the request sequence). Thus we have
to show that the additive term is independent of ab. We prove that it depends
only on the initial configuration X0. To prove that denote the positions in
the configuration by x1, x2, . . . , xk and let |X0| =

∑
xi,xj(i<j)∈X0

xixj. Then
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Ψ0 =
k∑

j=0

w0({ajbk−j}) =
k∑

j=0

X0{ajbk−j}

=
k∑

j=0

(
j∑

i=1

axi +
k∑

i=j+1

bxi

)

=
k∑

j=0

(
j∑

i=1

axi +
k∑

i=j+1

(ab− axi)

)

=
k∑

j=0

k∑
i=j+1

ab+
k∑

j=0

(
j∑

i=1

axi −
k∑

i=j+1

axi

)

=
k∑

j=0

k∑
i=j+1

ab+
k∑

i=1

(
(k + 1− i)axi −

k∑
j=i

axj

)

=
k∑

j=0

k∑
i=j+1

ab−
∑

xi,xj∈X0, i≤j

xixj =
k∑

j=0

k∑
i=j+1

ab− |X0| =
k(k + 1)

2
ab− |X0|

If Xm is the final configuration of the optimal off-line algorithm, then we
can do exactly the same calculation as above to prove Ψm ≤ (k+1)wm(Xm)+
k(k+1)

2
ab− |Xm|.

It follows that the extended cost is bounded above by Ψm − Ψ0 ≤ (k +
1)wm(Xm) − |Xm| + |X0| ≤ (k + 1)wm(Xm) + |X0| which shows that the
total extended cost is bounded above by (k + 1)OPT (X0, τ) + C where the
constant is independent of the input also in the case of the infinite line. 2

Theorem 17 WFA is (2k + 1)-competitive for k-server problem with rejec-
tion in the line.

Proof. By Theorem 16 and Lemma 2 we get the statement. 2

WFA has a small competitive ratio in this case. On the other hand it
has huge (exponential) memory requirements and also time complexity as
it is shown in [6] and [13]. Therefore it is an interesting question to find
faster algorithms with smaller memory requirements even if they have worse
competitive ratio. We note that for the classical k-server problem on general
space some simpler but not constant competitive WFA type algorithm have
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been studied in [1]. Here we investigate an extended version of the Double-
Coverage algorithm of [5]. This extended algorithm works as follows.

Algorithm EDC (Extended Double-Coverage)
The algorithm serves the request ri as follows.

(i) Consider the closest server to ri, denote its distance from ri
by d.

(ii) If d ≤ pi/2 then the algorithm serves the point by moving
the server there. Moreover if there are some further servers
on the opposite side of the request, then the closest one
among them also moves distance d into the direction of the
request.

(iii) If d > pi/2 then the request is rejected and the server moves
pi/2 distance in the direction of the request. Moreover if
there are some further servers on the opposite side of the re-
quest, then the closest among them also moves pi/2 distance
in the direction of the request.

Theorem 18 Algorithm EDC is 3k-competitive on the line.

Proof. Consider an arbitrary sequence of requests and denote this input by
%. During the analysis of the procedure we suppose that one off-line optimal
algorithm and EDC are running parallel on the input. We also suppose
that each request is served first by the off-line algorithm and then by the
on-line algorithm. Let ≤ be the natural ordering on the points of the line.
The servers of the on-line algorithm and also the positions of the servers are
denoted by s1, . . . , sk, and the servers of the optimal off-line algorithm and
also the positions of the servers are denoted by x1, . . . , xk. We suppose that
for the positions s1 ≤ s2 ≤ · · · ≤ sk and x1 ≤ x2 ≤ · · · ≤ xk are always valid,
this can be achieved by swapping the notations of the servers.

We prove the theorem by the potential function technique. The potential
function assigns a value to the actual positions of the servers, so the on-line
and off-line costs are compared using the changes of the potential function.
Let us define the following potential function:

Φ = k
k∑

i=1

xisi +
∑
i<j

sjsi.
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We note that this is the same function which was used in [5]. It is in-
teresting that we can use a potential function which is independent of the
penalties. Denote the value of the potential function after serving the request
%i by Φi. Moreover denote EDCi and OPTi the cost on %i of EDC and the
offline algorithm respectively. This cost is the distance moved by the servers
of the algorithm plus the penalty of %i if it is rejected by the algorithm. We
show that the following statement is valid for the potential function.

Lemma 19 For each i ≥ 1, the following inequality holds

Φi − Φi−1 ≤ k ·OPTi − 1/3 · EDCi.

Proof. We distinguish the following cases, depending on the behavior of
OPT and EDC.

Case 1.a Suppose that OPT serves the request and EDC moves only one
server.
We consider only the case when the request point is smaller than s1. The
other possibility where the request is greater than sk is symmetric and can be
handled in the same way. First OPT serves the request, it moves one server
there and the distance moved by the server is OPTi. The movement of the
offline server increases the first part of Φ by at most k ·OPTi, the second part
does not change. Let δ = min{ris1, pi/2}. Then the server of EDC moves
distance δ. If δ = ris1 ≤ pi/2 then it reaches the request and serves it, thus
EDCi = δ. If δ = pi/2 < ris1, then EDC does not reach the request thus
it also pays the penalty which is 2δ, therefore in this case EDCi = 3δ. In
the first part of the potential function x1s1 is decreased by δ (x1 cannot be
larger than the requested point since OPT has a server on it), in the second
part sjs1 is increased by δ for each j. Summarizing we obtained that

Φi−Φi−1 ≤ k ·OPTi−k ·δ+(k−1)δ = k ·OPTi−δ ≤ k ·OPTi−1/3 ·EDCi.

Case 1.b Suppose that OPT serves the request and EDC moves two
servers.

Then EDC has servers on both sides of the request; suppose that the
closest servers are sj and sj+1. We assume that sj is closer to ri, the other
case is completely similar. The movement of the offline server increases
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the first part of Φ by at most k · OPTi, the second part does not change.
In this case two servers of EDC move both of them a distance δ where
δ = min{sjri, pi/2}. If δ = sjri ≤ pi/2 then sj reaches the request and serves
it, thus EDCi = 2δ. If δ = pi/2 < d, then EDC does not reach the request
thus it also pays the penalty which is 2δ, therefore in this case EDCi = 4δ.
Consider now the first sum of the potential function. The j-th and the j+ 1-
th parts are changing. Since xl = ri for some l, thus one of the j-th and the
j + 1-th parts decreases by δ and the increase of the other one is at most δ,
thus the first sum does not increase. The change of the second sum of Φ is
δ
(
(j− 1)− (k− j)− (j) + (k− (j+ 1))

)
= −2δ. Summarizing we obtain that

Φi−Φi−1 ≤ k ·OPTi−2 · δ ≤ k ·OPTi−1/2 ·EDCi ≤ k ·OPTi−1/3 ·EDCi.

Case 2.a Suppose that OPT rejects the request and EDC moves only
one server.
Again we consider only the case when the request point is smaller than s1.
The other possibility where the request is greater than sk is symmetric and
can be handled in the same way. OPT rejects the request, thus it has cost
pi and Φ does not change during the step of OPT. Let δ = min{s1ri, pi/2}.
Then the server of EDC moves distance δ. If δ = d ≤ pi/2 then it reaches
the request and serves it, thus EDCi = δ. If δ = pi/2 < d, then EDC does
not reach the request thus it also pays the penalty which is 2δ, therefore in
this case EDCi = 3δ. In the first part of the potential function x1s1 might
increase by at most δ (in this case OPT has no server on the requested
point), in the second part sjs1 is increased by δ for each j. Summarizing we
obtained that

Φi−Φi−1 ≤ k · δ+ (k−1)δ = 2k · δ− δ ≤ 2kpi/2− δ ≤ k ·OPTi−1/3 ·EDCi.

Case 2.b Suppose that OPT rejects the request and EDC moves two
servers.

Then EDC has servers on both sides of the request, suppose that the
closest servers are sj and sj+1. We assume that sj is closer to ri, the other
case is completely similar. OPT rejects the requests, thus it has cost pi and
Φ does not change during the step of OPT. Two servers of EDC move both
of them a distance δ = min{sjri, pi/2}. If δ = sjri ≤ pi/2 then sj reaches the
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request and serves it, thus EDCi = 2δ. If δ = pi/2 < d, then EDC does not
reach the request thus it also pays the penalty which is 2δ, therefore in this
case EDCi = 4δ. In the first part of the potential function xjsj and xj−1sj−1
might increase by at most δ and we can see in the same way as in Case 1.b
that the second part is decreased by 2δ. Therefore we obtained that

Φi−Φi−1 ≤ 2k·δ−2δ ≤ 2kpi/2−2δ ≤ k·OPTi−1/2·EDCi ≤ k·OPTi−1/3·EDCi.

2

By Lemma 19 one can prove the theorem easily. In this case Φf − Φ0 ≤
k · OPT(%) − EDC(%)/3, where Φf and Φ0 are the final and the starting
values of the potential function. Furthermore, Φ is nonnegative, so we obtain
that EDC(%) ≤ 3kOPT(%) + 3Φ0, which yields that the algorithm is 3k-
competitive (Φ0 does not depend on the input sequence only on the starting
position of the servers).

2

6 Lower bounds

We prove the following lower bound on the possible competitive ratio.

Theorem 20 For any metric space containing at least k+1 points no online
algorithm can have smaller competitive ratio than 2k+1 for the k-server with
rejection problem.

Proof. We prove this statement by contradiction. Consider an arbitrary
metric space M which contains at least k + 1 points. Suppose that there
exists an online algorithm A onM which has smaller competitive ratio than
2k+1. Without loosing generality we can assume that this algorithm is lazy,
which means that it does not move any of the servers if there is a server on the
request point and it never uses more than one server to serve a request. Any
algorithm which is not lazy can be modified into a lazy one without increasing
its cost by postponing the movements which are not used directly to serve
a request. Moreover we suppose that the starting configuration contains k
different points. Let X0 = x1, . . . , xk be the initial configuration of the servers
and let xk+1 /∈ X0 be a further point of M. Denote by M the maximal and
by L the minimal distance among the distances xixj, 1 ≤ i < j ≤ k + 1. We
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construct the following input sequence %N for A. Let N be a large positive
integer and ε = 1/N2. Each element of %N consists of the point among
x1, . . . , xk+1 which is not in the current configuration of algorithm A and a
penalty ε. If a point is different from the previous one (which means that
the algorithm used a server to serve the previous request) then we call it new
point. The request sequence ends when the number of server movements of
A achieves N . If A never uses N server movements to serve the requests
then it has a last server movement. After that each request will be on the
same point and the algorithm rejects it, thus its cost will tends to ∞. On
the other hand an optimal algorithm uses a server to cover this last point
and has constant cost of at most N ·M using at most maximal distances
to cover all new point when they arrive, and this shows that the algorithm
is not constant competitive in this case. Now let Wp denote the sum of the
penalties paid by algorithm A and Wd denote the total distance moved by the
servers of A. Then A(%N) = Wp +Wd. Denote q1, . . . , qN the sequence of the
new points in the input. Then the request at qi is served by the server which
was on qi+1 (this is the only point without a server after serving qi). This
means that Wd =

∑N
i=1 qiqi+1, where qN+1 is the point among x1, . . . , xk+1

which is not in the final configuration of the algorithm. Let us note here that
qiqi−1 ≥ L for each i, therefore Wd ≥ (N − 1)L, thus Wd tends to ∞ if N
tends to ∞.

Now extend the idea from [12] with the technique which is used in [15]
to calculate an upper bound on OPT (I). We consider the following 2k + 1
different offline algorithms all of them serving all requests, denote them by
OFF1, . . . ,OFF2k+1. First we define and analyse OFF1, . . . ,OFFk. Sup-
pose that the servers of OFFj are at points x1, x2, . . . , xj−1, xj+1, . . . xk+1 in
the starting configuration. We can move the servers into this starting config-
uration using an extra constant cost at most M . This step is used to cover
the first request and also to ensure that these algorithms are in different
starting configurations.

The algorithms serve the requests as follows. If an algorithm OFFj has
a server at the requested point which is at position qi, then none of the
servers moves. Otherwise the request is served by the server located at point
qi−1. Note that the algorithms have servers on k-different points among
the (k + 1)-points. Therefore the algorithms are well-defined, if qi does not
contain a server, then each of the other points among x1, x2, . . . , xk+1 contains
a server, thus there is a server located at qi−1. Moreover q1 = xk+1, thus at
the beginning each algorithm has a server at the requested point.
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Next we show that the servers of algorithms OFF1, . . . ,OFFk are always
in different configurations. At the beginning this property is valid because
of the definition of the algorithms. Now consider the step where a request
is served. Call the algorithms which do not move a server for serving the
request stable, and the other algorithms unstable. We note that we will
prove later that there is only one unstable algorithm in each step. The
server configurations of the stable algorithms remain unchanged, so these
configurations remain different from each other. Each unstable algorithm
moves a server from point qi−1. This point is the place of the last request,
thus the stable algorithms have server at it. Therefore, an unstable algorithm
and a stable algorithm cannot have the same configuration after serving the
request. Furthermore, each unstable algorithms moves a server from qi−1 to
qi, thus the server configurations of the unstable algorithms remain different
from each other.

So at the arrival of the request at point qi the servers of the algorithms
are in different configurations. On the other hand, each configuration has a
server at point qi−1, therefore there is only one configuration where there is
no server located at point qi. Consequently, the cost of serving qi is qi−1qi
for one of the algorithms and 0 for the other algorithms.

Therefore

k∑
j=1

OFFj(%N) ≤ k ·M +
N∑
i=2

qiqi−1 ≤ k ·M +Wd.

Now we define the algorithms OFFk+1, . . . , OFF2k+1. In the case of
OFFk+i first we move the servers to the points x1, . . . , xi−1, xi+1, . . . , xk+1.
This can be done by using an extra constant cost of at most M . Then none
of the servers move, if the algorithm has a server on the request point then
it serves it, otherwise the request is rejected.

Clearly, the number of requests is N + Wp/ε, and each request point is
rejected by one of the algorithms OFFk+1, . . . , OFF2k+1 and served with cost
0 by the others. Therefore we obtain that

k+1∑
i=1

OFFk+i(%N) ≤ (k + 1) ·M + (N +Wp/ε)ε ≤ k ·M + 1/N +Wp.

Applying these bounds we get that
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A(%N) ≥
2k+1∑
i=1

OFFi(%N)− (2k + 1) ·M − 1/N.

Therefore using OPT (%N) ≤ OFFi(%N) we obtain that

A(%N)

OPT (%N)
≥ (2k + 1)− (2k + 1) ·M + 1/N

OPT (%N)
.

Now let us consider the limit of this ratio under the assumption N → ∞.
Note that OPT (%N) is an increasing function of N . If it is bounded then
by A(%N) ≥ Wd ≥ (N − 1)L we obtain that this ratio tends to ∞ thus the
algorithm is not constant competitive. If OPT (%N) → ∞ as N → ∞ then
the right side of the inequality tends to 2k + 1 as N tends to ∞ thus we
obtain that the algorithm cannot be better than (2k + 1)-competitive.

2

Corollary 21 In the case of the online k-server problem with rejection al-
gorithm WFA achieves the smallest possible competitive ratio for k = 2, and
also for the k-server problem with rejection if the metric space contains k+ 1
points or it is the line.

Corollary 22 In the case of the online k-server problem with rejection al-
gorithm EDC achieves the smallest possible competitive ratio for the line if
k = 1.
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