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Online hypergraph coloring with rejection
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Abstract. In this paper we investigate the online hypergraph coloring
problem with rejection, where the algorithm is allowed to reject a ver-
tex instead of coloring it but each vertex has a penalty which has to be
paid if it is not colored. The goal is to minimize the sum of the num-
ber of the used colors for the accepted vertices and the total penalty
paid for the rejected ones. We study the online problem which means
that the algorithm receives the vertices of the hypergraph in some order
v1, . . . , vn and it must decide about vi by only looking at the subhyper-
graph Hi = (Vi, Ei) where Vi = {v1, . . . , vi} and Ei contains the edges
of the hypergraph which are subsets of Vi. We consider two models: in
the full edge model only the edges where each vertex is accepted must
be well-colored, in the trace model the subsets of the edges formed by
the accepted vertices must be well colored as well. We consider proper
and conflict free colorings. We present in each cases optimal online algo-
rithms in the sense that they achieve asymptotically the smallest possible
competitive ratio.

1 Introduction

A coloring of a hypergraph is an assignment of positive integers to the ver-
tices of the hypergraph so that every edge satisfy some property. We consider
two different versions of coloring. In proper hypergraph coloring each edge
must contain vertices having different colors. In conflict free (we will use the

Computing Classification System 1998: F.1.2
Mathematics Subject Classification 2010: 68W27
Key words and phrases: online algorithms, hypergraph coloring, competitive ratio

1

http://www.inf.u-szeged.hu/~cimreh
http://www.inf.u-szeged.hu
http://www.inf.u-szeged.hu
mailto:cimreh@inf.u-szeged.hu
http://www.math.u-szeged.hu/~ngyj
http://www.math.u-szeged.hu
http://www.math.u-szeged.hu
mailto:Nagy-Gyorgy@math.u-szeged.hu


2 Cs. Imreh, J. Nagy-Gyrgy

abbreviation cf) coloring each edge must contain a unique vertex which has
different color to the other vertices of the edge. In the online hypergraph col-
oring problem the algorithm receives the vertices of the hypergraph in some
order v1, . . . , vn and it must color vi by only looking at the subhypergraph
Hi = (Vi, Ei) where Vi = {v1, . . . , vi} and Ei contains the edges of the hyper-
graph which are subsets of Vi.

We will evaluate the efficiency of the online algorithms by the competitive
ratio (see [4, 10]) where the online algorithm is compared to the optimal offline
algorithm. We say that an online algorithm is C-competitive if its cost is at
most C times larger than the optimal cost.

Online proper coloring of hypergarphs first was studied in [9] where it was
proven that no online algorithm exists for 2-colorable k-uniform hypergraphs
which can color them with less colors than dn/(k−1)e, and it was proved that
algorithm FF colors these hypergraphs with this much colors. This means that
the best possible competitive ratio is dn/(k − 1)e/2 for this class of hyper-
graphs. Furthermore some special classes were also studied: the hypergraphs
with given matching number and projective planes. Later randomized algo-
rithms were studied for online proper coloring of hypergarphs in [8] where the
deterministic Ω(n/k) lower bound was extended to randomized algorithms.
This lower bound was also proved in the case of a more general transparent
model. In [11] the online and quasionline hypergraph proper coloring problem
was studied for intervals and wedges.

Online cf-coloring of hypergraph was defined in [5] where the authors con-
sidered the case where the input is a set of n points on the line, and R is the
set of the intervals of the line. They present an algorithm which uses at most
O(log2(n)) colors and also prove a matching lower bound. Online cf-coloring
of intervals was further studied in [2] where several coloring model was defined
and compared. The online cf-coloring of other more general hypergraphs were
studied in [3] and [6].

In [7] the graph coloring problem with rejection was investigated. In this
model a penalty value is assigned to each vertex and the algorithm has to
choose a subset of vertices, and find a proper coloring of the induced subgraph
defined by this subset. The elements of the subset are called accepted vertices
the other ones are called rejected. The goal is to minimize the sum of the
number of colors used to color the accepted vertices and the total penalty
paid for the rejected vertices. In [7] both the online and the offline versions of
the problems are investigated.

In this paper we extend graph coloring with rejection into hypergraph col-
oring with rejection. There are two ways to extend the model. In the full
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edge model we have to color correctly only the edges where each vertices are
accepted from the edge. In the trace model we have to color correctly the
subhypergraph which consists of the accepted vertices and the edges which
are the accepted subsets of the original edges. Note that in the special case of
graphs the two models are identical. We consider both proper and cf-coloring
in both models.
Main results: We studied four models since we had two possibilities for

the coloring (proper and cf) and two possibilities to handle rejection (full
edge, trace). In the full edge model with proper coloring we present for every
ε > 0 an online algorithm Aε and nε such that Aε is at most dn/(k− 1)e/2+
ε competitive on k-uniform hypergraphs with at least nε vertices for k ≥
3. This competitive ratio is asymptotically the best possible since it follows
from online hypergraph coloring that no online algorithm exists with smaller
competitive ratio than dn/(k−1)e/2 for k-uniform hypergraphs. In case of full
edge model and cf-coloring we present an (n−1)/ϕ+ϕ-competitive algorithm
for hypergraphs of n-vertices where ϕ = (1 +

√
5)/2. In the trace model we

present an algorithm which is 2 + (n − 2)/ϕ-competitive for both the proper
and cf coloring models. All of these algorithms are asymptotically optimal
since we prove that no online algorithm exists which is Cn + D-competitive
in any these models for hypergraphs containing n vertices and some constants
C < 1/ϕ, D.

2 Notation

In this paper on hypergraph we mean the structure H = (V, E) where V is the
finite set of the hypergraph’s vertices and E ⊆ ρ(V) is the set of the edges
where ρ(V) is the set of the nonempty subsets of V. We suppose that each
edge has at least two elements.

We consider the following two colorings. A proper coloring of a hypergraph
is an assignment of positive integers (called colors) to the vertices of the hy-
pergraph so that each edge contains at least two vertices with different colors.
For a hypergraph H the minimum number of colors which is enough to color
the hypergraph is called the proper chromatic number of the hypergraph and
denoted by χP(H). A conflict free (cf for short) coloring of a hypergraph is an
assignment of positive integers (called colors) to the vertices of the hypergraph
so that each edge contains a unique color, a vertex which has different color
to the other vertices of the edge. For a hypergraph H the minimum number
of colors which is enough to cf-color the hypergraph is called the cf-chromatic
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number of the hypergraph and denoted by χcf(H).
We will consider the hypergraph coloring with rejection. This means that

we can reject the coloring of some vertices, but each vertex v has a penalty
denoted by p(v) and our goal is to minimize the sum number of used colors
for the accepted vertices and the total penalty paid for the rejection of the
other ones. We consider two rejection models. In the full edge model we have
to color correctly only the edges where each vertices are accepted from the
edge. This means that rejecting some vertex of an edge ensures that it is well
colored. We also consider a different model called trace model. In this new
model we consider the subhypergraph which consists of the accepted vertices
and the edges which are the accepted subsets of the original edges. And this
subhypergraph must to be well-colored in each step. Therefore in the trace
model the rejection of some vertices of an edge does not ensure that it is well
colored we have to take care of the remaining vertices. We can define the
problem for both the proper and the conflict free coloring.

We consider the online problem. An online hypergraph (defined first in [1]) is
a structure H< = (H,<) where H is a hypergraph and < is a linear ordering of
its vertices. We call a vertex the first, second,..., and ending vertex of an edge
according to the ordering <. An online hypergraph coloring algorithm has to
color the i-th vertex only knowing the subhypergraph Hi = (Vi, Ei) where Vi
contains the first i vertices and Ei contains the edges of the hypergraph which
are subsets of Vi. This means that the online algorithm receives information
about the edges only when the last vertex of the edge arrives. We will use
the well-known greedy algorithm FF (First Fit) to color the accepted vertices
of the online hypergraphs. FF uses the smallest color for each vertex which
does not hurt the rule of the coloring. In case of proper coloring it uses the
smallest color which does not cause a monochromatic edge. In the case of cf-
coloring it uses the smallest color which does not yield an edge where none of
the colors is unique. We note that in the trace model it might happen that
the online algorithm is forced to accept some vertices. If it has accepted and
colored two vertices by the same colors then a further vertex which forms an
edge with these vertices must be accepted since otherwise the remaining edge
of the subhypergraph is not well-colored. In this situation when the rejection
of a vertex causes an incorrect coloring of the remaining edges we say that the
vertex is forced to be accepted.

Usually in the theory of online computation the efficiency of the online
algorithms are measured by the competitive ratio (see [4, 10]) where the online
algorithm is compared to the optimal offline algorithm. We denote the cost of
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the online algorithm A on an online hypergraph H< and penalty function p by
A(H<, p) and we will denote the optimal cost by opt(H<, p). An algorithm is
called c-competitive if A(H<, p) ≤ c · opt(H<, p) for every H and p. Since no
constant competitive online algorithm exists we will consider the competitive
ratio as a function of the number of vertices, denoted by n.

We also use the following notion from the theory of hypergraphs. A hyper-
graph is called k-uniform if each edge contains k vertices.

3 Online coloring hypergraphs with rejection in the
full edge model

3.1 Proper coloring

Note that a lower bound of dn/(k − 1)e/2 on k-uniform 2-proper-colorable
hypergraphs for k ≥ 3 comes from the case without rejection. Surprisingly,
the following theorem shows that one can reach this competitive ratio in the
asymptotical sense for the more general case where rejection is also allowed.

Theorem 1 If k ≥ 3, then for every ε < 1/8 there is an online algorithm Aε
and nε, such that Aε is at most dn/(k − 1)e/2 + ε competitive on k-uniform
hypergraphs with at least nε vertices.

Proof. Let δε = 2ε/(k− 2), nε =
2k−2

δε−δ2ε(2k−2)
. Define the following algorithm:

Algorithm Aε: If the penalty of the next vertex is less then δε reject it, otherwise
color it by algorithm FF.

Denote by A the set of the colored and by B the set of the rejected vertices
by Aε, and χAε(A) the number of colors used by Aε. Let n = |A| + |B|. Then
the cost of Aε is χAε(A) + p(B) ≤ d|A|/(k− 1)e+ δε|B|.
We have three cases.
Case 1. Suppose that the optimal algorithm uses at least 2 colors. In this case
its cost is at least 2. Therefore we obtain that

costAε(H<, p)

opt(H<, p)
≤ costFFε(H<, p)

2
≤ 1
2

⌈
n

k− 1

⌉
.

Case 2. Suppose that the optimal algorithm uses one color. We state that in
this case it must reject at least χAε(A)− 1 vertices from A. First observe that
FF uses color j for a new vertex only when the vertex ends for each i < j
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and edge containing k − 1 vertices colored by i. Therefore for each pair of
color classes of A there exists an edge which contains only vertices from these
color classes. This means that the optimal algorithm cannot accept all vertices
from two different color classes of A since it could not color them correctly
by 1 color. Thus it follows that the optimal algorithms must reject at least
χAε(A) − 1 vertices from A.

If |A| > 0 then

costAε(H<, p)

opt(H<, p)
≤ χAε(A) + p(B)

1+ δε(χAε(A) − 1)

≤ χAε(A)

δε(χAε(A))
+ p(B)

≤ 1

δε
+ δε|B|

≤ 1

δε
+ δεn

≤ n

2(k− 1)
,

where the last inequality comes from the definition of nε.
If |A| = 0 then

costAε(H<, p)

opt(H<, p)
≤ p(B) ≤ δεn ≤

n

2(k− 1)
.

Case 3. Suppose that the optimal algorithm uses no colors, i.e. it rejects all
vertices. If |A| = 0 then Aε optimal. Otherwise

costAε(H<, p)

opt(H<, p)
≤ χAε(A) + p(B)

p(A) + p(B)

≤ χAε(A)

p(A)

≤
|A|
k−1 +

k−2
k−1

δε|A|

≤ 1

δε(k− 1)
+

k− 2

δε(k− 1)
=
1

δε

≤ n

2(k− 1)
,
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where the first and third inequality come from the definition of the algorithm
and the case, the last two come from the definition of nε. �

3.2 Conflict-free coloring

In the full edge model for cf coloring we considered the following algorithm.

Algorithm B: If the penalty of the next vertex is less then 1/ϕ reject it, other-
wise color it by FF.

Theorem 2 Algorithm B is (n − 1)/ϕ + ϕ-competitive on hypergraphs on n
vertices where ϕ = (1+

√
5)/2.

Proof. Consider an input hypergraph denoted by H<. Denote A the set of the
colored and B the set of the rejected vertices by B, and χB(A) the number of
colors used by B. Let n = |A|+ |B|. Then the cost of B is

χB(A) + p(B) ≤ |A|+ |B|/ϕ.

We have three cases.
Case 1. Suppose that the optimal algorithm uses at least 2 colors. In this case
the optimal cost is at least 2, therefore

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

2
≤ |A|+ |B|/ϕ

2

≤ n

2
≤ n− 1

ϕ
+ϕ.

Case 2. Suppose that the optimal algorithm uses one color. If the input hy-
pergraph has edges colored by B then the optimal algorithm have to reject at
least one vertex with penalty at least 1/ϕ. Therefore the optimal cost is at
least 1+ 1/ϕ, thus we obtain that

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

1+ 1/ϕ

≤ |A|+ |B|/ϕ

ϕ
≤ n

ϕ
.

If the input hypergraph has no edge colored by B then the optimal cost is
at least 1 but in this case χB(A) ≤ 1 thus
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costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)

1
≤ 1+ (|B|)/ϕ ≤ 1+ n− 1

ϕ
.

Case 3. Suppose that the optimal algorithm uses no colors, i.e. it rejects all
vertices. Then

costB(H<, p)

opt(H<, p)
≤ χB(A) + p(B)
p(A) + p(B)

≤ χB(A)
p(A)

≤ |A|

|A|/ϕ
= ϕ ≤ n− 1

ϕ
+ϕ.

�

Note that considering the online cf-coloring without rejection of 2-cf-colorable
hypergraphs we can obtain the following result.

Lemma 3 No online cf-coloring algorithm uses less then n − 1 colors on 2-
cf-colorable hypergraphs on n vertices.

Proof. Give vertices until two of them are colored by the same color. Suppose
that online algorithm colors vi and vj with the same color. Then reveal edges
in the m-th phase {vi, vj, vm} and {vi, vj, v`, vm} for all ` < m, ` 6= i, j. Then
the online algorithm must use a new color for each new vertex.

This hypergraphs is 2-cf-colorable: vi is in the first color class and the other
vertices are in the second. �

This observation proves that no online algorithm can be better than (n−1)/2
competitive for online cf-coloring of hypergraphs, and this bounds holds as well
for the model with rejection since we can use penalty ∞ for all vertices.

On the other hand we can extend the idea of this lower bound to the model
with rejection and prove that the competitive ratio of B is the best possible
in the asymptotical sense as the following theorem shows.

Theorem 4 No online algorithm exists which is Cn + D-competitive in the
problem of conflict free coloring with rejection in the full edge model for hy-
pergraphs containing n vertices for some constants C < 1/ϕ, D.

Proof. Suppose that, on the contrary, there exist constants C < 1/ϕ and
D and an online algorithm C which is Cn + D-competitive. First we present
vertices with penalty 1/ϕ and no edge until two of them are colored by the
same color or the number of vertices reaches a number n1 > D/(1/ϕ − C).
If none of these vertices received the same color then the sequence ends, the
optimal algorithm colors these vertices by one color and its cost is 1. The
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online algorithms pays at least 1/ϕ for each of them thus the online cost is
at least n1/ϕ and we obtain a contradiction since n1/ϕ > Cn1 + D by the
definition of n1.

Now suppose that the online algorithm colors two accepted vertices by the
same colors. Let these vertices be vi and vk, where i < k. Note that the first
phase of the inputs ends by vertex vk. In this case we continue the sequence
with the points vk+1, . . . , vn where n > (D + k/ϕ)/(1/ϕ − C). Each such
vertex vq has penalty ∞, and each of them ends the edges (vi, vk, vq) and
(vi, vk, vs, vq) for s < q and s 6= i, k. Then each such vertex must be accepted,
and these edges force a new color for each of them. Therefore, vi and vk have
the same color and the other accepted vertices are colored by different colors.
Thus the cost of the online algorithm is m/ϕ + n −m − 1, where m is the
number of rejected vertices in the first phase. Therefore its cost is at least
(k − 2)/ϕ + n − k + 1. On the other hand an optimal algorithm rejects vi
and accepts all the other vertices and colors them by color 1. Then its cost is
1+ 1/ϕ. Therefore the ratio of the online and offline costs is at least

(k− 2)/ϕ+ n− k+ 1

1+ 1/ϕ
>
n

ϕ
−
k

ϕ
> Cn+D.

and the theorem follows. �

4 The trace model

In the trace model we analyze the following online algorithm. The same algo-
rithm is defined for both the proper and cf-colorings, the difference comes from
the fact that the algorithm uses FF to color the vertices, and it might assign
different colors in the two models. Moreover the set of the accepted vertices
might be different in the models since it depends on the previous vertices and
also on the model whether a vertex is forced to be accepted or not.
D: If the penalty of the next vertex is less then 1/ϕ and the vertex is not forced
to be accepted then reject it. Otherwise color the first accepted vertex by color
1, the second one by color 2 and the further accepted vertices by algorithm FF.

Theorem 5 Algorithm D is 2+ (n− 2)/ϕ-competitive in both trace coloring
models (proper and cf), where n is the number of vertices.

Proof. Consider an input hypergraph by H<. Again we have three cases.
Case 1. First suppose that the optimal algorithm uses at least two colors to
color its accepted subhypergraph. In this case opt(H<, p) ≥ 2. On the other
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hand costD(H<, p) ≤ n is obviously valid since the algorithm pays less than
1 penalty for the rejected vertices and uses at most one color for the accepted
ones. Therefore in this case the theorem follows by ϕ < 2.
Case 2. Now suppose that the optimal algorithm uses one color to color its
accepted subhypergraph. Denote the set of its rejected vertices by ROPT . Then
the optimal cost is 1+ p(ROPT ).

If D rejects all of the vertices from ROPT then its accepted vertices are colored
by at most 2 colors. Thus the cost of the algorithm is at most 2 + (n − 2)/ϕ
and the results follows since the optimal cost is at least 1.

Suppose ROPT contains some vertex which is accepted by D. The first such
vertex is not forced to be accepted by D, since otherwise the optimal algorithm
could not color its accepted vertices by one color. Thus its penalty is at least
1/ϕ. This yields that opt(H<, p) ≥ 1 + 1/ϕ and by costD(H<, p) ≤ n we
obtain that

costD(H<, p)

opt(H<, p)
≤ n

1+ 1/ϕ
=
n

ϕ
≤ 2+ (n− 2)/ϕ.

Case 3. Finally, suppose that the optimal algorithm uses 0 color which means
that it rejects all vertices. Then its cost is the sum of the penalties of the
vertices. No consider the following two subcases.

First suppose that some forced vertex is colored by D. To have a forced
vertex it needs at least two accepted vertices with the same color which means
that it has accepted at least 3 unforced vertices. On the other hand each of
these vertices has penalty at least 1/ϕ. This yields that the total penalty of
the vertices thus the optimal cost is at least 3/ϕ > 1 + 1/ϕ and we obtain
again that

costB(H<, p)

opt(H<, p)
≤ n

1+ 1/ϕ
=
n

ϕ
≤ 2+ (n− 2)/ϕ

Finally suppose that the optimal algorithm uses 0 color and there exists no
forced vertex accepted by D. Then let A be the set of the vertices accepted by
D and B be the set of vertices rejected by D. We obtain that

costB(H<, p)

opt(H<, p)
≤ |A|+ p(B)

p(A) + p(B)
≤ |A|

|A|/ϕ
= ϕ ≤ 2+ n− 2

ϕ
.

�

Now we prove that the bound is tight in the sense that no asymptotically
better online algorithm exists. We use a similar construction as we did in the
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case of cf coloring in the full edge model. The lower bound is again true for
both the proper and cf colorings.

Theorem 6 No online algorithm exists which is Cn + D-competitive in the
trace model for proper or cf-coloring with rejection for hypergraphs containing
n vertices and some constants C < 1/ϕ, D.

Proof. Suppose that we have an online algorithm which has better competitive
ratio, denote it by E . First we present vertices with penalty 1/ϕ and no edge
until two of them are not colored by the same color or the number of vertices
reaches n1 > D/(1/ϕ − C). If none of these vertices received the same color
then the sequence ends the optimal algorithm colors these vertices by one color
and its cost is 1. The online algorithms pays at least 1/ϕ for each of them
thus the online cost is at least n1/ϕ and we obtain a contradiction.

Now suppose that the online algorithm colors two accepted vertices by the
same colors. Let these vertices be vi and vk where i < k. Note that the first
phase of the inputs ends by vertex vk. In this case we continue the sequence
with the points vk+1, . . . , vn where n > (D+k/ϕ)/(1/ϕ−C). Each such vertex
vq has penalty 0, and each of them ends the edges (vi, vk, vq) and (vp, vq) for
p = 1, . . . , q − 1. Then the first edge forces the acceptance of the vertex
(otherwise the remaining edge (vi, vk) would not be well-colored). Moreover
the other edges ensures that each vertex must receive a new color. Therefore,
vi and vk have the same color and the other accepted vertices are colored by
different colors. Thus the cost of the online algorithm is m/ϕ + n −m − 1,
where m is the number of rejected vertices in the first phase. This yields that
its cost is at least (k−2)/ϕ+n−k+1. On the other hand an optimal algorithm
accepts the vertices v1, . . . , vk−1 colors them by color 1 and rejects the further
vertices. Then its cost is 1+ 1/ϕ. Therefore the ratio of the online and offline
costs is at least

(k− 2)/ϕ+ n− k+ 1

1+ 1/ϕ
>
n

ϕ
−
k

ϕ
> Cn+D

and the theorem follows. �
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