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Abstract
Control and elimination of malaria still represents a major public health challenge. Emerging

parasite resistance to current therapies urges development of antimalarials with novel

mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been vali-

dated as promising candidate antimalarial target. The most prevalent de novo pathway for

synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate

limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-

MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive pheno-

type. At non-permissive temperature (40°C), the endogenous CCT activity decreases dra-

matically, blocking membrane synthesis and ultimately leading to apoptosis. In the present

study we investigated the impact of the analogous mutation in a catalytic domain construct

of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism

that explains this phenotype. We used temperature dependent enzyme activity measure-

ments and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS

measurements were performed to determine the oligomerization state of the protein, and

MD simulations to assess the inter-subunit interactions in the dimer. Our results demon-

strate that the R681Hmutation does not directly influence enzyme catalytic activity. Instead,

it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly

explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper

enzymatic function. This also provide an explanation for the observed thermo-sensitive phe-

notype of CHO-MT58 cell line.
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Introduction
With 1.2 billion people being at high risk of infection, malaria still presents a major health chal-
lenge [1]. Development of antimalarials with novel mechanism of action is essential to keep
pace with the emerging antimalarial drug resistance [2]. Targeting the lipid biosynthesis of the
causative agent Plasmodium parasites is among the promising candidate antimalarial strategies
[3]. It relies on almost exclusive use of phospholipids (PL) acquired by de novo biosynthesis as
membrane constituents during the intraerythrocytic life stage of the parasite [4]. The choline
analogue lead compound Albitiazolium was shown to block the carrier mediated choline entry
into the parasite, besides, inhibition of further metabolic steps of the Kennedy phospholipid de
novo phosphatidylcholine (PC) biosynthesis pathway were also confirmed [5].

Among the enzymes that assist PC biosynthesis in the parasite, CTP:phosphocholine cyti-
dylyltransferase (CCT) is of particular interest. It catalyzes one of the rate limiting steps of
the metabolic pathway by converting CTP and choline-phosphate (ChoP) to CDP-choline
(CDPCho) and pyrophosphate (PPi). Besides, this enzyme is regulated by a reversible mem-
brane interaction mechanism that involves structural rearrangement of two putative amphi-
pathic α-helices in the membrane binding domain [6,7]. The lipid composition dependent
membrane interaction results in 5.5–fold enzyme activity stimulation [8]. Truncated con-
structs of CCT from Plasmodium and rat consisting only the catalytic domain were shown to
be constitutively active [9–11]. Essential role of CCT was demonstrated by gene disruption or
knock-out experiments in Plasmodium [12] as well as several eukaryotic organisms [13–15]
or cell lines [16–19].

A chemically mutated Chinese Hamster Ovary (CHO) cell-line with an inducible CCT-defi-
cient phenotype was described as a tool for the functional investigation of CCT [19]. At a per-
missive temperature of 33°C, CHO-MT58 cells grow at a rate of about 80% of the parental line
while maintaining 80–90% PC levels of the parental CHO-K1 strain [19]. At a non-permissive
temperature of 40°C, the PC content of the mutant cells decrease by 40% in the first 8 h and
by a total of 80% in 24 h [20] as a result of dramatically decreased CCT enzyme activity and
CDPCho metabolite levels [19], eventually leading to apoptosis [21]. Noteworthy, mutant cells
possess 20-fold less CCT activity than CHO-K1 cells even at 33°C. Western blot analysis dem-
onstrated that the CCT content of CHO-MT58 cells is less than 5% of the amount in parental
cells, while the respective steady-state mRNA levels are similar in the two cell types [22]. These
results may suggest that the mutant CCT enzyme possesses impaired thermal stability, however
this suggestion has not yet been experimentally verified. The temperature-sensitive phenotype
of CHO-MT58 cells is conveyed by a single point mutation of the CCTα isoform [19,23,24].
The guanine to adenine nucleotide change at the position 419 corresponds to the point muta-
tion R140H in the catalytic domain of the endogenous CCT.

High conservation of CCT catalytic domains enables the investigation of the role of R140
residue in the rat CCT crystal structure [25]. Similarly to the majority of CCT enzymes, rat
CCTα functions as a homodimer [26,27]. R140 is part of 140RYVD143 sequence motif that has
key importance in dimer stabilization in case of rat CCT [25]. Crystal structures show that this
segment, buried at the dimer interface, anchors the two monomers with the arginine forging
multiple inter-chain polar interactions [25,28].

Although the point mutation in the cct gene was already described in 1994 and the cell line
CHO-MT58 is well characterized and frequently used in studying apoptosis and lipid metabo-
lism (for example [29–32]), still there are no direct in vitro enzyme studies to describe the
molecular mechanism causing this thermo-sensitive phenotype.

In the present study we investigated the in vitro effects of the mutation corresponding to
R140H in the catalytic domain construct of Plasmodium falciparum CCT. In silico and in vitro

Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58

PLOSONE | DOI:10.1371/journal.pone.0129632 June 17, 2015 2 / 17

‘National Excellence Program’ for LM. JO
acknowledges the financial support of a Bolyai János
Research Fellowship. AL acknowledges the financial
support of Richter Gedeon Talentum Foundation.

Competing Interests: The authors have declared
that no competing interests exist.



R/H mutagenesis in the PfCCT catalytic domain enabled the investigation of the consequences
of the mutation on enzyme structure, function and stability. Our results highlight the signifi-
cance of PfCCT catalytic domain dimer formation and reveal that the quaternary structure has
critical role in ensuring enzyme function. This contributes to the molecular characterization of
this important antimalarial drug target enzyme. Besides our in vitro study provides a probable
explanation for the thermo-sensitive phenotype observed in CHO-MT58.

Materials and Methods

Materials
Restriction enzymes and DNA polymerases were obtained from New England Biolabs (Ips-
wich, MA, USA). Isopropyl β-D-1-thiogalactopyranoside (IPTG) was obtained from Fisher
Scientific GmbH (Schwerte, Germany). Nickel-nitrilotriacetic acid (Ni-NTA) was from Qiagen
(Düsseldorf, Germany), protease inhibitor cocktail tablets were purchased from Roche (Basel,
Switzerland). CTP, CDPCho, Sypro Orange, inorganic pyrophosphatase, purine nucleoside
phosphorylase, DNA purification kit and antibiotics were purchased from Sigma-Aldrich (St
Louis, MO, USA). Phosphocholine chloride sodium salt hydrate (further termed as ChoP) was
from TCI Europe N.V. (Antwerp, Belgium). MESG (7-methyl-6-thioguanosine) was obtained
from Berry and Associates (Dexter, MI, USA). All other chemicals were of analytical grade of
the highest purity available.

Alignment of CCT sequences
Conservation of the RYVD motif was investigated using the PipeAlign webserver [33]. The
PipeAlign is a protein family analysis method using a five step process beginning with the
search for homologous sequences in protein and 3D structure databases and ending up in the
definition of subfamilies (clusters). The server performs multiple alignment of 200 complete
sequences originating from different clusters. Blast search for homologous sequences of rat
CCTα, (Uniprot code: P19836) was performed using Ballast with filter for BlastP search, then
Blast gapped alignment was done on 200 sequences from sampled Blast/Ballast results with
fragments removal, then adjusted manually. Selected sequences were chosen from different
clusters using the most appropriate clustering method suggested by the server. The extent of
conservation of selected amino acids was visualized by Weblogo [34].

Homology modelling and molecular dynamics simulations
The catalytic domain of the rat CCT (PDB ID: 4MVC) [35] was used to construct the homodi-
mer homology models of PfCCTMΔKWT containing the second catalytic domain of PfCCT
(528–795, Δ720–737) and its point mutant PfCCTMΔKR681H. The aligned sequences were
44.56% and 44.02% identical in the case of wild type and R681H mutant CCT, respectively [36]
(Fig 1A). MODELLER 9.14 [37] software was used to create 80 homology models in both cases
using the same alignment. The models with the lowest value of the MODELLER objective
function were selected and visually inspected using VMD program [38]. The selected models
were evaluated using PROCHECK [39], WHAT_CHECK [40] and ERRAT [41] programs
(for further details see S1 File). Model data are available in the Protein Model DataBase
(PMDB) under the accession number PM0079950 (PfCCTMΔKWT) and PM0079951 (PfCCT
MΔKR681H).

Molecular dynamics (MD) simulations were carried out for both enzyme variant models
using the same computational protocol. The protonation state of the ionisable amino acid
side chains was verified by H++ webserver version 3.1 [42] and PROPKA [43]. Based on the

Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58

PLOSONE | DOI:10.1371/journal.pone.0129632 June 17, 2015 3 / 17



estimated pKa values residues D584, D585, E685 of chain A and D584, E685 of chain B were
protonated in both enzyme variants. In addition, D589 and D590 were also protonated in
chain B of PfCCT MΔKR681H. Based on the pKa predictions H709 and H681 at the mutated
position were protonated both on the δ and ε positions, having a +1 charge. The surrounding
of neutral histidine residues was visually inspected to decide their most likely protonation state,
and all histidine residues were protonated in the ε position in both enzyme variants with the
exception of H679 which was as protonated on the δ position. CHARMM program [44] and
CHARMM27 force field [45] was applied using the self-consistent GBSW implicit solvent
model [46] to carry out the MD simulations. The calculations were carried out with the opti-
mized PB radii [47], and the CMAP correction optimized for GBSW [48]. The nonpolar sur-
face tension coefficient was 0.005 kcal/(mol Å2), the number of angular integration points was
50 and the grid spacing for lookup table was 1.5 Å. Structures were heated up from 10 K to 310
K over 60 ps. At this temperature MD equilibration was carried out over 100 ps, which was

Fig 1. Protein structure prediction of PfCCTMΔKWT and PfCCTMΔKR681H. A) Alignment of rat CCT (PDB ID: 4MVC) and PfCCTMΔKWT sequences
used for modeling and MD stimulations. Numbering is according to PfCCTMΔKWT. Secondary structure elements are represented by squiggles (α-helices),
arrows (β-strands) and lines (turns). In the aligned sequences, red box with white character indicates strict identity and red character means similarity in
groups. R681 corresponding to R140 in rat CCT is indicated by a green star. Hydropathy (pink—hydrophobic, grey—intermediate, cyan—hydrophilic) and
accessibility (blue—accessible, cyan—intermediate, white—buried) are also presented below the sequences. The layout with secondary structure elements
was generated with ESPript 3.0 [66], supplemented with visual inspection of structures. B) Conservation of the RYVD signature sequence in CCTs, shown by
Weblogo. Numbering is according to the Plasmodium falciparum sequence, where the 681RWVD684 corresponds to the 140RYVD143 in the rat sequence. C)
Dimer structure of MΔKWT homology model. Chain A is coloured in red and chain B is coloured in yellow. Important secondary structure elements are
indicated.

doi:10.1371/journal.pone.0129632.g001
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followed by the final 5 ns long productive MD simulation. Interaction energies between the
two chains of enzyme variants were calculated over the whole trajectory for all frames (i)
defined as Eq (1):

WðRMÞiint ¼ WðRMÞidim er �WðRMÞichainA �WðRMÞichainB ð1Þ

where W(RM) is the effective energy of the protein with coordinates RM in solution (Eq (2))

WðRMÞ ¼ Hint raðRMÞ þ DGsolvðRMÞ ð2Þ
where Hintra is the intramacromolecular energy, consisting of bonded and non-bonded energy
terms, and ΔGsolv is the solvation free energy [49].

The volume and the surface of the proteins were calculated by 3v website [50] using a high
resolution grid and 1.4 Å probe radius. The number of hydrogen bonds were measured by
CHARMM using the default 2.4 Å distance and 999.0 angle cut-offs.

Mutagenesis, protein expression and purification
The R681H mutant construct of His-tagged PfCCTMΔK (528–795, Δ720–737) was produced
by site-directed mutagenesis [10] (PlasmoDB accession number: PF3D7_1316600) [51] using
the QuikChange method (Agilent) (for more details about sequence of the protein used for in
vitro studies see Fig. A in S2 File). Primers used for mutagenesis (R681H 5’-3’, gaaacacatc
CATtgggttgac; R681H 3’-5’, gtcaacccaATGgatgtgtttc) were synthesized by Euro-
fins MWG GmbH. Constructs were verified by DNA sequencing at Eurofins MWG GmbH.
PfCCTMΔKWT and PfCCTMΔKR681H were expressed and purified as described previously
[10] with minor modifications. Briefly, the His-tagged fusion proteins were expressed using the
BL21 (DE3) Rosetta E. coli expression system. Expression was induced with 0.6 mM IPTG for
20 h at 16°C. In case of PfCCTMΔKR681H Ni-NTA affinity chromatography was performed at
18°C to maintain protein stability. Protein eluted from Ni-NTA column was dialyzed into 20
mMHEPES, pH 7.5 buffer, containing 100 mMNaCl (buffer A). Samples for MS analysis were
further purified by size-exclusion chromatography (gel filtration) using a GE Healthcare
ÄKTA system with a Superose12 column.

Protein concentrations were determined spectrophotometrically from the absorbance at 280
nm using a Nanodrop 2000c spectrophotometer (Thermo Scientific). Extinction coefficient
31400 M-1cm-1 as calculated on the basis of amino acid composition by using ProtParam server
was used [52].

Steady-state activity
Steady-state activity measurements were performed as described previously [10] in buffer A
using a continuous coupled pyrophosphatase enzyme assay, which employs MESG (7-methyl-
6-thioguanosine) substrate for colorimetric phosphate detection [53]. For heat inactivation,
protein samples were incubated for 15 min in buffer A at various temperatures (10-60°C);
enzyme activity was immediately measured at 20°C.

Kinetic titrations
For CTP substrate titrations, CTP concentration was varied between 12 μM and 1.2 mM while
ChoP concentration was kept at 5 mM. For ChoP substrate titrations, ChoP concentration was
varied between 0.1 and 20 mM while CTP concentration was kept at 1 mM. Kinetic data were
fitted with Eqs (3) and (4) (Michaelis–Menten equation and competitive substrate inhibition
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equation, respectively) using OriginPro 8 (OriginLab Corp., Northampton, MA, USA):

v ¼ vmax½S�
KM þ ½S� ð3Þ

v ¼ vmax

1þ KM
½S� þ ½S�

Ki

� � ð4Þ

in these equations, v is the reaction rate, vmax is the maximum velocity of the reaction, [S] is
the concentration of the substrate and Ki describes the binding of a substrate molecule to the
enzyme resulting in a decrease of the maximal reaction rate by half.

Mass spectrometry
In the mass spectrometric study of protein complexes, a commercial Waters QTOF Premier
instrument (Waters, Milford, MA, USA) equipped with electrospray ionization source (Waters,
Milford, MA, USA) was used in the positive ion mode. Mass spectra were obtained under
native conditions; namely, the ions were generated from aqueous 5 mMNH4HCO3 buffer solu-
tion (pH 7.2) containing the gel filtered PfCCTMΔK protein constructs at 0.4 μMmonomer
concentration. These conditions allow transfer of the native protein complex present in the
solution into the gas phase. The capillary voltage was 3600 V, the sampling cone voltage was
125 V and the temperature of the source was kept at 80°C, collision cell pressure was 3.38�10-3
mbar and ion guide gas flow was 15.00 ml/min. Mass spectra were recorded using the software
MassLynx 4.1 (Waters, Milford, MA, USA) in the mass range 1000-5000 m/z as no signals
could be detected above 5000 m/z. To ensure reproducible results, 3 samples originating from
different expressions were measured for both PfCCTMΔKWT and PfCCTMΔKR681H.

Results

R681 is highly conserved and serves dimer stabilization roles
As the 140RYVD143 segment is of prime importance in dimer stabilization in case of rat CCT,
we decided to analyze the overall conservation pattern of this motif in CCT enzymes. By per-
forming a Blast search with PipeAlign webserver [33] we compared 200 CCT sequences from
different evolutionary clusters. Our results confirmed the previously proposed high degree of
conservation [28] for this sequence motif (cf. boxed residues on Fig 1B). While the first and
second position of the motif is characterized with conserved basic (R/K) and aromatic (Y/W)
residues, the last two positions are exclusively occupied by V and D. RYVD is the most fre-
quently occurring motif, apparent in ca. 50% of investigated sequences. We also found con-
served histidine and cysteine residues directly adjacent to this motif, which were also shown to
participate in the interaction network stabilizing the dimer of rat CCT [25]. Remarkably, none
of the investigated sequences contained a histidine at the arginine position (noted by a star on
Fig 1B), despite its potentially basic character.

Additionally, we performed a dbSNP database search for human pcyt1a corresponding
CCTα to see whether this mutation is present as an amino acid variation. From the 183 single
nucleotide variations denoted up to November 2014, 48 caused missense mutations and 2 non-
sense mutations, but none of them concerned either the RYVD or HxGHmotif, another signa-
ture sequence of cytidylyltransferases, that plays key role in catalysis [54]. Nevertheless, Payne
et al. described the mutation of V142 in human CCT causing congenital lipodystrophy and
fatty liver disease [55]. This residue is the main interaction partner of R140, therefore its
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exchange to methionine may adversely affect dimer interaction. These observations underline
the importance of the integrity of RYVD motif.

Our Plasmodium falciparum CCT construct (PfCCTMΔK) encompasses the second cata-
lytic domain (Cat2) of the full length enzyme including 681RWVD684 as the analogue for the
cognate motif (of 140RYVD143 in the rat sequence). CCT evolved in Plasmodia by a lineage-spe-
cific gene duplication event, resulting in duplicated catalytic and membrane binding domains
[10]. Construct of the second catalytic domain of PfCCT, termed as MΔK, was shown to exist
in a dimer oligomerization state in vitro that is highly similar to the assembly of Cat1Cat2 cata-
lytic domains from the full length enzyme [10]. To visualize inter-subunit interactions of MΔK
dimers, a homology model was built using the rat CCT catalytic domain structure as a template
[35] (Fig 1A and 1C). Due to the considerable sequence identity between target and template,
the PfCCT model displayed similar fold as the rat CCT. As in the case of rat CCT [25], R681
provides two direct inter-subunit polar interactions to the main chain atom of V683’ and one
polar main chain interaction through I680 to V683’ (Table 1). There is also a polar main chain
interaction present between the main chain atoms of I680 and R681’ bringing the two chains to
a distance of 3.7 Å at this specific point (d(R/H681, CA - H679’, O)) (Fig 2A and 2B). Polar
interactions of H679 and W682 (corresponding the H138 and Y141 in rat) are missing (Fig
2A). Overall, eight polar interactions can be identified that contribute to dimer stability in the
Plasmodium CCT structural model. In silicomodelling of the R681H mutation showed that
the two direct interactions between V683 and R681 are lost (Table 1 and Fig 2B), which indi-
cates a possibility for decreased inter-domain stability [56]. N-terminal segment contributes
also to dimer stabilization by forging contacts with helix αA and loop L3, which is also effected
by R681H mutation (Table 1).

Table 1. Polar inter-chain interactions between L3, αA and N-terminal regions in homologymodels of both enzyme variants.

PfCCT MΔKWT PfCCT MΔKR681H

L3 L3’ d (Å) L3 L3’ d (Å)

H679-O R681-N 2.98 H679-O H681-N 3.00

R681-NH2 I680-O 2.96 H681-ND1 I680-O 3.50

R681-NH1 I680-O 3.54

R681- NH2 R681-O 2.79 H681- ND1 H681-O 3.40

R681- NH2 V683-O 2.65

R681-N H679-O 2.96 H681-N H679-O 2.81

L3 αA’ d [Å] L3 αA’ d [Å]

H679- NE2 K635-NZ 3.31

L3 Nterm’ d [Å] L3 Nterm’ d [Å]

R681- NH2 D584-OD1 2.69

R681- NH1 D584-OD1 3.28

R681- NH2 D584-OD2 3.53

W682-NE1 A581-O 2.58 W682-NE1 A581-O 2.58

Nterm L3’ d [Å] Nterm L3’ d [Å]

A581-O W682-NE1 2.77 A581-O W682-NE1 2.69

V582-O R681- NH2 2.98

N-terminal region consists of residues 581–620 (cf. Fig 1A).

doi:10.1371/journal.pone.0129632.t001
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Unaltered enzyme function with impaired heat stability due to R681H
mutation
For in vitro studies we generated the R681H variant of the PfCCTMΔK construct. Already
upon expression of this variant performed at 16°C, we observed lower yield of expression as
compared to the PfCCTMΔKWT (cf. Fig. A in S2 File). First, we investigated the functionality
of PfCCTMΔKR681H at 20°C using a continuous spectrophotometric enzyme activity assay,
and compared its kinetic properties to that of PfCCTMΔKWT [10]. Data shown in Fig 3 and
Table 2 indicate that in the case of the mutant CCT enzyme the substitution to histidine attenu-
ates kcat by 60% when analyzed by [CTP] variation, but has little effect when analyzed by
[ChoP] variation assayed at the permissive temperature of 20°C. In addition, substrate inhibi-
tion observed at millimolar ChoP concentration range is also apparent with the mutant
enzyme. Therefore the mutation does not alter the enzymatic function heavily under the exper-
imental conditions. These results are in good agreement with findings on the CHO-MT58 cell
line, which was shown to possess a wild-type phenotype at permissive temperatures (33°C)
despite reduced overall CCT levels [24].

To elucidate the mechanism of temperature-induced inactivation of CCT, we characterized
the thermal stability of PfCCTMΔKR681H. We adopted the experiment described by Belužić
et al. [57] to assess temperature dependence of protein stability and functionality. Protein sam-
ples were incubated at different temperatures for 15 minutes then their enzyme activity was
measured immediately at 20°C. The mutant enzyme lost half of its activity at circa 25°C and
was completely inactivated at 30°C, while similar relative thermal inactivation states of the wild
type enzyme occurred at 55°C and 60°C, respectively (Fig 4). Importantly, the wild-type and
mutant enzymes display a marked difference in kinetic stability at the physiological tempera-
ture range, which is in agreement with the temperature sensitivity of the CHO-MT58 strain.

Fig 2. Polar interactions at the dimer interface of PfCCTMΔKWT and PfCCTMΔKR681H involving 681RWVD684. A) Direct interactions harbouring
681RWVD684 signature sequence motif in PfCCTMΔKWT. The residues involved in the inter-chain interaction are shown in stick representation, and
interactions are indicated by pink dashed lines. Characteristic dimer interface distances d(R681, CA - H679’, O) and d(I680, CA - I680’, N) are denoted by
blue double-headed arrows. Residues in chain B are marked with apostrophes. B) Direct interactions harbouring the 681HWVD684 mutated signature
sequence motif PfCCTMΔKR681H. The residues involved in the inter-chain interaction are shown in stick representation, and interactions are indicated by
pink dashed lines. Characteristic dimer interface distances d(H681, CA - H679’, O) and d(I680, CA - I680’, N) are denoted by blue double-headed arrows.
Residues in chain B are marked with apostrophes.

doi:10.1371/journal.pone.0129632.g002
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Perturbed oligomerization state and dynamic properties of PfCCT
MΔKR681H

Having demonstrated the drastically impaired thermal stability of the PfCCTMΔKR681H

mutant (cf. Fig 4), we wished to investigate the underlying molecular mechanism of this
phenomenon. Based on our results and the fact that the mutation affects a key motif of the
dimer interface, we hypothesized that the mutation might perturb oligomerization of PfCCT
MΔKR681H. To reveal the potential alterations in dimer formation, mass spectrometric analysis
was performed under native electrospray conditions, as an appropriate method for determin-
ing protein oligomerization state [58].

Mass spectra provided well reproducible (within 20%) dimer:monomer abundance ratios
from PfCCT MΔKWT and PfCCTMΔKR681H. Importantly, while reasonable amount of dimer
was present in the wild type enzyme (Fig 5A), the dimer:monomer abundance ratios were
approximately 20 times lower in the mutant (Fig 5B), indicating attenuated dimer cohesion.
These findings were also confirmed by native gel electrophoresis and glutaraldehyde crosslink-
ing experiments (data not shown).

To further analyse the effect of the mutation on binding energetics and dimer stability,
molecular dynamics simulations were performed on the homology models of PfCCTMΔKWT

Fig 3. Steady-state kinetic analysis of PfCCTMΔKWT and PfCCTMΔKR681H. A) CTP titration of the activity of the CCTs at a fixed ChoP concentration of 5
mM. The plot shows one representative experiment. Titration data are fitted with the Michaelis–Menten kinetic model assuming no cooperativity. B) ChoP
titration of the activity of the CCTs at a fixed CTP concentration of 1 mM. The plot shows one representative experiment. Titration data are fitted with a kinetic
model assuming substrate inhibition without cooperativity. Note the substrate inhibition effect of ChoP as an initial rate decrease is observed at higher
substrate concentrations.

doi:10.1371/journal.pone.0129632.g003

Table 2. Kinetic parameters of PfCCTMΔKWT and PfCCTMΔKR681H catalysis.

CTP titration ChoP titration

kcat (s
-1) KM, CTP (mM) kcat (s

-1) KM, ChoP (mM) Ki, ChoP (mM)

PfCCT MΔKWT* 1.45 ± 0.05 0.17 ± 0.02 1.2 ± 0.4 1.8 ± 1.1 10.5 ± 7.5

PfCCT MΔKR681H 0.59 ± 0.02 0.19 ± 0.03 1.2 ± 0.2 1.6 ± 0.4 3.8 ± 1.0

*data obtained from [10]

doi:10.1371/journal.pone.0129632.t002

Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58

PLOSONE | DOI:10.1371/journal.pone.0129632 June 17, 2015 9 / 17



and PfCCTMΔKR681H. Productive MD simulations were carried out using an implicit solvent
model at 310 K for 5 ns after a 100 ps long equilibration. Interaction energies were equilibrated
at 3.25 ns resulting in a 25 percent decrease in the average inter-chain interaction energy in
case of the mutant enzyme (Fig 6 and Table 3). The observed tendencies of interaction analysis
reveal multiple causes possibly leading to this phenomenon. These involve much favourable
solvation energy (DGeq

solv) of PfCCTMΔKWT, while the van der Waals-type hydrophobic inter-
actions (Eeq

vdW) also give better contributions to the effective energies of the PfCCTMΔKWT

dimers. Thus, the interacting surface area (Alf
int) of the homodimers containing mainly hydro-

phobic amino acid side chains is much larger in case of PfCCTMΔKWT leading to a more
compact volume (Vlf ) (Table 3). Impaired interaction of PfCCTMΔKR681H monomers is par-
ticularly apparent at the 681RWVD684 conserved dimer interaction motifs. To illustrate this,
we followed the distance variation of two representative inter-chain distances (R/H681, CA -
H679’, O and I680, CA - I680’, N) in the course of the MD simulations (cf. Fig 2). Importantly,
the former interaction constitutes the proximal inter-monomer contact within the PfCCT
homology model as well as in the rat CCT structure [25]. The characteristic deviation of cog-
nate distances between PfCCTMΔKR681H and PfCCTMΔKWT shown on Fig 7 argues for a
major perturbation of local contacts that could contribute to observed reduction of dimer inter-
action surface.

It should be kept in mind that the entropy loss due to decrease of translational and rota-
tional degrees of freedom opposes the formation of the dimer and this become more pro-
nounced with increase in the temperature. This taken together with the reduced interaction
energy in the mutant may explain the temperature dependence of the dimerization state of the
mutant [59]. In silico results thus indicate the adverse effect of R681H mutation on dimer sta-
bility. Regarding the considerable extent of intersubunit interface located between dimer pair
of catalytic domains, we suppose that the mutation might affect overall structural stability of
the full length PfCCT protein as well through perturbed interdomain interactions.

Fig 4. Kinetics of thermal inactivation of PfCCTMΔKWT and PfCCTMΔKR681H. Protein samples were
incubated for 15 min in buffer A at different temperatures prior to the measurement performed at 20°C.
Inactivation is shown as the fraction of remaining CCT activity. One representative is shown for each
temperature and each protein.

doi:10.1371/journal.pone.0129632.g004
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Discussion
Our results suggest that an intact dimer form of the catalytic domains of PfCCT is critical for
its enzymatic function. This is in agreement with preferential dimer functional assembly of
evolutionarily related cytidylyltransferases: CCT, GCT (CTP:glycerol-3-phosphate cytidylyl-
transferase), ECT (CTP:ethanolamine phosphate cytidylyltransferase) [60], demonstrated by
multiple observations. Gene disruption experiment of Plasmodium berghei cct gene, a close
homologue of the pfcct gene evolved by gene duplication revealed that the truncated protein
devoid of second catalytic domain could not restore the function of the wild type form [12].
This effect is possibly mediated by the disruption of the pseudo-heterodimer interface. Analy-
ses of crystal structures have shown that the well-studied bacterial representative of the cytidy-
lyltransferase enzyme family Bacillus subtilis GCT and the mammalian representative rat CCT,
which are structurally related cytidylyltransferases but only possess one CT domain each, form
homodimers [25,28,61]. Cross-linking studies of the rat CCT indicated that domains N and C
of rat CCT, approximately corresponding to the construct PfCCTMΔK, have a predominant

Fig 5. Mass spectra of PfCCTMΔKWT and PfCCTMΔKR681H proteins under native electrospray
conditions.M and D indicate signals contributing monomers and dimers, respectively, while numbers
denote the charge states. A) Mass spectrum of PfCCTMΔKWT measured in the present study for direct
comparison (cf. also [10]). B) Mass spectrum of PfCCTMΔKR681H. In the inset the 10-times enlarged graph of
dimer regions (3150–4000 m/z) is shown.

doi:10.1371/journal.pone.0129632.g005
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contribution to dimerization. It was also shown that membrane binding, which induces
enzyme activation, perturbs the dimer interface, yet it does not cause dimer dissociation [27].

The equivalent of RYVD motif, (R/K)(Y/W)VD is a general signature sequence in cytidylyl-
transferases [54,62] found at dimer interface of crystal structures (PDB ID: 1COZ, 3HL4 and
3ELB for BsGCT, rat CCT and human ECT, respectively) [25,28]. The functional role of this
conserved arginine at the dimer interface was also assessed in BsGCT by alanine mutagenesis
of the corresponding residue R63 resulting in a 10-fold decrease in kcat values, but KM, CTP was
not altered considerably [62]. These results also indicate that this conserved residue does not
interfere with substrate/ligand binding at the active site. Contribution of the C-terminal CT
domain to the structural stability in the two tandem catalytic domain containing ECT was also
suggested [63]. Identification of a novel splice variant (Pcyt2γ) lacking the C-terminal CT
domain and being completely devoid of enzyme activity proved also that both cytidylyltrans-
ferase domains are required for activity [64]. The effect of a single point mutation on structural
stability and protein functionality is also not without precedent in other enzyme families, as an
R/H exchange in crystallins was shown to be responsible for congenital cataract through dis-
rupted interactions at the inter-subunit interface [65].

Fig 6. Inter-subunit interaction energies duringmolecular dynamics simulations. Interaction energies
are calculated as Eq 1 and represented by black line in case of PfCCTMΔKWT and by grey line in case of
PfCCTMΔKR681H, respectively.

doi:10.1371/journal.pone.0129632.g006

Table 3. Overall effective interaction energy (Weq
int ) and the contribution of non-bonded van der Waals (Eeq

vdW ) and Coulomb (Eeq
Cou) interaction energy

terms and of the solvation free energy change upon dimerization (DGeq
solv) averaged over all frames of the equilibrated phase of the productive MD

simulations.

Weq
int (kcal�mol-1) DGeq

solv (kcal�mol-1) Eeq
vdW (kcal�mol-1) Eeq

Cou (kcal�mol-1) Neq
H�b Vlf (Å3) Alf (Å2) Alf

int (Å
2)

PfCCT MΔKWT -2315 ± 266 -2777 ± 275 -188 ± 8 654 ± 54 4.0 61064 17057 1814

PfCCT MΔKR681H -1729 ± 233 -1973 ± 244 -141 ± 7 383 ± 58 3.0 61428 17339 1383

The superscript ‘eq’ denotes the equilibrated phase (final 1.75 ns) of the productive MD simulations. Data from the last frame of the simulations are

denoted as ‘lf’. Important geometric data such as volume ((Vlf ) and surface area (Alf ), interaction surface area (Alf
int) and the average number of inter-

subunit hydrogen bonds during the simulations (Neq
H�b) are also indicated.

doi:10.1371/journal.pone.0129632.t003
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Conclusions
Our results reveal that R/H mutation of a conserved residue at the dimer interface does not
directly compromise the enzyme activity of PfCCT. Instead, it induces decreased thermal sta-
bility which in turn results in the inactivation of the enzyme. The structural model, molecular
dynamics simulations as well as oligomerization results together reveal attenuation of dimer
interactions induced by the point mutation. We conclude that maintaining intact dimer inter-
actions is critical for enzyme activity of PfCCT. These consequences also provide an explana-
tion for the observed thermo-sensitive phenotype of CHOMT58 cell line, where an accelerated
degradation of CCT was observed at higher temperatures.
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