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Abstract In the last few years with the recent emergence of
high-throughput technologies, thousands of long non-coding
RNAs (IncRNAs) have been identified in the human genome.
However, assigning functional annotation and determining
cellular contexts for these RNAs are still in its infancy. As
information gained about IncRNA structure, interacting part-
ners, and roles in human diseases may be helpful in the char-
acterization of novel IncRNAs, we review our knowledge on a
selected group of IncRNAs that were identified serendipitous-
ly years ago by large-scale gene expression methods used to
study human diseases. In particular, we focus on the
Psoriasis-susceptibility-Related RNA Gene Induced by
Stress (PRINS) IncRNA, first identified by our research
group as a transcript highest expressed in psoriatic non-
lesional epidermis. Results gathered for PRINS in the last
10 years indicate that it is conserved in primates and plays
a role in keratinocyte stress response. Elevated levels of
PRINS expression in psoriatic non-lesional keratinocytes
alter the stress response of non-lesional epidermis and con-
tribute to disease pathogenesis. Finally, we propose a cat-
egorization for the PRINS IncRNA based on a recently
elaborated system for IncRNA classification.
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Introduction

One of the biggest surprises at the completion of the Human
Genome Project [24] was the discovery of the low protein-
coding capacity of the completed sequence: only approxi-
mately 2 % of our genome encodes proteins, corresponding
to roughly 20,000 genes. Is it a matter of wastefulness that
“Mother Nature” maintains at least 234 genes (more than 1 %
of protein encoding genes) [41] to keep our genome in a good
shape when only 2 % of it has any meaning? Now, it is clear
that this repair machinery is not working leanly, as approxi-
mately 80 % of our DNA content is functional and most of it is
transcribed into RNA [20, 22]. Understanding this only
opened new questions: what is the function of this large
amount of RNA? Will this understanding bring us closer to
resolving questions about cell physiology? Moreover, will it
bring new understanding of the still unknown mechanisms of
genetically determined diseases that afflict us? Thanks to re-
cently developed molecular biology tools, such as tiling array
technologies [46] and RNA-Seq [13] as well as bioinformatics
tools [8], we know that tens of thousands of functional RNA
molecules are transcribed from our genome with varying
length, genomic content, and functions. Concomitant with
the growing number of characterized RNA molecules, the
need for effective classification has increased. Although many
attempts have been made to define subclasses of RNA func-
tion and various classification criteria have been proposed by
multiple authors [62], RNA size has remained the primary
aspect amenable for classification. From the start of the clas-
sification attempts, it was suspected that microRNAs
(miRNAs, approximately 22 nucleotides in length) comprised
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a distinct class of molecules within non-coding RNAs. Now, it
is clear that their function, as well as their size, distinguishes
miRNA. To date (http://www.mirbase.org/cgi-bin/mirna
summary.pl?org=hsa), 1881 distinct human miRNAs have
been identified, and since 2001, extensive research has
uncovered the function of many miRNAs in physiologically
normal and disease conditions. miRNAs are known to be
involved in the regulation of all aspects of intracellular
events and the mechanism by which they act has been
clarified [23].

The function of another distinct group, the long non-coding
RNAs (IncRNA, >200 nucleotides), is not as well known.
Thousands of IncRNAs have been identified in the recent
years [74], and it is generally accepted that this group of
RNAs has much more diverse functions than miRNAs.

Already at the beginning of the molecular biology revolu-
tion, it was relatively easy to identify protein-coding genes
within human sequences by identifying open reading frames
(ORF). No such sequence analysis tools are available for iden-
tifying non-coding genes. Since the 1990s, when the impor-
tance of IncRNAs was uncovered, many attempts have been
made to develop computational approaches for identifying
IncRNAs within the human genome [25, 75]. Through the
efforts of the GENCODE Project, a good estimate for the
frequency, the structure, the evolution, and the expression of
IncRNAs is available [17]. An analysis of IncRNA annotation
by Darrien et al. (2012) concluded that the human genome
includes approximately 14,000 IncRNA genes, a number that
are much higher than those estimated for miRNA genes and
relatively close to the number of protein-coding genes.
Although much information has been gathered about the func-
tions of proteins and miRNAs in health and in disease, we are
still at the beginning of our journey in exploring the functions
of IncRNAs.

The great past and bright future of IncRNAs
unexpectedly identified by large-scale gene
expression experiments in human diseases

In order to understand the functions of thousands of IncRNAs,
we must characterize them one by one, understand their mo-
lecular and cellular contexts, and discover their contribution to
human diseases. Before the “big boom™ of omics research,
sporadic reports of the identification and functional character-
ization of IncRNAs were available. Interestingly, most of
these early reports came from attempts to identify differential-
ly expressed transcripts in human diseases using relatively
old-fashioned methods of large-scale gene expression, such
as complementary DNA (cDNA) A phage library screening
[16], cDNA subtractive hybridization [33], and differential
display [61]. These studies identified the first IncRNAs, such
as BC200, MALAT-1, PCGEM, and DD3. In subsequent
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systematic studies, much information has been gathered on
structures, interaction partners, subcellular localizations, and
functions of these IncRNAs. Moreover, data clearly indicated
that these gene products might serve as novel diagnostic tools
and therapeutic targets for treating human diseases. Clearly,
IncRNA research is not just an “I’art pour I’art” activity of
biomedical specialists but is expected to have clinical utility.

Two important IncRNAs early identified were BC1, a
neuron-specific rodent IncRNA [16], and its human
orthologue, BC200 [70]. The in-depth study of these two
orthologues revealed interesting data on their functions, long
before the upheaval brought by the advent of systematic large-
scale bioinformatics and next-generation techniques. These
IncRNAs are expressed in neurons, specifically in the post-
synaptic area of dendrites. Both gene products are part of a
cytoplasmic ribonucleoprotein complex and bind to the
poly(A)-binding protein (PABP) [43, 48]. PABP plays an im-
portant role in translation regulation in eukaryotic cells, along
with translation factors, such as elF4F, eRF3, and Paip proteins
[36, 57]. Furthermore, it has been also reported that BC1 and
BC200 bind the fragile X mental retardation protein, the prod-
uct of the FMRP disease-causing gene [79]. Dysfunction(s) of
BC1/BC200-FMRP binding leads to abnormal translation in
the post-synaptic area and contributes to the phenotype seen in
fragile X mental retardation syndrome [80]. BC1 and BC200
were the first IncRNAs to be used in knock-out experiments:
BCI knock-out mice exhibited behavioral changes and shorter
life spans compared to controls [45]. BC200 was also shown to
have arole in aging and Alzheimer’s disease: Mus et al. (2007)
[50] have demonstrated that normal aging is associated with
decreased BC200 expression in the brain, while BC200 ex-
pression was significantly upregulated in the brains of
Alzheimer’s patients, where abnormal localization to the
perykarial region was observed. Under normal conditions,
BC200 is expressed exclusively in neurons; however, BC200
was found to be expressed in human neoplasms [10]. Recently,
De Leener et al. [15] proposed BC200 as a potential biomarker
for diagnosing early-stage breast cancer.

BC200 is not the only early-identified IncRNA that holds
promise as a diagnostic marker in human cancer. The prostate-
specific PCGEM1 and DD3 IncRNAs were identified by dif-
ferential display as early as 2000 [61]. PCGEM1 was found to
have ethnic-specific expression, being much higher in the
prostate epithelial cells of African-American prostate cancer
patients compared to Caucasian patients. Moreover, PCGEM
was found to be upregulated in normal prostates of individuals
with relatives who had been diagnosed with prostate cancer.
The pathogenic role of PCGEM1 in prostate cancer was fur-
ther indicated by its ectopic expression in LNCaP and
NIH3T3 cells, which resulted in hyperproliferation [53].
Some years later, PCGEM1 was patented as a promising bio-
marker for prostate cancer [32]. In a recent paper, it was sug-
gested that PCGEM may serve as a reliable biomarker for the
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assessment of drug efficacy during prostate cancer treatment
[29]. While PCGEM is expressed both in healthy and in dis-
cased prostates, the DD3 IncRNA, identified in the same dif-
ferential display experiment [61], exhibits strictly specific ex-
pression for prostate cancer, providing the possibility of de-
veloping a highly specific diagnostic tool for the disease.
Based on this observation, Tinzl et al. (2004) [71] developed
a nucleic acid-based diagnostic tool that can be used to detect
DD3 IncRNA from urine with high specificity and sensitivity.
The product, Progensa, has been on the market since 2011
[21]. In a recent advance, Ding et al. [19] developed an
oncolytic viral vector, Ad.DD3.E1A E1B(A55)-(PTEN), un-
der the control of the prostate-specific DD3 promoter and
proved its apoptotic effect in prostate cancer cell lines.

MALAT-1 IncRNA was first identified in a cDNA subtrac-
tive hybridization experiment from metastasizing lung adeno-
carcinoma in 2000 [33]. MALAT-1 is possibly the most ex-
tensively studied of the early-identified IncRNAs, as it is
expressed in a wide range of tissue types and its over-
expression has been detected in many human malignancies.
Extensive studies have also shed light on the cellular function
of MALAT-1: Hutchinson et al. (2007) [31] reported that
MALAT-1 co-localizes with SC35 splicing domains, suggest-
ing that MALAT-1 may be a component of the splicing ma-
chinery. Cis and trans regulatory factors for the localization of
the MALAT-1 IncRNA to nuclear speckles have been identi-
fied [47]. Functional studies performed on cell lines from dif-
ferent types of human malignancies revealed that MALAT-1 is
indeed key for the maintenance of hyperproliferation and me-
tastasizing potential [26, 34, 56, 69, 76, 77, 81, 83]. In addi-
tion to being a promising biomarker for the diagnosis of a
wide range of human malignancies, MALAT-1 proved to be
a putative target for siRNA-mediated therapy, as recently
demonstrated by Ren et al. [54].

Taken together, the above examples of IncRNAs demon-
strate well that several gene products incidentally identified by
large-scale gene expression studies have been scientifically
and medically interesting, and their study has not only lead
to a better understanding of human pathologies but has uncov-
ered potential diagnostic tools and therapeutic targets. Next,
we discuss the example of an IncRNA identified by differen-
tial display in a study of psoriasis. We describe its role in
keratinocyte physiology and psoriasis pathogenesis.

Identification of PRINS, an IncRNA involved
in psoriasis pathogenesis

Psoriasis, affecting approximately 2—4 % of the population, is
a classic multifactorial skin disease. The interplay of multi-
genic susceptibility as well as environmental and lifestyle fac-
tors leads to the development of symptoms, characterized by
epidermal hyperproliferation and inflammation [18]. Intensive

research of the last few decades revealed that abnormally
functioning keratinocytes and skin-infiltrating professional
immune cells are responsible for the disease phenotype
[4—6]. As yet, it is still unknown whether abnormal
keratinocyte functions of normal-appearing epidermis or
aberrant lymphocyte activation is the primary trigger for
development of the disease. Accumulating evidence sug-
gests that altered skin tissue homeostasis, especially
keratinocyte-specific alterations of the normal-appearing
skin of psoriatic patients, is key in the initiation of the
disease phenotype. The “immune era” of psoriasis research
unquestionably brought breakthroughs for new, targeted
therapies of the disease [28]. Nonetheless, to identify novel
targets for intervention and possibly for prevention, we
must understand the role of aberrant keratinocyte function
in the course of the disease.

To this end, the aim of our workgroup is to identify and
characterize abnormal molecular patterns in non-lesional pso-
riatic keratinocytes contributing to the initiation of the disease
phenotype and factors that make these keratinocytes prone to
respond with hyperproliferation to cytokines produced by
skin-infiltrating lymphocytes. We previously performed a dif-
ferential display experiment to compare gene expression in
non-lesional psoriatic epidermis and control healthy epider-
mis. In 2000, several differentially expressed protein-coding
transcripts in the psoriatic non-lesional epidermis were iden-
tified, and of these, we focused on the expression of EDA+
fibronectin. We were first to demonstrate that, upon cytokine
induction, keratinocytes of the non-lesional epidermis are able
to produce this form of cellular fibronectin and, thus, maintain
an autocrine loop resulting in keratinocytes hyperproliferation
[66]. This finding confirmed our a priori hypothesis that not
only professional immune cells, but also keratinocyte-derived
factors contribute to disease susceptibility.

In addition to protein-coding transcripts differentially
expressed in psoriatic non-lesional epidermis, we also identi-
fied a transcript that was unlikely to encode a protein but,
nevertheless, exhibited 100 % sequence identity to the 3’
end of a cDNA (GenBank accession number AK022045) pre-
viously identified in a cDNA library derived from a 10-week-
old human embryo. In parallel with sequence similarity
searches, in vitro experiments were performed to determine
the expression pattern of the identified transcript during pro-
liferation and differentiation of keratinocytes. The highest ex-
pression of the non-coding RNA was found in serum-starved,
contact-inhibited keratinocytes as well as in these cells imme-
diately after serum re-addition; however, when the cells began
to proliferate, the expression of the AK022045 transcript
dropped dramatically. With this compelling result, we decided
to turn our focus to the in-depth characterization of this tran-
script, and since then, we have been engaged in parallel but
manifold interconnected characterization of its role in psoria-
sis and in keratinocyte stress response.
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Extensive sequence similarity searches and the determina-
tion of the 5’ end of the transcript allowed us to draw a putative
structure for the newly identified gene. The full-length tran-
script is 3.6 kb, and a putative TFIIB transcription factor bind-
ing site was identified in the genomic sequence proximal to
the putative transcription start site. The transcript contains two
exons, both harboring A/u elements, and shows a high degree
of similarity to a heat shock element in a small non-coding
RNA, G8&. Based on these findings, we supposed that this
transcript is an IncRNA and named it Psoriasis-
susceptibility-Related RNA Gene Induced by Stress
(PRINS). The full-length sequence is available to the scientific
community (http://www.ncbi.nlm.nih.gov/gene/?term=
PRINS[sym]) [58].

By using quantitative real-time PCR (Q-RT-PCR) [58] and
in situ hybridization (ISH) methods [65], PRINS expression
was determined in human tissue types. These two experimen-
tal approaches revealed that PRINS expression varied in dif-
ferent human tissue types: the highest level of expression was
observed in the veins, high levels were found in tissues de-
rived from female and male gonads and lung, moderate ex-
pression was detected in tissue types derived from the gastro-
intestinal tract, and no apparent expression was present in the
brain. Both ISH and Q-RT-PCR revealed a relatively high
level of basal PRINS expression in healthy epidermis.

The contribution of PRINS to the pathogenesis of psoriasis
susceptibility was further indicated in experiments of
organotypic skin cultures. Organotypic skin cultures from
healthy volunteers and from the non-lesional skin of psoriatic
patients were co-incubated with a T cell lymphokine mix pre-
viously shown to induce the proliferation of non-lesional pso-
riatic epidermal keratinocytes but not keratinocytes derived
from normal healthy epidermis [5, 6]. PRINS expression dif-
fered in the two systems: while the treatment decreased
PRINS expression in the non-lesional psoriatic epidermis, it
was unchanged in the normal healthy epidermis. This result
suggested that PRINS may contribute to psoriasis susceptibil-
ity as a modifier gene and may be part of the inherently altered
molecular network of non-lesional epidermal keratinocytes
contributing to disease pathogenesis [58].

To identify PRINS interacting partners and targets, in vitro
binding assays [65] and cDNA microarray experiments [64]
were performed. In the latter, PRINS expression was silenced
in keratinocytes and the genes with altered expressions were
studied in detail. G1P3, one of the identified genes to be under
the control of PRINS, had been previously shown to play a
pathogenic role in human malignancies with anti-apoptotic
effects, and it is regulated by interferon- [11, 67]. These
two features of G1P3 are also important in psoriasis pathogen-
esis [40, 52]. We found that the mRNA expression of PRINS-
regulated G1P3 was upregulated 400-fold in lesional and 9-
fold in non-lesional psoriatic epidermis, compared to healthy
epidermis. In vitro experiments revealed that the down-
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regulation of G1P3 inhibited the spontaneous apoptosis of
keratinocytes, indicating that its high expression might con-
tribute to the altered apoptotic features of psoriatic
keratinocytes and, thus, to disease pathogenesis. Taken togeth-
er, these results indicate that the deregulation of the PRINS
IncRNA contributes to psoriasis pathogenesis at least partially
by altering the expression of G1P3 and leading to decreased
sensitivity of keratinocytes toward spontaneous apoptosis
[64]. In another set of experiments, an in vitro binding assay
identified the nucleophosmin (NPM) protein as a direct
interacting partner of the PRINS IncRNA. To determine
whether this interaction had any relevance to psoriasis patho-
genesis, the expression of NPM was studied in both healthy
and psoriatic non-lesional epidermises. No apparent differ-
ence was found in the level or pattern of expression. Our
finding was in agreement with a previous study examining
nuclear staining for NPM in epithelial cells [7]. Additional
evidence that NPM and the PRINS IncRNA might be direct
interacting partners came from staining patterns in cultured
keratinocytes: ISH staining of PRINS and immunohistochem-
ical (IH) staining of NPM showed for both a predominant
nuclear localization. In psoriatic lesional epidermis, however,
the staining pattern of NPM was dramatically changed in the
different layers of the epidermis: the highest level of NPM
expression was found in basal and immediate suprabasal
keratinocytes. Moreover, keratinocytes showing the highest
level of NPM expression exhibited a marked cytoplasmic
immunopositivity, revealing that, in keratinocytes of lesional
psoriatic epidermis, both the level and the intracellular pattern
of NPM expression were changed [65].

Thus, altered expression of proteins that are either
interacting partners of PRINS or are under the control of
PRINS indicates that, indeed, this IncRNA plays an important
role in psoriasis and that, by altering normal keratinocyte
function(s), it contributes to disease pathogenesis.

The role of PRINS in keratinocyte stress response

The first outstanding finding about the possible cellular func-
tions of PRINS was the contrast between the high expression
found in serum-starved, contact-inhibited keratinocytes and
the very low levels of expression in highly proliferating
keratinocytes [58], suggesting that PRINS may have a key
role in the keratinocyte stress response. To test this, the sur-
vival of keratinocytes was studied during down-regulation of
PRINS. No effects of PRINS down-regulation were found on
the survival of keratinocytes under favorable culturing condi-
tions; however, when serum was withdrawn from the PRINS
down-regulated keratinocytes, the survival rate decreased sig-
nificantly. This result confirmed that elevated PRINS expres-
sion in stressed keratinocytes is not an epiphenomenon but
that, indeed, this IncRNA contributes to the cellular stress
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response. Further in vitro experiments revealed that other
stress factors, including microbial components (viral and bac-
terial), translation inhibition with cyclohexamide, and UV-B
irradiation, are able to induce high-level PRINS expression in
keratinocytes. The UV-B results were especially intriguing,
since the PRINS interaction partner NPM has a well-
documented role in cellular UV-B response: the predominant-
ly nucleolar localization of NPM is changed upon UV-B irra-
diation in fibroblasts, and in cancer cells [44, 78], transloca-
tion to the nucleoplasm and, to some extent, to the cytoplasm
occurs. In vitro experiments were performed to determine
whether the same phenomenon occurs in epidermal
keratinocytes and whether PRINS has any role in it. PRINS
expression was down-regulated in UV-B-irradiated
keratinocytes, and intracellular re-distribution of NPM oc-
curred subsequently. Thus, NPM was localized to the nucleus
in keratinocytes in which PRINS was down-regulated, indi-
cating that PRINS physically interacted with NPM as well as
functionally regulated NPM in this cellular stress response
[65]. Taken together, our in vitro results suggested that
PRINS IncRNA contributes to both stress responses and apo-
ptosis signaling in keratinocytes, and relevantly, its role in
psoriasis pathogenesis involves altering these pathways.

Nuclear factor kappa B (NF-«B) signaling is known to be
altered in psoriatic keratinocytes [73], and this may be a link
between T cell-mediated and keratinocyte-mediated processes
in disease pathogenesis. To determine whether PRINS has a
role in NF-«kB signaling, PRINS expression was altered in
keratinocytes and the activity of the NF-kB pathway was ex-
amined after lipopolysaccharide (LPS) induction and priming
with psoriasis-related cytokines and detected using a
luciferase-based approach. LPS induction of the NF-kB path-
way is well known [49], and it has been shown that LPS can
upregulate the expression of PRINS in keratinocytes. Neither
the down-regulation [3] nor the robust upregulation [14] of
PRINS had an effect on NF-kB activity, indicating that
PRINS is not involved in this signaling pathway in
keratinocytes, although other influences were not excluded.

We are currently working on identifying the signaling path-
ways in keratinocytes by which PRINS affects cell functions
and contributes to disease pathogenesis in psoriasis.

Classification of PRINS, a novel non-coding RNA
conserved in primates

In the 1990s and early 2000s—when IncRNAs were identified
accidently rather than by systematic search—the need to clas-
sify non-coding RNAs was not particularly compelling.
Although the reports of novel IncRNAs caught the interest
of the scientific community at scientific meetings, the general
response was to consider them too eccentric to be taken seri-
ously. However, this attitude has dramatically changed in the

last few years as a result of two developments: on one hand, a
large body information about IncRNAs has accumulated from
large-scale gene expression studies in the last 15-20 years
[35], and on the other hand, thousands of novel human
IncRNA genes have been identified using high-throughput
methods in the last few years [27]. Systematic annotation of
these newly identified IncRNA transcripts was necessary to
aid researchers in their search of the understanding the func-
tions of IncRNAs.

In the last few years, several attempts have been made to
address this need, resulting in a rather complicated system for
categorizing aspects [62] as well as an “easier-to-follow” sys-
tem for categorizing IncRNAs [38]. The varying—and we
believe—still evolving taxonomy of IncRNA reflects the nov-
elty of the field.

To provide a guide to the IncRNA classification suggested
by Kapusta et al. [38], we use this system to apply an initial
classification for the PRINS IncRNA.

According to the Kapusta classification, the first aspect to
consider when categorizing an IncRNA is its genomic context.
The first report of PRINS IncRNA [58] provided its location
to be on the short arm of human chromosome 10 (map posi-
tion 10p12.31) and indicated that it is composed of two exons
and an intron of approximately 7 kb in length. The entire
PRINS IncRNA resides in an intron of the recently annotated
KIAA1217 gene, also known as SKT, which is involved in
early stages of embryogenesis [63]. Proximal to KIAA1217 is
the OUT deubiquitinase 1 gene, whereas distal to KIAA1217
is the Rho GTPase-activating protein 21. Interestingly, the
miR603 miRNA is located in a KIAA1217 intron, 3’ of the
PRINS coding region.

The second aspect to consider when categorizing an
IncRNA is its chromatin context. A transcription start site
was identified 6 kb proximal to the putative 5" end of the
PRINS gene using the ENCODE database. This region is
marked by a high density of binding sites for several transcrip-
tion factors, including GATA2, Fos, HDAC2 and STAT3, and
histone modification sites associated with active transcription,
such as mono- and tri-methylation of lysine 4 of histone H3
(H3K4me1/3) and acetylation of lysine 9 and 27 (H3K9Ac,
H3K27Ac), suggesting that a strongly regulated active pro-
moter might be associated with the IncRNA. The region adja-
cent to the 3’ end of the PRINS IncRNA gene also contains
histone modification sights, which, due to the close 3’ prox-
imity to the PRINS IncRNA gene, might be an enhancer ele-
ment. Of all cells examined to date, the highest signals were
found in normal human keratinocytes, indicating that the
PRINS IncRNA is indeed expressed in keratinocytes and its
expression is regulated by epigenetic factors.

The third and possibly most informative aspect to consider
is the subcellular localization of the IncRNA. From our exper-
imental results, we found that the PRINS IncRNA is mainly
localized in the nucleolus of normal human cultured
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keratinocytes, although moderate perinuclear and cytoplasmic
expression was also detected. This is in good agreement with
reports that non-coding RNAs localize mainly to the nucleus
[37], which suggests a role in the temporal-spatial regulation
of nuclear organization and/or regulation of gene expression.
The intracellular localization of the NPM protein, which was
identified to be physically and functionally interacting with
PRINS, is indicative of a nucleolar/nuclear role for PRINS.
As early as 1984 [60], NPM was reported to be localized in the
nucleolus and shown to shuttle between the nucleolus and the
cytoplasm [9]. As both NPM [2] and PRINS [68] demonstrate
strict regulation during cell growth and during cellular stress
response and, additionally, have functionally overlapping fea-
tures during these processes [65], we postulate that, indeed,
these two molecules interact in these processes.

Since sequence conservation of IncRNAs is rare, it is as-
sumed that their biological activities are dependent on struc-
ture. The putative secondary structure of the PRINS IncRNA
was determined from the primary sequence by computational
prediction (Fig. 1a). In addition to strong structural features,

the PRINS sequence might also determine its cellular locali-
zation, as it includes the AGCCC pentamer with the sequence
restrictions at positions —8 (T or A) and —3 (G or C) of a motif
which was reported to be crucial for nuclear localization of
IncRNAs [82]. Our ISH results are in good agreement with
this sequence-based analysis, as the highest level of PRINS
expression was detected in the nucleolus of keratinocytes,
with moderate staining in the nucleoplasm and the cytoplasm.
Intriguingly, the PRINS IncRNA sequence contains three
Alu elements. It is well established that transposable elements
(TEs) have been very important in the evolution of IncRNAs
[39]. According to some estimates, approximately two thirds
of functioning human IncRNAs contain at least one TE-
derived element, which are seldom found in protein-coding
genes. These elements very often make up a relatively large
portion of the IncRNA genes [42]. This is also true for the
PRINS IncRNA, which contains three Alu elements compris-
ing approximately one third of its sequence (Fig. 1b). The
possible contribution of TE elements to IncRNA evolution
and function is extensively reviewed by Kapusta et al. [38].

J L PRINS

Nucleol \ Nucleus
ucleolus nycleophosmin

b [ AK022045 sequence ]
Alu Alu Alu
[ | I 1 | [T I ] Homo sapiens Chr. 10. p12.1
| | | | | | | | | |
0 400 800 1200 1600 2000 2400 2300 3200 3600 nt
[ intron ]

Ortologous chromosome regions in primates Organism Location Similarity %
[ 1 pan paniscus Chr. 10. p 99
[ 1 pan troglodytes Chr. 10. p 98
[ 1 Gorilla gorilla Chr. 10. p 97
L 1 Pongo albeii Chr.10. p 94
[ 1 Nomascus leucogenys Chr. 18. 94

[ 1 Callithrix jacchus Chr.7 84

[ ] Papio anubis Chr.9 92

[ 1 Macaca fascicularis Chr.9 91

L ] Cholocebus sabaeus ~ Chr. 9 89

Fig. 1 Major characteristics of the PRINS IncRNA. a Putative secondary
structure of the PRINS IncRNA. b Similarity search identified three Alu
elements within the PRINS IncRNA sequence. The PRINS gene is
localized on the p12.1 arm of human Chr. 10, which is highly
conserved in human and four other primate species. Although partial
sequence similarity was found, it is largely due to the conservation of
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Alu elements. In other primate species, the PRINS sequence was
distributed on other chromosomes. ¢ UVB irradiation induces the
shuttling of nucleophosmin (NPM) from the nucleolus to the
nucleoplasm. Silencing of the PRINS IncRNA, which physically
interacts with NPM, results in the retention in the nucleolus
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It has been estimated that only 21 % of known IncRNAs
occurring in primates have orthologues in other orders and
only 3 % of the primate IncRNAs have an orthologue in tet-
rapods [51]. The results obtained with the PRINS IncRNA
sequence agree well with these estimates, in that it could be
found only in the genomes of primates with variations in the
extent of similarity (Fig. 1b). PRINS and the orthologues with
the highest similarity among primate species reside on the
short arm of chromosome 10. Taken together, these data sug-
gest that the PRINS IncRNA gene is most probably a primate-
specific sequence and transposition was the major mechanism
of its origin.

As many IncRNAs serve as sources for miRNAs [55], it
was interesting to examine the PRINS IncRNA for miRNA
pre-sequences. However, no pre-miRNA sequences were
identified using the ever-growing mirbase database (http://
www.mirbase.org/). It is interesting to note, however, that
the intron in which the PRINS IncRNA is located harbors a
miRNA. Analysis of miRNA harboring IncRNAs has shown
it to be an evolutionary conserved group [12]. Thus, as PRINS
is a primate-specific IncRNA, it is not surprising that it does
not harbor any miRNA sequences.

The final criterion for classifying IncRNAs is the most
challenging: function. However, this aspect is the most likely
to advance the understanding of the role of IncRNAs in health
and disease. Because the highest PRINS expression was ob-
served in the nucleolus of normal human keratinocytes and the
sequence contains a nuclear-specific motif, it is reasonable to
assume its functions are in the nucleolus or nuclei. Our in vitro
binding assays identified NPM as the most prominent interac-
tion partner of PRINS, and the highest NPM expression was
found in the nucleolus [60]. These results together with the
results from the PRINS IHS and binding assay support the
hypothesis that PRINS is a physical partner of NPM in the
nucleolus and the complex formed by their binding contrib-
utes to the cellular stress response (Fig. 1¢). Whether PRINS is
interacting with proteins other than NPM and how it functions
in concert with other keratinocyte-expressed IncRNAs [30]
and/or miRNAs [59] are still challenging questions to answer.
Moreover, the data cited above have been obtained from ex-
periments performed in normal human keratinocytes and
keratinocyte cell lines, leaving open the question whether
PRINS is expressed with the same intracellular pattern and
functions the same way in other cell types.

Together, the results from our experiments indicate that the
evolutionarily young, primate-specific PRINS is one of the
IncRNAs that is differentially expressed in psoriasis [72], that
it plays a role in keratinocyte stress response, and that its
elevated expression in psoriatic non-lesional epidermis con-
tributes to the altered stress response of psoriatic keratinocytes
and, thus, to disease pathogenesis. Psoriasis is a human-
specific multifactorial skin disease, which has not yet been
identified in other primates. It remains to be determined

whether any association exists between the primate/human
IncRNAs and the special susceptibility to certain multifacto-
rial diseases that exist only in humans.

Conclusions

There is no doubt that one of the greatest (and previously
unforeseen) achievements of genome programs was the dis-
covery of novel layers of cell regulation represented by
IncRNAs. The importance of these transcripts is underscored
by the fact that they are almost equal in number with protein-
coding genes in the human genome [17]. We are still far from
being able to comprehensively place these novel regulatory
molecules into regulatory networks, similarly to what
are currently known of protein—protein and protein—
DNA interactions based on experimental data. A tre-
mendous amount of experimental work, spanning de-
cades, was necessary to gain sufficient information
about individual proteins and DNA elements to describe
these regulatory networks. Although highly developed in
silico methods may speed this process for regulatory
RNAs—including IncRNAs—it is reasonable to assume
that, unless newly identified IncRNAs are experimental-
ly characterized, it will not be possible to identify their
cellular contexts. Classification of IncRNAs is crucial
for their annotation, and information already available
for the well-known, serendipitously identified IncRNAs
is likely to have great importance in this work.
According to some estimates, there are approximately
130 human IncRNAs extensively characterized to date
[1] and they may serve well in the development of
classification and annotation of thousands of identified
but not yet characterized IncRNAs. In addition to un-
derstanding the cellular functions of these molecules,
their contribution to human diseases will have to be
elucidated, promising insights into the missing heritable
and yet unrevealed mechanisms of human diseases.
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