
Drug  targ e t s  of  migrai n e  and
neurop a t hy:  treat m e n t  of  hyper ex c i t a b i l i ty



Abstrac t :  Migraine  and  neuropa th ic  pain  are  common  causes  of  chronic
pain.  The  exact  pathome c h a n is m  has  not  been  fully  clarified  for  either
disorde r ,  but  their  pathophysiological  backgrounds  involve  several  similar
mechanism s.  Periphe ra l  sensitiza t ion  occurs  in  the  neuronal  elemen ts  of
the  dorsal  root  ganglion  or  the  trigeminal  ganglion,  while  central
sensi tization  appea r s  in  the  second- order  neurons  in  the  dorsal  horn  of
the  spinal  cord  or  the  trigeminal  nucleus  caudalis.  Centra l  neuronal
hyperexcitabili ty  has  been  implica ted  in  both  disorder s ,  and  the  emerging
evidence  sugges t s  altera t ions  in  the  glutama t e r gic  neurot r an s miss ion  and
NMDA- recep to r  activation.  Migraine  and  neuropa t h ic  pain  additionally
share  cer tain  clinical  featu re s ,  such  as  enhanc ed  sensitivity  to  sensory
stimuli  and  cutaneous  allodynia.  The  pharm aco th e r a py  of  both  diseases  is
often  challenging,  but  several  antiepilep tic  drugs  that  targe t
hyperexcitabili ty  are  beneficial  for  both  migraine  and  neuropa th ic  pain.
Kynurenine  pathway  metabolites  are  capable  of  influencing  the  glutama t e
recepto r s ,  and  might  therefore  be  novel  candida t e s  for  future  drug
developme n t .  
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Introd u c t i o n
Migraine  is  a  common,  highly  disabling  neurovascula r  disorde r  with

a  high  socioeconomic  impact ,  but  its  effective  therap eu t ic  manage m e n t
still  poses  a  conside rable  challenge.  The  overall  prevalence  of  migraine  is
around  16%;  in  the  adult  popula t ion,  the  prevalence  is  3- fold  higher  in
women  than  in  men.  Migraine  attacks  are  charac t e r ized  by  a  unilate r a l ,
throbbing  or  pulsating,  often  severe  headache  concomitan t  with
autonomic  symptoms  such  as  nausea  or  vomiting,  photophobia  and
phonophobia.  Among  the  subtypes  differen tia t e d  on  the  2013  criteria  of
the  Interna t ional  Headache  Society,  the  most  frequen t  are  migraine  with
aura  (MA)  and  migraine  without  aura  (MoA).  In  patient s  with  MA,  focal
neurological  symptoms  develop  before  the  beginning  of  the  headache
phase;  these  may  include  visual  disturba nc e s  such  as  blur red  vision,
tunnel  vision  or  scintilla ting  scotomas ,  and  less  frequen t ly  motor
symptoms  or  speech  difficulties.  Cephalic  and  extrace ph a lic  cutane us
allodynia  is  also  a  common  sign,  which  togethe r  with  photophobia  and
phonophobia  sugges t s  a  hyperexcitabili ty  state.  The  altered  function  is
presen t  in  the  centra l  nervous  system  (CNS)  at  the  level  of  the  cortex  and
brainst em  and  at  the  periphe ry  too,  e.g.  the  trigeminal  ganglion.  

Neuropa t h ic  pain,  anothe r  common  cause  of  chronic  pain,  has  a
deter iora t ing  effect  on  the  overall  quality  of  life.  The  prevalence  of
chronic  pain  with  neuropa t hic  charac t e r i s tics  is  in  the  genera l  popula tion
6-10%  .  The  lates t  definition  of  neuropa th ic  pain  by  the  Interna t ional
Association  for  the  Study  of  Pain  is  a  ,,pain  caused  by  a  lesion  or  disease
of  the  somatose nso ry  system”  .  Neuropa t h ic  pain  syndrom es  include  a
variety  of  differen t  conditions,  which  may  have  very  hete roge nou s
etiological  factors .  The  main  common  featu re  is  an  abnorm al  pain



sensa t ion  with  sensory  disturba nc e s  without  any  nociceptive  stimuli.  The
most  common  causes  of  neuropa t hic  pain  are  diabe tic  neuropa t hy,
posther p e t ic  neuralgia,  trigeminal  neuralgia  and  spinal  cord  injury,  but
stroke,  multiple  sclerosis,  cance r  and  several  other  conditions  may  also
result  in  neuropa t h ic  pain.  Neuropa t hic  pain  conditions  resul t  in  similar
symptoms,  independ e n t ly  of  the  etiology:  spontaneous  and  evoked  types
of  pain,  pares thes ia ,  dysesthesi a ,  allodynia,  hyperpa th i a  and  hyperalgesia
may  all  occur .  The  exact  pathophysiological  mechanis ms  underlying  the
developme n t  of  neuropa t h ic  pain  syndrom es  have  not  been  fully
elucida t ed ,  but  the  sensitiza tion  process  is  widely  accep ted  to  play  an
import an t  role.  Altera tions  in  the  periphe ra l  nervous  system,  in  the  spinal
cord  and  at  the  brain  level  may  all  contribute  to  the  pathome ch a n is m.  

The  pharm acological  manage m e n t  of  both  migraine  and
neuropa th ic  pain  is  often  a  serious  challenge.  Neuropa th ic  pain
syndromes  and  migraine  share  a  common  pathom ec h a ni s m  of
hyperexcitabili ty,  which  might  comprise  a  therape u t ic  targe t .  This  review
presen t s  an  overview  of  the  role  of  hyperexcitabili ty  in  these  disorde r s ,
with  an  account  of  the  curren t  therap eu t ic  options  and  the  future
possibilities.  

Hyper exc i t a b i l i ty  and  sens i t i za t i o n  in  migrai n e
The  exact  pathom ec h a ni s m  behind  repea t e d  migraine  attacks  is  still

unclear ,  but  an  altera t ion  in  the  normal  brain  function  has  been
sugges t ed ,  especially  as  concerns  the  sensory  informa tion  processing  . In
the  early  1980s,  it  was  sugges t e d  that  hyperexcitabili ty  occurs  in
migraineu r s ,  charac t e r ized  by  an  increase d  response  to  differen t  sensory
stimuli.  The  first  study  demonst r a t e d  several  visual  evoked  poten tial
(VEP)  abnorm ali t ies  in  migraine  patient s  .  Wilkins  et  al.  later  described
more  intense  illusions  caused  by  gra ting  pat te rn s  in  migraineu r s  as
compare d  with  healthy  subject s,  this  phenome non  exhibiting  similari ties
to  photosensi t ive  epilepsy  .  Another  study  confirmed  prolonged  VEP
latencies  and  an  increase d  P100  amplitude  in  both  MA and  MoA  patien t s  .
An  increase d  P100  amplitude  has  likewise  been  observed  in  anothe r
study,  and  was  sugges t e d  to  correla t e  with  a  low  serum  magnesium
(Mg 2+ )  level  .  In  MA  patien t s ,  the  increase d  P100  amplitudes  displayed  a
side- difference ,  and  were  significan tly  higher  on  the  side  contrala t e r a l  to
the  aura  symptoms  .  In  accorda nce  with  these  data,  an  increased  evoked
cortical  response  was  detec te d  after  auditory  stimuli  in  migraine  patient s
versus  controls  ,  and  migraineu r s  demons t r a t e d  a  strong  intensi ty
depende nc e .  A  magne toe nce p h a log r a p h ic  study  provided  evidence  of
hyperexcitabili ty  in  the  primary  somatosenso ry  cortex  too,  which
correla t ed  with  the  migraine  attack  frequency  .  A transcr a nia l  magne tic
stimula tion  (TMS)  study  revealed  a  lower  threshold  for  phosphen e
genera t ion  in  MA  patient s ,  reflecting  occipital  cortex  hyperexcitability  .
This  finding  was  later  confirmed  by  several  other  investigat ions  .
Moreover ,  TMS  is  a  valuable  tool  for  assessm e n t  of  the  effects  of
migraine- prophylactic  drugs  .   Similarly,  migraineu r  women  repor t ed
increas ed  sensi tivity  even  to  environme n t a l  light  stimuli,  such  as  glare,
flicker  or  pat te rn s ,  which  was  more  expresse d  in  MA  patient s  as  regards
both  the  frequency  and  the  severi ty  .   The  mechanis m  of  how  lights



stimula tion  trigger s  migraine  pain  has  still  not  been  fully  clarified,  but  a
number  of  studies  have  sugges t e d  that  light  might  have  a  modula to ry  role
in  differen t  brain  regions.  A pressur e  algome t ry  study,  which  measu re d
pain  percep tion  thresholds  over  the  emerge nce  of  the  trigeminal
branches  and  over  the  great e r  occipital  nerve  in  migraineu r s ,  revealed
significant  lower  thresholds  after  light  stimula tion,  indicating
hypersensi tivity  in  the  visual  afferen ts  of  migraine  patient s ,  and
sugges t ing  that  this  influences  the  trigeminal  and  cervical  nociception  .
In  an  interes t ing  study,  Noseda  et  al.  observed  that  retinal
photoact ivation  is  able  to  modula t e  the  nociceptive  pathway  at  the  level
of  the  thalamus  by  specific  dura/light- sensitive  thalamic  neurons  . 

The  findings  of  electrophysiological  studies  were  later  confirmed  by
modern  neuroimaging  methods.  A PET  study  involving  migraineu r s  with
olfactory  hypersens i tivity  demonst r a t e d  a  higher  cortical  activation  in  the
temporal  pole  in  the  patien ts  than  in  healthy  controls  .  An  interict al  PET
study  investiga t ed  the  visual  cortex  response s  after  luminous  stimula t ion,
and  demons t r a t e d  bilater a l  visual  cortex  activation  only  in  migraineu r s
and  not  in  controls.  Moreover ,  concomitan t  trigeminal  pain  stimula tion
caused  a  potentia t e d  activation  in  the  patient s  ,  reflecting  cortical
hyperexcitabili ty.  

Another  import an t  aspect  of  migraine  pathomec h a ni s m  is  a
habitua t ion  deficit.  Repeate d  sensory  stimula tion  normally  results  in  a
decrem e n t  of  responses ,  this  phenome no n  being  refer r ed  to  as
habitua t ion.  There  is  growing  evidence  of  habitua t ion  deficits  in  respons e
to  various  sensory  stimuli,  including  visual,  auditory  and  somatosenso ry
evoked  responses  in  migraineu r s  .  The  first  evidence  of  a  habitua t ion
deficit  was  proved  by  an  increas e  in  the  amplitude  of  contingen t  nega tive
variation  (CNV)  in  migraine  patien ts  .  In  the  first  VEP  study  describing  a
similar  pat te rn ,  migraine  patient s  exhibited  increas es  in  N1- P1  and  P1- N2
amplitudes;  in  contras t ,  healthy  participan t s  displayed  a  habitua t ion  with
decreas e s  in  the  same  compone n t s  .  A  habitua t ion  deficit  was  also
confirmed  by  magne to- encephalog ra p hic  (MEG)  studies  .   Similarly,
migraineu r s  show  a  potentia t ion  of  cortical  auditory  evoked  potential
amplitudes  (AEPs)  versus  the  habitua t ion  detecte d  in  healthy  controls  ,
while  for  brainst em  AEPs  a  lack  of  habitua t ion  has  also  been  described  in
waves  IV-V .  A lack  of  habitua t ion  has  similarly  been  repor t ed  in  median
nerve  somatosenso ry  evoked  poten tials  as  well  .   The  same  phenome no n
was  later  confirmed  not  only  in  MoA  patient s ,  but  also  in  subjects  with
medica tion- overuse  headach e  .   In  2003,  Katsa rava  et  al.  presen te d  the
first  account  of  a  reduced  habitua t ion  interictally  in  the  nocicep tive  blink
reflex,  which  describes  the  responses  of  the  trigeminal  system  .  In
migraine  patien t s ,  reduced  habitua t ion  to  laser- evoked  experime n t a l  pain
has  also  been  described  .  The  habitua t ion  in  migraine  patient s  displays  a
fluctua t ion  related  across  the  migraine  cycle  (ictal- interictal)  .  A  MEG
study  detect ed  normaliza tion  of  the  visual  cortex  excitability  periictally  .
In  another  study,  VEPs  and  AEPs  were  recorded  in  migraine  patients  at
differen t  time  points,  before,  during  and  after  an  attack.  The  habitua t ion
deficit  recorded  interictally  normalized  just  before  and  during  a  migraine
attack,  and  the  VEP  amplitudes  even  showed  a  potentia t ion  2  days  after
the  attack  .  Kropp  et  al.  observed  higher  CNV  amplitudes  in  migraineu r s



interictally  as  compare d  with  the  recordings  during  an  attack.  This
finding  reflects  a  habitua t ian  deficit  in  the  interic tal  phase,  which
normalizes  during  the  headache  phase  .  Similarly,  a  loss  of  cognitive
habitua t ion  was  detec t ed  interic tally  in  anothe r  study,  while  the  P300
latency  increas e d  during  an  attack,  and  habitua t ion  normalized  .  The
same  phenome no n  was  described  as  concerns  the  nociceptive  blink
reflex,  where  the  habitua t ion  also  normalizes  during  a  migraine  attack  . 

These  studies  confirming  increas ed  responses  to  sensory  stimuli
and  reduced  habitua t ion  point  to  the  concep t  of  an  increas e d  excitability
of  migraineu r s .  The  exact  pathobioche mical  basis  of  this  hyperexcitability
is  not  yet  fully  unders tood.  MR- spect roscopically  Sandor  et  al.  detec t ed
an  increas ed  baseline  lacta t e  level  in  the  visual  cortex  of  migraineu r s
with  pure  visual  aura,  which  did  not  change  after  visual  stimula tion.  In
contras t ,  heal thy  controls  and  migraineu r s  with  complex  neurological
aura  displayed  a  normal  lactat e  level,  which  was  significantly  elevated
after  stimula tion.  This  phenome non  reflects  the  lack  of  habitua t ion,  and
the  authors  suggese d t  that  the  increas ed  lacta te  level  in  the  occipital
cortex  could  be  a  conseque n c e  of  a  mitochondri al  dysfunction  .

Another  impor tan t  aspect  of  migraine  is  the  developme n t  of  aura
symptoms.  The  concep t  of  cortical  spreading  depress ion  (CSD),  first  put
forward  by  Leao  in  1944,  is  though t  to  be  the  pathomec h a ni s t ic  basis  of
the  aura  symptoms.  Functional  magne t ic  resonance  imaging  (fMRI)  and
MEG  provided  evidence  of  a  connec tion  between  migraine  aura  and
elect ric  and  metabolic  altera t ions  in  the  brain  consis ten t  with  CSD.
Barkley  et  al.  provided  the  first  descrip tion  of  large- amplitude  waves  and
direct  curren t  (DC)- shifts  observed  in  the  MEG  of  migraine  patien t s  .  In  a
later  study,  Bowyer  et  al.  demons t r a t e d  DC-MEG- shifts  both  in  migraine
patient s  with  spontaneous  aura  and  in  those  with  visually  triggere d  aura
versus  controls  .  In  the  occipital  cortex  of  migraine  patien t s ,  several
regions  of  hyperexcitabili ty  have  been  identifed,  which  form  the  basis  of
an  increas ed  suscep tibility  to  CSD.  An  fMRI- BOLD  study  in  migraine
patient s  revealed  the  presence  of   a  spreading  suppres sion  of  initial
neuronal  activation  in  visual  trigge red  headach e  .  Hadjikhani  et  al.
subsequ e n t ly  demons t r a t e d  BOLD  signal  changes  during  spontane u s
migraine  aura,  which  propaga t e  through  the  visual  cortex  and  resemble
CSD  .  Moreover ,  fMRI  studies  have  indicated  activation  in  brains te m
nuclei  during  both  spontaneous  and  visually  trigge re d  migraine  attacks  .

All  of  these  neurophysiological  and  neuroimaging  observa t ions
revealed  neuronal  hyperexcitabili ty  in  the  brain  of  migraineu r s  both
during  and  between  attacks ,  especially  in  the  neuronal  cell  membra n e s  of
the  occipital  cortex  . The  pathomec h a ni s m s  underlying  this  have  not  been
fully  elucidat ed ,  but  several  mechanism s  may  contribu te  to  the  altered
function.  An  impaired  energy  metabolism,  channelopa t h ies ,  reduced
Mg2 +  levels  and  altera t ions  in  the  serotonine rgic  system  may  all  play  a
role  in  this  process  .  One  of  the  first  phosphorus  magne t ic  resonanc e
spect roscopy  (31 P-MRS)  studies  of  the  brain  energy  metabolism
demons t r a t e d  an  impaired  phospha t e  energy  metabolism  ictally  .  Another
early  study  described  low  brain  Mg2 +  levels  during  a  migraine  attack  .
Later,  an  impaired  energy  metabolism  was  confirmed  by  the  finding  of  a
decreas e d  adenosine  triphosph a t e  (ATP)  level  in  the  occipital  cortex  of



MoA  patien ts  in  the  interic tal  period  .  A  reduced  phosphoc re a t ine  to
inorganic  phospha t e  ratio,  which  reflec ts  the  cellular  energy  status ,  was
revealed  by  multiple  studies  in  differen t  subtypes  of  migraine  patient s  .
An  impaired  energy  metabolism  proved  to  be  associa t ed  with  low  Mg2 +
levels  in  migraineu r s ,  and  low  Mg2 +  levels  also  correla te d  with  the
severi ty  of  the  disease  .  Low  Mg2 +  levels  may  contribu te  to  neuronal
hyperexcitabili ty,  possibly  by  influencing  excitato ry  recepto rs  .

The  concep t  of  hyperexcitabili ty  was  confirmed  by  measur e m e n t s  of
neuroexcita to ry  amino  acids.  the  levels  of  glutamic  and  aspar t ic  acid
were  significan tly  higher  in  the  plasma,  platele t s  and  cerebros pinal  fluid
(CSF)  of  migraine  patient s  as  compared  with  controls,  and  the  plasma
glutama t e  level  was  elevated  even  further  during  a  migraine  attack  .
Chronic  migraine  patient s  also  have  significantly  higher  CSF  glutama t e
levels  .  Another  study  detecte d  increase d  concen t r a t ions  of  glycine,
cysteic  acid  and  homocysteic  acid  .   Similar  data  were  found  in  the  saliva
of  migraine  patient s ,  where  significant  elevations  of  glutamic  acid,  serine,
glycine,  arginine  and  tyrosine  were  measur e d  .  Altera t ions  in  excita to ry
neurot r an s mi t t e r  distribution  have  been  demons t r a t e d  in  the  ante r ior
cingula t e  cortex  and  insula  by  proton  magne tic  resonance  spect roscopy
(1H-MRS)  data  as  well  .  These  data  indicate  that  a  predominanc e  of
neuroexcita to ry  aminoacids  in  migraine  patient s  may  lead  to  an  increas ed
activation  of  glutam a t e  recepto rs ,  and  reflect  a  hyperexci tabili ty  of  the
CNS.  Several  studies  have  revealed  lower  Mg2 +  levels  in  the  blood,
saliva  and  cortex  of  migraine  patient s ,  which  might  further  enhance  the
sensi tivity  of  the  N-methyl- D-aspar t a t e  (NMDA)  recep to rs  .  Glutama t e ,
the  main  excita tory  aminoacid  in  the  brain,  exerts  its  effect  on  the
ionotropic  NMDA  and  AMPA  recepto rs  and  on  the  metabo t ropic  G-
protein- coupled  recep to rs .  Experimen t a l  data  indicate  that  glutama t e  is
involved  in  trigeminovascula r  nociception,  and  antagonis ts  of  NMDA
recepto r s  are  able  to  block  trigeminovascula r  nocicep tion  . 

One  of  the  leading  theories  relating  to  the  pathome ch a n is m  of
migraine  is  the  activation  of  the  trigeminovascula r  system  (TS)  .  The
anatomy  of  the  TS  is  based  on  the  pseudounipola r  neurons  in  the
trigeminal  ganglion,  whose  periphe r a l  branche s  innerva t e  the  meninge al
tissues  and  the  intrac r a nia l  vascula tu r e ,  while  their  central  afferen t s
project  to  the  nociceptive  second- order  neurons  of  the  trigeminal  nucleus
caudalis  .  The  nociceptive  second- order  neurons  receive  converge n t
synaptic  input  from  the  supra t e n to ri al  dura  mate r  (trigeminal  part)  and
from  the  great e r  occipital  nerve  (second  cervical  spinal  nerve).  An  altered
function  of  the  TS  plays  a  crucial  role  in  the  pathomec h a ni s m  of  migraine:
sensi tization  . 

Fig1.:  Sch e m e  of  the  trige m i n o v a s c u l ar  syst e m



The  term  sensi tization  refers  to  an  increas e d  afferen t  activity  as  a
respons e  to  an  unchang e d  stimulus.  The  main  forms  of  sensitiza tion  are
periphe r a l  and  cent ral  sensi tiza tion  and  disinhibi tion  .  Periphe ra l
sensi tization  is  a  process  of  functional  plasticity,  when  high- threshold
nocicepto r s  are  conver t ed  to  a  low- threshold  neurons  .  It  occurs  when
meningeal  nocicep to r s  of  the  trigeminal  neuron  afferen ts  are  soaked  with
the  ,,inflamma to ry  soup”,  e.g.  inflamma to ry  media to r s ,  such  as
prostaglandin  E2,  bradykinin,  histamine,  serotonin,  tumor  necrosis  factor
alpha  (TNF )  and  other  cytokines  .  This  mechanism  is  responsible  for  theα
clinically  observed  intrac r a nial  hyperse nsi tivity,  which  resul ts  in  the
throbbing  natur e  of  the  headach e  and  the  observa t ion  of  the  pain
worsening  after  physical  activity.  These  signs  are  based  on  the
hyper r e s ponsivenes s  of  the  sensi tized  nocicepto r s  to  the  fluctua t ion  of
intrac r a nia l  pressu re  .  Besides  the  local  dural  stimula tion  by  the
,,inflamm ato ry  soup”,  an  import an t  element  in  the  cent ral  sensitiza tion
process  is  the  increase d  activity  of  the  NMDA  recepto rs  in  the  second-
order  neurons  and  a  self- amplifying  process  induced  by  nitric  oxide  .  The
clinical  consequen c e  of  this  process  is  cutaneous  allodynia  of  the  face  and
scalp,  and  extrac r a nial  tende rn es s  .  The  centra l  sensitiza tion  process  is
induced  by  the  release  of  glutam a t e  in  the  trigeminal  nucleus  caudalis
from  the  C-fibers  of  the  pseudounipola r  neurons  of  the  trigeminal
ganglion.  Increase d  intracellula r  calcium  levels  activate  protein  kinase  C,
which  leads  to  the  phosphoryla t ion  of  the  NMDA  recepto rs .  The
phosphoryla t ed  NMDA  recep to r s  have  an  increas ed  glutam a t e  sensi tivity,
which  resul ts  in  the  hyperexcitability  of  the  neurons  . 

Hyper exc i t a b i l i ty  and  sens i t i za t i o n  in  neurop a t h i c  pain
The  exact  pathom ec h a ni s m  of  neuropa th ic  pain  has  not  yet

been  completely  clarified,  but  a  sensitiza tion  process  seems  to  play  a  key
role.  The  neuronal  element s  of  periphe ra l  sensitiza tion  in  neuropa th ic
pain  are  the  pseudounipola r  neurons  of  the  dorsal  root  ganglion  (DRG).
Damage  to  the  periphe r a l  nerves  resul ts  in  macropha g e  infiltra t ion  from
the  endoneu r al  blood  vessels  into  the  nerve  and  the  release  of  an



,,inflamm ato ry  soup”  .  A  periphe ra l  nerve  lesion  additionally  initiates
altera t ions  in  the  innervat ed  skin  area.   The  Langerh a n s  cells,
kera tinocytes  and  mast  cells  are  activated  in  the  skin  and  release  pro-
inflammato ry  cytokines,  growth  factors  and  nitric  oxide  .  When  the
continuity  of  the  nerve  fibers  is  inter rup te d ,  Wallerian  degene r a t ion
begins.  In  the  course  of  Wallerian  degene r a t ion  the  prolifera t ing
Schwann  cells  secre t e  chemokines  in  the  vicinity  of  the  periphe ra l  nerve
lesion,  and  this  resul ts  in  the  accumula t ion  of   leukocytes  around  them,
which  release  proinflamm a to ry  cytokines  .  Damage  to  the  primary
sensory  neuron  afferen ts  is  followed  by  an  increas ed  expression  of
voltage- gated  sodium  channels  Na v1.8  and  Na v1.9,  which  are  the  sources
of  ectopic  impulse  genera t ion.  The  upregula tion  of  sodium  channels  is  a
conseque n c e  of  nerve  growth  factor  release  .  The  conseque nc e  of  this
process  is  a  decreas e d  action  potential  threshold,  resul ting  in
hyperac t ivity  .  Ectopic  primary  afferen t  firing  is  associa ted  clinically  with
a  spontan eous  burning  pain  and  elect ric- shock  like  sensat ions  .  A
periphe r a l  nerve  injury  initiates  an  inflammato ry  response  in  the  DRG
and  spinal  cord  .  The  central  terminals  of  the  damage d  primary  sensory
neurons  release  various  impor tan t  subst r a t e s ,  such  as  ATP,  brain- derived
neurot rophic  factor  (BDNF)  and  fractalkine  to  the  DRG.  ATP  is  a  key
molecule  which  is  able  to  influence  the  activity  of  the  microglia,  which
causes  the  release  of  BDNF  from  the  microglia  through  the  activation  of
the  P2X4  recep to r s  on  the  cell  surface  .  BDNF  activates  the  tropomyosin
recepto r  kinase  (TrkB)  recepto r s ,  which  resul ts  in  the  down- regula t ion  of
the  K+ -Cl --cotranspo r t e r  (KCC2)  of  the  second- order  neurons  in  spinal
lamina  I,  which  convey  information  to  the  thalamus  . The  consecu tive  rise
in  Cl - in  the  neurons  causes  the  inhibitory  function  of  the  GABA-  and
glycine  channels  to  be  less  effective,  and  in  some  cells  even
depolariza tion  may  occur  .  The  consecu t ive  change  in  the  membr a n e
poten tials  reduces  the  Mg2 +- blockade  and  thereby  facilita tes  NMDA-
mediat ed  curren t s .  The  disinhibi tiory  process  may  lead  to  an  excess
activation  of  the  NMDA  recepto r s ,  leading  to  the  hyperexci tability  of  the
spinal  neurons  .  This  central  sensitiza tion  process  is  associa ted  with  the
developme n t  of  allodynia.  

Fig.2 .  Neuro n a l - glial  interac t i o n s  in  the  dorsal  horn  of  the
spina l  cord



In  a  1H-MRS  study  of  neuropa t hic  patient s ,  a  decreas e d  N-
acetylaspa r t a t e  (NAA)  concent r a t ion  was  detec t ed  in  the  third- order
neurons  of  the  thalamus.  This  result  could  be  explained  by  a  decreas e d
activity  of  the  inhibitory  neurons  in  the  thalamus  and  a  consecu tive
increas e  in  the  excita to ry  neuron  activation  .  Another  study  has  revealed
that  NAA levels  correla t e  nega tively  with  the  intensi ty  of  pain  in  patient s
with  neuropa t h ic  pain  .  In  another  study  involving  patient s  with
trigeminal  neuropa t h ic  pain,  a  significant  reduction  of  the  gray  matte r
volume  of  the  thalamus  and  a  reduced  NAA /creat ine  ratio  were  detec te d
in  the  thalamus .  These  altera t ions  were  observed  only  in  the  case  of
trigeminal  neuropa t h ic  pain,  and  not  in  trigeminal  neuralgia  .  A  PET
study  of  patient s  with  periphe ra l  nerve  injury  (limb  amputa t ion)  showed
glial  cell  activation  in  the  contrala t e r a l  thalamus  .  Imaging  studies
revealed  altera t ions  in  the  highly  organized  cortical  structu r e s .  An  MRI
investiga t ion  indicated  a  significantly  reduced  gray  mat te r  volume  of  the
thalamus  and  prefron tal  cortex  in  patien t s  with  chronic  low  back  pain
with  a  neuropa t h ic  componen t  .  Similar  anatomical  changes  have  been
demons t r a t e d  in  fibromyalgia  patient s ,  where  a  diminished  gray  matte r
volume  was  found  to  be  presen t  in  differen t  brain  regions  (the  cingula te
gyrus,  insula,  frontal  cortex  and  parahippoca m p al  gyrus),  and  the
changes  in  gray  mat te r  densi ty  correla te d  with  the  dopamine
metabolism  .  Furthe r m o r e ,  in  an  animal  model  of  diabetic  neuropa t hic
pain,  an  enhance d  glutama t e r gic  neurot ra n s miss ion  was  revealed  in  the
ante rior  cingula te  cortex  . 

NMDA  recepto r s  and  glutam a t e  have  been  implica ted  in  the
pathomec h a ni s m  of  neuropa t h ic  pain  at  multiple  levels.  NMDA  recepto r s
are  presen t  at  all  levels  of  the  somatosens o ry  system  and  at  the  levels  of
the  periphe ra l  nervous  system  on  both  myelinated  and  unmyelina t ed
axons,  in  the  spinal  cord  and  at  a  supraspinal  level  .  The  activation  of
glutama t e  recepto r s  proved  to  induce  hyperalgesia ,  allodynia  and
charac t e r i s t ic  behavioral  response s  in  animal  studies,  reflecting  their
involvemen t  in  periphe r a l  nocicep tive  transmission.  Accordingly,  the
antagonism  of  glutam a t e  recepto r s  reduced  allodynia  and  hypera lgesia  in
the  same  animal  models  .  It  was  later  also  described  that  inflammation



resul ts  in  a  significan t  increas e  in  the  sensory  axons  containing  ionotropic
glutama t e  recepto r s ,  which  may  contribu te  to  the  periphe ra l  sensi tization
process  under  inflamma to ry  conditions  .  NMDA  recepto r s  have
additionally  been  shown  to  be  involved  in  the  process  of  centr al
sensi tization,  through  the  developme n t  of  spinal  hyperexcitabili ty  .  Under
normal  conditions ,  NMDA  recepto rs  do  not  par ticipa t e  in  synaptic
transmission,  because  extracellular  Mg2 +  results  in  a  voltage- depende n t
block.  A  constan t  nociceptive  stimulus  induces  a  strong  membra n e
depolariza tion,  which  permits  NMDA  recepto r- media ted  synaptic
transmission.  A calcium  influx  into  the  cells  activates  the  non- recep to r
tyrosine  kinase ,  which  leads  to  phosphoryla t ion  of  the  NMDA  recep to rs .
The  Mg2 +  blockade  of  phosphoryla t e d  NMDA  recep to r s  is  decreas e d ,
and  therefore  the  recepto r s  can  be  activated  even  under  a  resting
membra n e  potential  .

Sensi tiza tion  and  hyperexcitabili ty  are  common  mechanisms  in  the
developme n t  of  migraine  and  neuropa t h ic  pain.  Both  processes  involve
altera t ions  in  the  glutama t e r gic  neurot r a ns miss ion  and  the  increas ed
activity  of  NMDA  recep to r s .

 

Fig.3 .  The  role  of  NMDA  recep t or s  in  the  centra l  sen s i t i za t i o n
proce s s

Therap e u t i c  opportu n i t i e s

1.  Migraine
As  discussed  above,  a  neuronal  hyperexcitabili ty  is  demons t r a t e d  in
migraine  suffere r s ,  at  both  the  cortical  and  the  brains te m  level.
Accordingly,  there  is  a  need  for  therape u t ic  approache s  that  target  CNS
hyperexcitabili ty,  and  several  drugs  are  already  available.  The
pathomec h a ni s m  of  epilepsy  is  well  known  to  involve  hyperexcitabili ty  of



the  brain,  and  several  antiepilept ic  drugs  also  display  marked  efficacy  in
migraine  . 
The  first  widely  used  antiepileptic  drug  in  the  prophylaxis  of  episodic
migraine  was  valproa t e .  There  is  strong  evidence  that  valproic  acid  or
sodium  valproa t e  or  their  combina tion  (divalproex  sodium)  effectively
prevents  the  occur re nc e  of  migraine  attacks  .  The  ventropos t e ro m e di a l
thalamic  nucleus  (VPM)  is  a  key  thalamic  structu r e  receiving  trigeminal
nociceptive  transmiss ion,  which  subsequ e n t ly  conveys  sensory
information  to  the  primary  somatosenso ry  cortex  ,  and  the  VPM  might
therefore  be  a  potential  therap eu t ic  targe t .  Valproat e  effectively  blocks
trigeminovascula r  nociception  and  the  ongoing  activity  in  the  VPM  .  It
has  been  demons t r a t e d  to  exert  its  effect  at  the  level  of  the  trigeminal
nucleus  caudalis,  where  it  can  inhibit  capsaicin- induced  c-fos
immunore a c t ivity  . It  effectively  inhibits  CSD  too  . 
Another  antiepileptic  drug  which  is  widely  accepted  for  migraine
prevention  is  topiram a t e ,  the  efficacy  of  which  is  well  established  .  It  has
diverse  pharm acological  effects:  besides  glutam a t e  recepto r  antagonis m,
it  influences  the  GABA-ergic  neurot r a ns miss ion  and  modula te s  of  ion
channels  .  Evidence  from  TMS  studies  revealed  that  topiram a t e  is  able  to
decreas e  cortical  excitabili ty  .  Accordingly,  a  TMS  study  demons t r a t e d
that  topiram a t e  effectively  reduces  the  cortical  excitability  of  the  motor
and  visual  cortices  in  migraine  patient s ,  and  also  lessens  the  frequency  of
migraine  attacks .  Its  reduction  of  headache  frequency  proved  to  be
strongly  correla t ed  with  the  decreas e  in  cortical  excitabili ty,  which  can
probably  be  explained  by  modula t ion  of  the  glutam a t e r g ic
neurot r an s miss ion  .  There  are  several  potential  mechanism s  as  concerns
how  topirama t e  can  influence  the  developme n t  of  migraine  attacks .  It  has
been  revealed  that  topiram a t e  exerts  its  effect  in  the  trigeminoce rvical
complex  and  the  VPM  through  the  antagonis m  of  kainate  recep to r s  .
Moreover ,  topirama t e  is  capable  of  blocking  CSD,  the  underlying
mechanism  of  migraine  aura  .  In  an  in  vitro  study,  topirama t e  inhibited
the  high- voltage- activated  Ca 2+ -curren t s  in  cortical  pyramidal  cells  and
periaque d u c t a l  gray  neuronal  element s  . 
The  efficacy  of  other  antiepilep tic  drugs  has  not  yet  been  fully
established.  Lamot rigine  reduced  the  frequency  only  of  migraine  auras  .
Carbam az e pine  exhibited  efficacy  in  diminishing  the  attack  frequency  as
compare d  with  placebo  in  only  one  study  .  Another  antiepilept ic  drug,
pregabalin,  has  demonst r a t e d   good  efficacy  in  reducing  headach e
frequency  and  severi ty  in  both  episodic  and  chronic  migraine.  Although
relatively  few  data  are  available,  the  promising  resul ts  sugges t  the  need
for  furthe r  large- scale  investigat ions  .  A few  studies  have  demons t r a t e d
the  good  efficacy  of  levetirace t a m  in  reducing  the  frequency  and  intensi ty
of  migraine  attacks  .  Similarly  to  other  antiepilept ic  drugs,  it  resul ted  in
an  increas e  in  the  phosphe n e  threshold  in  a  TMS  study,  and  in  a
reduc tion  of  the  cortical  excitability  correla t ing  with  the  decreas e  in
headach e  frequency  . 

A relatively  new  therape u t ic  option  is  meman tine ,  which  was  earlier
approved  for  the  trea tm e n t  of  Alzheimer’s  disease .  Meman tine  is  a
noncompe t i t ive  NMDA  antagonis t ,  which  inhibits  NMDA  recepto r
overact ivat ion,  but  does  not  interfe re  with  the  normal  baseline  activity.  A



small  study  sugges t e d  that  meman t ine  could  be  beneficial  for  migraine
prevention,  efficiently  reducing  headach e  frequency;  this  was  later
confirmed  by  others  . Multicente r  studies  are  still  required  to  suppor t  this
observa t ion.  

2.  Neuropa t h ic  pain
In  the  manage m e n t  of  neuropa t hic  pain,  antiepilept ic  drugs  targe t ing
hyperexcitabili ty  are  widely  used.  The  antinocicep tive  effect  of  this
medica tion  may  by  explained  by  differen t  mechanism s:  the  inhibition  of
neuronal  ion  channels,  the  enhanc m e n t  of  the  GABA-mediat ed  inhibition
of  glutam a t e  release  or  direc t  glutama t e- recepto r  antagonism.  

Pregabalin  and  gabape n t in  have  been  demons t r a t e d  to  be  effective
in  several  animal  models  of  neuropa th ic  pain,  and  are  curren t ly  first- line
trea tm e n t s  in  the  EFNS  guideline  for  the  differen t  neuropa t h ic  pain
syndromes  .  Both  substanc es  exert  their  effects  by  binding  to  the  2- 1α δ
subuni t  of  the  presynap t ic  voltage- depend en t  Ca 2+  channels  and  reducing
the  release  of  several  neurot r a ns mi t t e r s  .  
Carbam az e pine  and  oxcarbazepine  are  the  first  line  of  trea tm e n t  for
trigeminal  neuralgia,  and  the  efficacy  of  carbam az e pine  has  also  been
demons t r a t e d  in  other  chronic  neuropa t h ic  pain  conditions  .  Valproa te
has  been  repor t ed  to  display  an  antiallodynic  effect  in  an  animal  model  of
neuropa th ic  pain,  and  its  efficacy  has  been  demons t r a t e d  agains t  painful
diabetic  neuropa t hy  in  humans  . 

As  NMDA  recepto rs  are  considere d  to  have  a  pivotal  role  in  the
developme n t  and  maintena nc e  of  neuropa t h ic  pain,  direc t  NMDA-
recepto r  antagonis t s  seem  to  be  reasonable  therap e u t ic  options.
Ketamine  has  been  demons t r a t e d  to  have  beneficial  effects  in
neuropa th ic  pain  conditions  by  reducing  hypera lgesia ,  allodynia  and
pain  .  However ,  ketamine  may  induce  severe  side- effects,  especially  in
higher  doses,  and  its  use  is  therefore  curren t ly  limited.  Memant ine ,  a  low-
affinity  uncompe t i t ive  NMDA  antagonis t  has  a  favorable  pharm a cological
profile  with  less  side- effects.  It  proved  capable  of  alleviating  neuropa th ic
pain  developme n t  in  a  rat  model  and  exhibited  a  significant
antinocicep t ive  effect  in  a  diabetic  neuropa t h ic  pain  animal  model  .
Complete  NMDA  antagonism  is  associa ted  with  severe  side- effects,  but
NR2B- subtype- specific  antagonis ts  of  NMDA  recepto rs  have  a  favorable
pharm acological  profile.  Thus,  two  differen t  NR2B  antagonis t s  both
increas ed  the  nociceptive  threshold  in  animal  models  of  neuropa t h ic  pain,
without  any  motor  side- effect  .  Ralfinamide,  anothe r  compound  that
inhibits  NMDA  recepto rs  andalso  Na +  and  Ca 2+  channels,  exhibited  good
efficacy  in  a  rat  model  of  neuropa th ic  pain  .

Several  clinical  trials  with  promising  novel  drugs  are  curren tly
ongoing,  targe t ing  neuronal  hyperexcitabili ty  or  neuron- glia  interac t ion
in  neuropa t h ic  pain  .  In  a  recen t  phase  3  study,
dextrome t ho r p h a n / quinidine  was  effective  in  diabet ic  neuropa t h ic  pain
patient s  . 

Future  therap e u t i c  poss ib i l i t i e s  with  kynure n i n e s



The  kynurenine  pathway   is  the  main  metabolic  route  of  the
tryptopha n  catabolism,  being  responsible  for  more  than  95%  of
tryptopha n  degrada t ion  in  the  human  brain  .  The  first  and  rate- limiting
step  of  tryptopha n  degrada t ion  is  the  synthesis  of  L-kynurenine ,  through
the  action  of  indoleamine-  2,3- dioxygenas e .  L-Kynurenine  can  be
conver t ed  in  two  distinct  metabolic  ways:  it  can  serve  as  a  precurso r  of
kynurenic  acid  (KYNA)  or  it  can  be  transform e d  into  3-hydroxy-
kynurenine .  KYNA  is  a  broad- spect ru m  endogenous  antagonis t  of
excita tory  aminoacid  recepto rs ,  and  therefore  has  a  neuropro t ec t ive
effect.  KYNA is  able  to  prevent  the  overexcita t ion  of  glutama t e  recepto rs
and  excitotoxic  neuronal  death.  Its  neuropro te c t ive  effect  is  mainly  due  to
the  blockade  of  NMDA  recepto rs ,  but  it  is  able  to  bind  to  AMPA  and  to
the  α7-nicotinic  acetylcholine  recep to r s  .  Interes t ingly,  its  effect  on  the
AMPA  recep to r s  are  concen t r a t ion- depend en t :  in  the  low  concen t r a t ion
range  it  may  facilita te  these  glutam a t e  recep to rs  while  at  a  higher
concen t r a t ion  level  it  inhibits  them  .  The  experimen t a l  data  indicate  that
KYNA  has  a  modula to ry  role  in  the  CNS,  because  it  is  implica ted  in  the
regula tion  of  glutama t e  and  dopamine  release  .  The  neurop ro tec t ive
effect  of  KYNA might  also  be  related  to  the  inhibition  of  the  7-nicotinicα
acetylcholine  recepto rs ,  because  it  can  thereby  modula te  presynap t ic
glutama t e  release  .  The  kynurenine  pathway  produces  several  other
neuroac t ive  metabolit es ,  including  the  potent  neurotoxin  quinolinic  acid,
an  NMDA  recep to r  agonist ,  whose  neurotoxic  prope r t i es  may  also  be  a
conseque n c e  of  its  capacity  to  induce  lipid  peroxida tion  or  to  lead  to  an
elevation  of  the  extracellular  glutam a t e  level ,  which  can  furthe r  induce
excitotoxicity  .  Altera tions  in  the  delicate  balance  of  the  neuropro t ec t ive
and  neurotoxic  metabolites  have  been  described  in  multiple  neurological
diseases ,  including  Alzheimer’s  disease,  stroke,  Parkinson’s  disease  and
multiple  sclerosis  .  Synthe t ic  derivatives  of  KYNA  might  provide
therape u t ic  options  for  the  trea tm e n t  of  neurodeg e n e r a t ive  diseases ,  one
of  such  molecule  was  already  paten te d  for  the  treame n t  of  Hunting ton’s
disesease  (P1000343).

Fig.4 .  The  knyure n i n e  pathw ay  of  tryptop h a n  metab o l i s m



Kynurenines  in  migraine

Metaboli tes  in  the  kynurenine  pathway  have  been  implicated  in  the
modification  of  the  trigeminovascula r  activation  process es .  As  a
conseque n c e  of  elect rical  stimula t ion  of  the  trigeminal  ganglion,  the
kynurenine  aminot r ansfe r a s e  immunore a c t ivity  decreas ed  significan tly  in
the  Schwann  cells  and  macroph ag e s  . Furthe r ,  kynurenine  in  combina tion
with  probenecid  prior  to  nitroglycerine  trea tm e n t  or  elect rical  stimula tion
effectively  reduced  the  c-fos  immunore a c t ivity  in  the  rat  trigeminal
ganglion  .  Kynurenine  with  probenecid  or  a  novel  kynurenic  acid
derivative  also  preven ted  nitroglycerine- induced  expression  of  n-nitric
oxide  synthas e  .  The  kynurenine  derivative  was  able  to  block  calmodulin-
depende n t  protein  kinase  II  alpha  (CamKIIalpha)  and  calcitonin  gene-



related  peptide  (CGRP)  expression  in  the  same  animal  model  .  L-
Kynurenine  or  KYNA trea tm e n t  was  also  capable  of  suppressing  CSD  in  a
rat  model  .  KYNA additionally  inhibits  higher  brains te m  nuclei  activation,
e.g.  the  locus  coeruleus  .  KYNA  administe r e d  into  the  periaque d uc t a l
gray  matte r  poten tia t e s  the  effect  of  morphine  .  

Kynurenines  in  neuropa t h ic  pain

Treatme n t  with  KYNA proved  to  be  antinocicep t ive,  reducing  allodynia  in
a  rat  model  of  inflammato ry  pain  .  In  a  recent  study,  L-Kynurenine  +
probenicid  trea tm e n t  diminished  allodynia  in  an  animal  model  of
neuropa th ic  pain  by  giving  rise  to  an  increas e d  KYNA concen t r a t ion  .  In
those  works,  it  was  sugges t e d  that  the  antinocicep tive  effect  could  be  due
to  NMDA  recepto r  antagonis m.  Notably,  NMDA  antagonis m  in  this  model
did  not  resul t  in  any  motor  side- effect.  However ,  in  anothe r  interes t ing
animal  study  of  inflamm ato ry  pain,  anothe r  possible  mechanis m  of  action
was  put  forward.  In  this  model,  activation  of  the  previously  orphan  GPR35
recepto r  by  KYNA was  able  to  resul t  in  an  antinocicep tive  effect  .  In  this
set ting,  the  effect  of  KYNA could  be  due  to  the  inhibition  of  Ca 2+  channels
and  glutama t e  release  .  Furthe r  studies  are  needed  to  clarify  the
poten tial  therape u t ic  options  of  kynurenines  in  neuropa t hic  pain
conditions.

Conclu s i o n s

Hyperexcitabili ty  and  sensi tization  are  common  mechanis ms  in  migraine
and  neuropa t h ic  pain,  glutama t e  and  its  recepto r s  playing  a  pivotal  role
in  these  processe s .  The  targe t ing  of  ionotropic  and  metabo t ropic
glutama t e  recepto r s  may  therefore  be  a  promising  therape u t ic  possibility
both  in  migraine  and  in  neuropa t hic  pain  condiitions.   Curen t  therape u t ic
options  which  influence  hyperexcitabili ty  are  mainly  antiepilep tic  drugs.
Kynurenines  might  offer  valuable  therape u t ic  options  for  future  drug
developme n t .
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Figur e  lege n d

Fig.  1.  Sch e m e  of  the  trige m i n o v a s c u l a r  syst e m
The  periphe ra l  branches  of  the  pseudounipola r  neurons  in  the  TRIG

innerva t e  the  meningeal  vascula tu r e ,  while  the  centra l  branches  project  
to  the  nociceptive  second- order  neurons  in  the  TNC.  The  second- order  
neurons  receive  converge n t  synaptic  input  from  the  C2  DRG  too.  From  
the  TNC  sensory  informat ion  is  conveyed  to  the  thalamus  and  the  cortex.  

TRIG:  trigeminal  ganglion,  TNC:  trigeminal  nucleus  caudalis,  DRG:  
dorsal  root  ganglion,  C2:  second  cervical  spinal  nerve.

Fig.  2.  Neuro n a l - glial  interac t i o n s  in  the  dorsal  horn  of  the  
spina l  cord

After  an  injury  of  the  periphe ra l  nerve  fibers  of  the  pseudounipola r  
neurons  of  the  dorsal  root  ganglion,  ATP is  released  via  the  central  par t  
to  the  dorsal  horn  of  the  spinal  cord.  ATP  acts  on  the  P2X4  recepto r  on  
the  microglia,  and  the  stimula t ed  glia  release s  BDNF.  BDNF  binds  to  the  
trkB  recepto rs  and  induces  the  downregula t ion  of  the  K+ C —

contrans po r t e r .  The  resul tan t  rise  in  the  Cl - level  attenu a t e s  the  inhibitory
action  of  GABA, leading  to  hyperexcitabili ty  of  the  neurons.  

BDNF:  brain- derived  neurot rophic  factor,  trkB:  tropomyosin-
recepto r  kinase  (family  of  the  tyrosine  kinase  recep to rs) ,  GABA: gamma-
amino- butiric  acid,  ATP:  adenosin- triphosph a t e ,  DRG:  dorsal  root  
ganglion,  P2X4:  purinergic  recepto r  P2X,  ligand- gated  ion  channel,  4

Fig.3 .  The  role  of  NMDA  recep t or s  in  the  centra l  sen s i t i za t i o n
proce s s

a) In  a  res ting  state ,  NMDA  recep to r s  on  the  second- order
neurones  are  blocked  by  Mg 2+ ,  and  do  not  par ticipt ae  in
synaptic  transmission.  Glutam at e ,  released  from  the
primary  afferen t  terminals  exert s  its  effect  on  the  AMPA
and  G-protein- coupled  metabo t ropic  glutam a t e  recep to r s ,
and  results  in  Na +  and  Ca 2+  influx  to  the  cells.  

b) A  constan t  noxious  stimuli  results  in  a  strong  membra n e
depolariza t ion,  which  removes  the  Mg 2+  blockade  and
permits  the  NMDA  recepto rs  to  participat e  in  synaptic
trans mission.

c) The  calcium  influx  activates  the  PKC  and  SRC,  which
phosphoryla t es  the  NMDA  recep to rs .  Phosphoryla t ion  of  the
NMDA  recepto r s  resul ts  in  an  enhanc ed  glutama te
sensitivity  and  hyperexcitabili ty  of  the  cells.

NMDA:  N-methyl- D-aspar t a t e ,  Ca 2+  :  calcium,  Mg 2+:  magnesium,
PKC:  protein  kinase  C,  SRC:  protein  tyrosine  kinase

Fig.  4.  The  kynure n i n e  pathway  of  tryptop h a n  metab o l i s m
The  KP is  a  sequence  of  enzymatic  steps  leading  to  the  formation  of  

NAD.  The  rate- limiting  step  is  the  coversion  of  TRP  by  IDO.  The  metabolic
cascade  divides  into  two  branches  at  L-KYN,  the  key  interm edia t e  of  the  
KP.  One  branch  consists  of  the  synthesis  of  KYNA via  the  action  of  KATs,  



while  the  other  branch  produces  several  neuroac t ive  metaboli tes  
including  the  NMDA  recep to r  agonis t  QUIN,  and  the  free  radical  
genera to r  3-OH- KYN.  

KP:  kynurenine  pathway,  TRP:  tryptopha n,  L-KYN:  L-kynurenine ,  
IDO:  indoleamine- 2,3,- dioxygenas e ,  KYNA: kynurenic  acid,  QUIN:  
quinolinic  acid,  3-OH- KYN:  3-hydroxy- kynurenine ,  KAT: kynurenine-
aminot ra nsfe r a s e ,  NAD:  nicotinamide  adenine  dinucleotide ,  NMDA:  N-
methyl- D-aspar t a t e


