Tryptophan catabolites and migraine
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Abstract:

Migraine is a highly disabling neurological conditi affecting around 15% of the population worldwide
Decades of intensive research shed some light esasies pathomechanism, but information is stillsimis
about the initiation of the attack. In the pasttoey) serotonin emerged as the main target of battic and
therapeutic research. As a result, the triptars,otfily approved migraine specific drugs were deyedo The
involvement of glutamatergic mechanism in migraimadache development such as cortical hypereXdigabi
and cortical spreading depression as the patha@bgiorrelate of migraine aura called the attentionthe
kynurenine pathway in migraine pathomechanism. Bkeeotonin and kynurenine pathways are closely
connected, as they both are the metabolic routetheofamino acid tryptophan. Kynurenine cataboldes
important participants in glutamatergic neurotraission, regulation also nociceptive processing loé t
trigeminal system. The current work attempts tdemblrecent data on both serotonin and kynurerg@search

related to migraine and emphasizes the importahfigtber research on this topic.

Keywords: migraine, kynurenine pathway, cortical spreadingrdssion, serotonin, hyperexcitability,
glutamate.
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1. INTRODUCTION

Migraine is a common neurological disorder with rregear prevalence of 14.7% [1]. Despite intensive
research the exact pathomechanism of the diseatitl ot completely understood. The importancenigraine
research is clearly shown by the fact that migrértbe sixth highest cause of disability worldwided together
the headache disorders are the third on the lisho$es of disability [2].

Based on data so far, migraine can be consideragasiful multifactorial disorder [3], involvingigonomic,
affective, cognitive and sensory functions. Gluteamand serotonin mediated neurotransmission bati @h
important role in the evolution of migraine headsxt4]. The kynurenine pathway (KP), the main roofte
tryptophan metabolism, is closely involved with bbaflutamatergic and serotonergic mechanisms plaitiag
catabolites of this pathway under spotlight in raige research [5]. The scope of our review is ghlight the

possible connections of the KP with processes iratin migraine pathomechanism.

2. METABOLISM OF TRYPTOPHAN

In mammals, the excess of tryptophan not nece$saprotein synthesis is utilized either for thengesis of
the important neurotransmitters serotonin (5-hygiigptamine, 5HT) and melatonin (N-acetyl-5-
methoxytrypamine) or is oxidized via the KP. In lama more than 90% of dietary tryptophan is metabdlvia
the KP at the periphery [6]. Both metabolic routedude important neuroactive catabolites with agilole role

in the pathomechanism of migraine headache.

2.1 The Kynurenine Pathway

The first, rate-limiting step of the kynurenine Ipaty (KP) is the irreversible cleavage of the irdohg of
L-tryptophan (TRP) either by indoleamine 2,3-dioggigse 1 and 2 (IDO1 and 2), or by tryptophan 2,3-
dioxygenase (TDO) (Figure 1).

IDO1 can be found throughout the body, and funstiaa a monomeric protein. Besides TRP, it can also
utilize D-tryptophan, 5-hydroxy-L-kynurenine, 5-hngety-D-kynurenine, melatonin [7] and serotonin [8].

Less is known about IDO2, since it was isolated than 10 years ago [9]. Data gathered so far atelithat
the expression of IDO2 is not as widespread asdhabO1, and that this enzyme may influences imenun
regulation differently than IDO1 [10]. TDO functisras a homotetramer and contains a heme B grouig. It
expressed predominantly in the liver, but can &@sdound in the brain and placenta [11, 12]. TDOnisre
substrate specific than IDO 1, claiming only L-tigpphan for metabolism [13].

Reactions catalyzed by either enzymes result infadh@ation of N-formyl-L-kynurenine, which is furgh
degraded by kynurenine formamidase to L-kynurefiinKYN), the central metabolite of the KP. From LYK
the kynurenine aminotransferases (KATs) form kynigeacid (KYNA), kynureninase forms anthranilic @ci
(AA), while kynurenine 3-monooxygenase (KMO) adfjvresults in the formation of 3-hydroxykynurenine
(3HK). In mammals four type of KATs are present, KAalso known as glutamine transaminase K/cysteine
conjugate beta-lyase | [14, 15], KAT ll/aminoadipaminotransferase [16, 17], KAT lll/cysteine caygte
beta-lyase Il [18] and KAT IV/glutamic-oxaloacetimnsaminase 2/mitochondrial aspartate aminotreasge
[19, 20]. All of the KATs are able to metabolize K¥N to KYNA, however their substrate specificity,

metabolic rate and expression are different [21].



Kynureninase is a pyridoxal-5’-phosphate dependanyme, it is able to catalyze two reactions alinregk P
it converts L-KYN to AA and it promotes the conviers of 3HK to 3-hydroxyanthranilic acid (3HA). THiest
mechanism is common in prokaryotes while in euk@yaohe latter pathway is preferred, therefore ammmals
the conversion of L-KYN proceeds either to the KYNAto the 3HK route [22].

AA is further metabolized by anthranilae-3-monooamgse to 3HA, while from 3HK kynureninase forms the
same compound. 3HK can be also converted by KATsgatthurenic acid. 3HA is either subjected to auto
oxidation resulting in cinnabarinic acid, or itdsnverted to 2-amino-3-carboxymuconate semialdelgdMS)
by 3-hydroxyanthranilic acid oxygenase. ACMS can foether processed by aminocarboxymuconate-
semialdehyde decarboxylase to 2-aminomuconate khiale, followed by a non-enzymatic transformation
picolinic acid. ACMS can also undergo spontaneguilme ring closure to form quinolinic acid (QUIN)hich

can be further processed to form nicotinamide adedinucleotide.

2.2 Serotonin pathway

The first rate-limiting step in the synthesis of Bhs the hydroxylation of L-tryptophan by the enzym
tryptophan hydroxylase (TPH) and results in themfation of 5-hydroxytryptophan. This metabolite is
transformed by aromatic amino acid decarboxylageQA) to 5HT. Metabolism of 5SHT by monoamine oxidase
(MAO) to 5-hydroxyindole acetaldehyde and furthgradddehyde dehydrogenase, results in the end prdduc
hydroxyindoleacetic acid (5HIAA), which is geneyalised to indirectly detect changes in serotonuelie In
the pineal gland and in the retina 5HT is metaledliby serotonin N-acetyltransferase to N-acetytsain,

which is further converted by hydroxyindole-O-méttgnsferase to melatonin.

2.3 Receptorial and non-receptorial actions ofttyghan catabolites

Several kynurenine catabolites were shown to hawectd receptorial actions. L-KYN, KYNA and
cinnabarinic acid are ligands of aryl hydrocarbegeptors (AHRs) [23-25]. AHR is a nuclear transioip
factor regulating the expression of genes of xastabimetabolizing enzymes, such as cytochrome Pbtein
and glutathione transferase. This receptor possessgortant functions in immune regulation, and €ll-c
development [26] .

KYNA is an endogenous ionotropic glutamate receptgagonist, acting on N-methyl-D-aspartate (NMDA)
receptors at both the strychnine-insensitive glyaite and on the glutamate recognition site [3F., [ addition
it is also an antagonist of kainate glutamate ptaws [29], while it has a Janus-face effect seamino-3-
hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)ceptors, in nanomolar concentration it has a
facilitatory, while in micromolar concentration amhibitory effect on these receptor [30-32]. KYNABoad
receptorial action indicates that it has a veryarngnt role in the regulation of glutamatergic ratansmission.
This regulatory role is further supported by thet fldnat KYNA is an antagonist af7-nicotinic acetylcholine
(«7nACh) receptors, thus is able to modulate presymgputamate release [33]. KYNA also has weak agtan
effects on the G protein coupled receptor 35 (GBER34].

QUIN is a weak endogenous agonist of NMDA recep{85], while cinnabarinic acid acts on type 4
metabotropic glutamate receptors [36].

Besides the direct receptorial actions of tryptepbatabolites, they also participate on oxidativecpsses,

and thus are important factors in mitochondrialrgpenetabolism [37].



The effects of SHT are transmitted by 7 receptdotypes, 5HT1-7 receptors. Throughout them 5HT exert
myriad of functions, modulating mood, memory, afipeand circadian rhythms. With one exception, 5SHT3
which is a ligand gated cation channel, SHT reaspaoe G protein coupled receptors (GPCRs) [38].

In humans melatonin exerts its effect via two GPQORE1 and MT2 [39-41], regulating circadian rhythms
and participating in the pathomechanism of depoessautism spectrum disorders and neurodegenerative

disorders [42-44]. Melatonin is also a potent atitlant [45].

3. MIGRAINE

Migraine attacks present with an unilateral throlgbheadache accompanied by nausea or vomiting, and
photo- or phonophobia. Attacks can be divided ifaior phases (prodrome, aura, headache and postgjrome
however not every phase is present in every pgdéit

3.1 Prodrome

The first phase is the prodorme/ premonitory symptohase occurring hours or even days before the
headache attack [47]. Premonitory phase can bemresth diverse symptoms including fatigue, mobdroges,
food cravings, concentration problems, sleep distnces, gastrointestinal disturbances and yawriig49].
The prevalence of premonitory symptoms shows graa@ance among different studies ranging from 38066
[46, 50, 51]. Griffin and colleagues have revedhet about two-third of migraine patients are ableredict the
occurrence of the headache based on premonitorgteyms [52], suggesting that these symptoms aratagral
part of the migraine attack, not just accompanimefiwo hypotheses emerged attempting to explain the
mechanisms behind the symptoms, one involving tlearatransmitter dopamine, the other involving the
hypothalamus.

The dopamine hypothesis is based on the observitaindopamine agonists produce the same symptoms
which are present during the premonitory phase|endnitagonists, such as domperidone and metoclageam
may reverse some of these symptoms and even preverdderate the headache [53-55].

Hypothalamus is the most important nucleus in tivadn brain involved in the maintenance of homeastas
it regulates endocrine functions, circadian rhythamsl harmonizes the function of the parasympathaatit
sympathetic nervous systems. The diverse funciiopsy that the impaired operation of the hypothalgnmay
result in very different and at firs glance notated symptoms, resembling migraine premonitory sgmp.
Furthermore, the clear connection between migraimet the sleep-wake cycle supports the involvemétite

hypothalamus in the pathomechanism of migrainettmiexact routes of action need to be clarifieg] f].

3.2 Aura

According to the classification of the Internatibrideadache Society the two most common forms of
migraine are migraine without aura and migraineéhveitira [58]. About one-third of the patient sufferifrom
migraine can be classified to the MA group [59], end aura indicates the presence of preceding or
accompanying transient focal neurological symptosiated to the headache. The aura symptoms ardeein t
most cases visual, however sensory, language aridr mpmptoms can also manifest [60]. A typical aura

develops within 5 minutes and lasts for 5-60 miay&s].



Cortical spreading depression (CSD) is consideseith@ pathophysiological equivalent of migraineag[érl,
62]. During CSD, a wave of transient depolarizatspreads along the cortex accompanied by hyper- and
hypoperfusion. The spreading velocity of the depmddion wave, 2-5 mm/s, correlates with the spreathe
visual aura [61, 63]. Zhang and colleagues shoved after focal induction of CSD in rats a longtilag
activation of meningeal nociceptors occurs withetay, suggesting that CSD is able to directly atéwthese
neurons [64]. However, another study on awake asinid not show pain behaviour after the inducodéi€CSD,
challenging the theory of CSD being the primargdgr of migraine headache [65]. Knock in model&aafilial
hemiplegic migraine (FHM), an autosomal dominaintlyerited form of migraine, are more susceptibl€&D,
suggesting common mechanisms in CSD and FHM derwap [66]. In the formation of CSD, glutamate
neurotransmission and NMDA receptors play a crueié. Agonist of glutamate receptors can trigg&DC
[67], while the non-competitive NMDA antagonist MBO1 is able to suppress the formation of corticBDC
waves [68]. Recent data suggest that differentypaist of NMDA receptors may play diverse roles ie th
formation of CSD, thus subtype specific antagomiay provide a therapeutic approach against CSD [69]

3.3 Headache phase and postdrome

For the great part of patients the most debilitapart of the migraine attack is the headache piideadache
can last for 4-72 hours without treatment, withdnir severe strength [58]. The headache is thotaiue
caused by the activation and sensitization of tigeninovascular system, consisting of the trigeahiverve and
innervated areas [70]. The trigeminal nerve isldéingest among cranial nerves in humans; it is @idhto three
main divisions, the ophthalmic, maxillary and mdndar branch, of which the ophthalmic gives thessen
innervations of the meninges.

For decades the vascular changes during the mégedtack were thought to be the cause of the hadac
later a neuronal basic mechanism was suggestednaredrecently the neurovascular origin of the laehd was
proposed, however, the primary triggering step igraine generation is still debated [70].

The activation of the primary nociceptive trigenliraferents leads to peripheral neuropeptide releas
calcitonin gene-related peptide (CGRP), neurokikiand substance P are liberated to the perinepeales[71,
72], leading to vasodilatation and plasma proteinawasation and to the activation of mast cells enkocytes
collectively termed as neurogenic inflammation [73hese phenomena are well characterized in animals
however in humans only little direct evidence supgpthe actual presence of neurogenic inflammadioring
the attack [74]. Despite the lack of human date,ithportance of neuropeptides, is supported byeatirdrug
research data focusing on CGRP receptor antagamisanti-CGRP antibodies [75, 76].

The continuous activation of the peripheral trigemhinociceptors leads to peripheral sensitizatidmicky
presents with the worsening of headache duringities increasing intracranial pressure e.g. coogland in
the throbbing nature of the headache [77].

The next important structure during the procesamijraine headache is the caudal part of the spinal
trigeminal nucleus (TNC), where most of the primaociceptive afferents project. Activation at theriphery
proceeds to the TNC, mostly by the aid of glutamateits level increases in the TNC after stimatatf the
first-order trigeminal neurons [78]. Both glutamd#9] and its receptors [80] are present in thgetminal

system providing an important modulatory aspectrigfeminal nociception. Activation of the secondier



neurons in the TNC can lead to central sensitinadibthis site [81], which presents in migrainedusing the
attack as the symptom of allodynia [82].

Activation of the trigeminal system spreads forwaodthalamic and cortical sites, resulting in thanp
experienced by migraine patients.

Imaging studies revealed, that specific brain regi@¢periaqueductal grey matter, nucleus raphe nsggnu
dorsal raphe nucleus, locus coeruleus) are activengl the headache phase, raising the possibilityhe
existence of a migraine generator region [83, 8#kse nuclei are the part of the descending paidutatory
system, their activation suggest that the procgssind transmission of nociceptive information cam b
dysfunctional in migraine, however these theorydseae be confirmed.

After the cessation of the migraine pain patierftero experience tiredness, difficulties in concatidm,
weakness, dizziness, which can be regarded aottdrpme phase, the least well-defined phase ahibeaine
attack [85, 86].

3.4 Cortical hyperexcitability in migraine

Cortical hyperexcitability is thought to contributethe formation of CSD in migraine. The first é@shce for
this hypothesis is that the mutations of the tHfE@ genes can lead to hyperexcitability. FHM 1 ésised by
the mutation in th€€ACNA1A gene located on the chromosome 19p13 coding ghéunit of the voltage-gated
P/Q type Cav2.1 calcium channel [87]. In knock min@als this mutation results in increased glutamekease
in the brain [88]. The second type of FHM, FHMdIldaused by the mutation in tA&P1A2 gene [89] encoding
the a2 subunit of Na/K pumps. Mutations of this gene canse decreased uptake of glutamate and K+ frem th
synaptic cleft. Mutations in th8CN1A gene are responsible for the third type of FHMM-HI. This gene
encodes therl subunit of the neuronal Navl.1l voltage-gated wsndchannels [90], and leads to accelerated
recovery of the channel from fast inactivationdieg to a higher firing rate [91]. These data idécthat FHM
mutations can result in cortical hyperexcitabilispggesting that this phenomenon may also be iedoin the
formation of simple migraine.

Migraine patients show increased response to varsamsory stimuli, further implicating the presenta
hyperexcitable state [92]. The lack of habituattorrepeated sensory stimuli also confirms the presef a
hyper-responsible state even between migraine kattf&3-95]. With positron emission tomography (PET)
Boulloche and colleagues found that an alteredvaibbin of the visual cortex is present in the ittt phase in
migraineurs compared to controls, confirming thegtlility of hyperexcitability with functional iméagg [96].

Increased glutamate levels can be the basis dfytherexcitable state; however, measurements cémlaie
content in migraineurs provided conflicting resuldatelet and plasma measurements of glutamateated
lower or similar levels in migraineurs and contr{§, 98], while in other studies increased badatagnate
levels were found [99]. During the attack increalmaals of glutamate were found in the cerebroddinal of
migraine patients [97]. Proton magnetic resonapeetsoscopy revealed that a higher glutamate/glumatio
is present in migrainous women during the intefiptease compared to controls in the occipital cofi0],

supporting the presence of altered GLU metabolismigraine.

4. INVOLVEMENT OF TRYPTOPHAN CATABOLITES IN MIGRAINE

4.1 Serotonin in migraine



The importance of 5HT in migraine pathomechanisrs fi@t proposed by Sicuteri and colleagues in 1961
after detecting increased urinary 5HIAA levels dgrimigraine attacks [101]. Based on these findmgserous
studies examined peripheral 5HT and 5HIAA levelplasma and platelets, and their results suggestnih
alteration is present during the migraine attackHhT levels compared to controls [102]. These fiiggi are not
surprising if we consider that the main source HfT5and 5HIAA is the gut, where enterochromaffinlgel
synthesize 5HT to fulfil its role in the modulatiohperistalsis [103].

Serotonin is a vasoconstrictor [104], and it wasaded that the peripheral veins of migraineursashigher
reactivity to SHT than controls, furthermore veimfiswomen suffering from migraine react even moreHtr
than veins of migrainous men [102] supporting thelvement of 5HT in migraine.

The measurements of brain 5HT levels and synthatis also yielded conflicting results. PET scaitb the
aid of a-[11C] methyl-L tryptophan, a SHT precursor, rewhbn increased 5HT synthesis capacity and also a
higher brain uptake rate in women with migraine gJLOUsing the same method, another study found no
differences in 5HT synthetic rates between migmaiseand controls during the attack, but interigtalllower
synthetic rate was found in migraineurs [106]. ™@me group examined interictal 5HT synthesis in-non
menopausal women, and found no alteration in syicthates, however after administration of a SHEeygtor
agonist, eletriptan a decreased rate was foundgrameurs but not in controls, suggesting an atteegulation
of 5HT synthesis between attacks [107].

Genetic research also attempted to link 5HT to aiigr. Studies examining the genetic associatiowdmt
migraine and the serotonin synthesizing and metahglenzymes TPH, AADA, MAQO detected no connection
[108-111]. Genetic research on 5HT receptors rexkab obvious relation with migraine in the cas®&ldT1A
[112], 5HT2A [113-115] and 5HT2C [116, 117] recagtohowever in a small number of affected families
association was found with 5HT1D receptors [118nére promising subject is the 5HT transporteiitsagene
polymorphisms were found to be associated with anngr in independent meta-analyses [119, 120].

In spite of the conflicting result regarding thedés of 5HT in migraineurs, the effectiveness sfagonist,
triptans in migraine therapy confirms the impor&wt this compound in disease pathogenesis. Tspativate
5HT1B/1D and 5HT1F receptors but many questionsumanswered regarding their mechanism and site of
action [121, 122].

4.2 Melatonin in migraine

Several studies have found decreased nocturnaktoneialevels in migraineurs, especially in wome231
124]. In an other study, no difference was fountiveen pain free periods of migraine patients amnutrots,
while a decrease of melatonin level was detectedigraineurs during headache attacks [125]. Basethese
and on other results connecting migraine seasoadhtions with melatonin [126], assumption rais#uht
melatonin may play an important role in migrain¢hpgenesis. Subsequently trials were conductecdamme
the efficacy of melatonin in migraine therapy, banhtroversial results were obtained. In an opeptlabudy of
Peres an colleagues melatonin was effective inairigrprevention [127], while in a randomized, dedblind,
placebo-controlled crossover study of Alstadhaud apn-workers no beneficiary effect of melatonin was
detected [56]. Considering the importance of malatdn the regulation of circadian rhythms and dtese
relation with hypothalamic functions, participationmigraine pathomechanism is highly possible, éxav the

exact molecular mechanism and thus possible thetigpefficacy need to be further confirmed.



4.3 Kynurenines in migraine

Since Sicuteri’'s observations about the involveman®&HT in migraine pathomechanism [101] research
focused on the 5HT pathway of TRP metabolism, alghoin the past years the KP’s involvement was also
confirmed [4, 128].

TRP was used as an analgesic agent [129], and datér was revealed that its KP catabolites L-KYN,
KYNA, AA, XA, PIC and QUIN also possess analgesioperties in the tail-flick and hot-plate tests whe
administered intraperitoneally to rats [130] furttseipporting their involvement in modulation of feaptive
processing and thus in migraine pathomechanism.

KP catabolites are present both peripherally amutrakly in the trigeminal system [21], providingeth
opportunity to modulate trigeminal nociception atigus sites. Knyihar-Csillik and colleagues fouhdt after
electrical stimulation of the trigeminal ganglica,well characterized model of trigeminal activateomd dural
neurogenic inflammation, KAT immunoreactivity ofettcerebral dura mater decreased in rats [131].€Thes
results suggest that endogenous KYNA synthesishéndura may contribute to the modulation of NMDA
receptor function.

Several strategies exist to enhance the produofigiYNA in the brain and to decrease the amountQ 0fN
and 3HK, which are thought to be neurotoxic. Theselve the application of KYNA precursors, inhiis of
KMO, to decrease the synthesis of 3HK and the dgreént of new KYNA-like compounds [132]. These
approaches were applied also in animal modelsigdrtrinal activation for the evaluation of the inveinent of
KP catabolites in migraine. KYNA passes the bloaaitb barrier (BBB) poorly [133], therefore its puesor L-
KYN was applied in animal studies. In the previgusientioned electrical stimulation model the aptien of
L-KYN in combination with probenecid was able tocoEase the activation of the second order neurotisei
TNC[134]. Probenecid is an inhibitor of organicdatiansport [135], and in joint application withk¥N it can
prevent the depletion of KYNA from the central neug system, raising its levels significantly [136].

The same combination was applied in the nitrogipeeinduced model (NTG model), where it was alsie ab
to decrease the activation of the trigeminal sydtE®7]. These results suggest that elevated KYNA&IE may
be protective against trigeminal hyperactivity.

In the NTG model sensitization processes also 0d&38, 139], presenting with enhanced neuronalcnit
oxide synthase (NNOS) [140], calmodulin-dependeotsgin kinase llo (CamKlla) [141] and decreased CGRP
content in the TNC [142]. The combination treatme&as able to attenuate nNOS [136], while L-KYN bself
attenuated the changes of Camkéind CGRP levels caused by NTG [143].

Two synthetic KYNA amides, 2 (2 N,N dimethylaminbgiamine-1-carbonyl)-1H-quinolin-4-one
hydrochloride (KYNA-A1l) and N-(2-N-pyrrolidinyletHy-4-oxo-1H-quinoline-2-carboxamide hydrochloride
(KYNA-A2) were also tested in the NTG model. KYNAtAvas able to mitigate nNOS, Camiland CGRP
immunoreactivity changes after NTG administratiand KYNA-A2 had the same, but dose dependent effect
[136, 143, 144]. These results clearly demonstth& important role of L-KYN and KYNA in trigeminal
nociceptive processing, and support their impomtale in migraine pathomechanism. However, the es@gaes
throughout nociceptive modulation occurs are ekisivhe general consideration is that both KYNA &sd
derivatives modulate NMDA receptor function, buthéir effect takes place peripherally or centrakeds to be
clarified [136, 143, 144].



Studies on experimental CSD in rats conducted bgu@él and colleagues support the interaction betwee
KYNA and NMDA receptors in CSD formation. In th&irperiments both combined and standalone applitatio
of L-KYN and probenecid were able to decrease CeQuency, the combined application having the gat
effect compared to control, via increasing the KYN@ntent in the brain [145]. Their results alsowshbat
there is a sex-dependence of the effects of L-KYdbpnecid treatment, female rats being more seaditi it
[145]. Other results have shown that KYNA administe peripherally can also modulate CSD frequenay an
BBB permeability [146]. Based on these result we aasume, that KYNA has an important role in miiiga
CSD formation, and therefore it is involved in gext®n of migraine aura.

In studies conducted so far with KYNA derivativd® tsite of application was peripheral. Although the
purpose of both the combinatory treatment and gmication of derivatives are to increase KYNA camitin
the brain, the possible peripheral involvement &fN@A in migraine processes can not be excluded. i@n t
periphery both KYNA and other KP catabolites cantipgpate in the formation and modulation of newenig
inflammation (Figure 2). At the level of the secang trigeminal neurons KYNA and QUIN could modulate
glutamatergic neurotransmission of nociceptive aliginwhile at higher levels, at the thalamus anthéencortex
they may also influence trigeminal pain pathways.al recent work, Kageneck and colleagues showed tha
KYNA was able to inhibit capsaicin induced CGRPeeale in the TNC, but had no effect on dural CGRP
release, supporting the idea, that KYNA may exédriag effects at different sites of the trigenlisgstem
[147]. Further knowledge about the KP’s involvemientrigeminal nociceptive processing could lead toetter

understanding of migraine pathomechanism.

5. CONCLUSIONS

The aim of the present work was to draw some attenbn the role of different tryptophan catabolites
especially kynurenine catabolites, in migraine pathchanism. 5HT have been shown to be involvedén t
nociceptive processing of trigeminal signals, aadous aspects of migraine generation, and the atfyortant
transmitter of the same metabolic pathway, melatevas also proposed to play a part in these prese3she
close relationship of the 5HT pathway and the KRrygftophan degradation suggest, that alteratiorme arm
of the pathway, may influence the other, thus rédea highly probable involvement of the KP in naige.
Research conducted so far in relation with the K& migraine were focused on KYNA, and results comfihe
involvement of this compound in migraine relatedgasses. However, further studies are needed #dl thet

possible sites and receptors of effect of KYNA afsb the influence of other KP catabolites.
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Figure 1. Metabolic routes of tryptophan
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Figure 2. Possible routes of action of kynurenic acid and its derivatives
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