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Abstract 

 

Metal ion regulation is essential for living organisms. In prokaryotes metal ion 

dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental 

role in controlling the concentration of metal ions. These proteins recognize metal ions with 

an outstanding selectivity. A detailed understanding of their function may be exploited in 

potential health, environmental and analytical applications. Members of the MerR protein 

family sense a broad range of mostly late transition and heavy metal ions through their 

cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of 

such proteins challenging. Here we describe a method for the purification of the copper-

regulatory CueR protein under optimized conditions. In order to avoid protein precipitation 

and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation 

factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent 

anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, 

second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted 

in large amounts of pure CueR protein without any affinity tag. Structure and functionality 

tests performed by mass spectrometry, circular dichroism spectroscopy and electrophoretic 

gel mobility shift assays approved the success of the purification procedure.  

 

 

Keywords: Metalloregulatory proteins, cysteine, copper(I), DNA binding, four step 
purification 
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Introduction 

 

Metal ions bound to proteins play important roles in biochemical processes either by 

the stabilization of the structure of these proteins or by participating in enzymatic reactions. 

For instance, transition metal ions are often necessary for the optimal function of transcription 

factors, however, the increased amounts of the otherwise essential metal ions may cause toxic 

effects in living organisms [1,2]. Accordingly, the concentration of these metal ions must be 

under a strict metal ion sensitive and selective control in the cell [2–9]. Understanding the 

details of bacterial metal ion regulatory mechanisms may forward the design of molecules that 

selectively bind specific metal ions. 

 Metalloregulatory proteins represent a sub-class of transcriptional regulators that 

respond to the change of metal ion concentration or availability by balancing the expression 

of cellular metal uptake and efflux/detoxification systems [6,7]. MerR proteins are one of the 

ten metal ion regulatory protein families that are distinguished in bacteria [7]. Representative 

examples are e.g. the HgII-ion binding MerR (the name of the family originates from this 

protein) and the CuI-ion regulatory CueR proteins [9]. A characteristics of the MerR family 

members is the similarity observed in the first ~100 amino acids of their sequences [10]. The 

N-terminal DNA binding domain contains a helix-turn-helix-β-hairpin motif followed by a 

long dimerization helix forming an antiparallel coiled-coil structure [11]. Significant 

differences are, however, found in the C-terminal effector (metal ion) binding domains (Fig.1) 

allowing dimeric MerR proteins to distinguish between various metal ions. 

 The dimer of MerR apo-protein binds to a 19 – 20 bp (base pair) segment of the 

promoter region of DNA between the –35 and –10 sites. The regulatory mechanism is based 

on the conformational change of the protein upon metal ion binding, which influences the 

DNA structure and initiates the RNA polymerase action. As a consequence, a series of 

proteins are expressed, which participate in the removal of the unwanted metal ions from the 

cell. 

Crystal structures of CueR with CuI-, AgI- and AuI-ions reflect that all of these ions 

are bound in the effector binding domain close to the C-terminus [11]. A loop is formed 

around the metal centers via the coordination of two cysteine thiolates, which restricts the 

metal ion into a linear coordination geometry. According to in vitro experiments, CueR gives 

a transcriptional-activation response to single-charged, but not to double-charged metal ions 

[11]. Recently, the crystal structures of the metal ion free modified protein and the AgI-bound 
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form, both cocrystallized with DNA, have been published providing more insight into the 

influence of metal ion binding on the structure of the DNA [12]. Based on the combination of 

experimental studies with CueR model peptides and quantum chemical calculations we have 

proposed the participation of a protonated Cys thiol in the metal ion binding domain of CueR 

and the operation of a protonation switch in the mechanism of the protein [13]. However, the 

potential role of the protonation/deprotonation of Cys112 in the function of CueR has not 

been proved, yet. It is also unexplored how CueR so successfully rejects soft divalent metal 

ions. A further open question is whether the CCHH fragment close to the C-terminus, which 

has otherwise no direct influence on the transcriptional activity of CueR [14], plays any role 

in the operation of the protein. In order to better understand the mechanism of the selective 

metal ion recognition and regulation of CueR we aim at expressing and purifying the wild 

type CueR from E. coli for subsequent structural and activity investigations. Although a 

published method for the purification of CueR is available in the literature [15], based on the 

protocol applied for ZntR, a related MerR homologue [16], we have faced difficulties to adapt 

it. Therefore, in this paper we describe an alternative procedure for the purification of CueR 

eliminating the precipitation step of the protein, which may provide general guidelines for 

working with air-sensitive DNA binding proteins. 

 

Fig. 1 – near here 

 

Materials and methods 

 

Strains and media 

E. coli DH10B F- endA1 recA1 galU galK deoR nupG rpsL ∆lacX74 Φ80lacZ∆M15 

araD139 ∆(ara,leu)7697 mcrA ∆(mrr-hsdRMS-mcrBC) λ-  [11,17] was applied as cloning host 

for recombinant DNA work and E. coli BL21(DE3) F- ompT gal [dcm] [lon] hsdSB  [18] for 

the overexpression of CueR protein. Bacteria were grown in LB medium [19] containing 

ampicillin (100 µg/ml) at 37 ºC.  

 

Plasmid construction 

The gene of the wild type CueR in a pET24a (KanR) plasmid was kindly provided by 

prof. Alfonso Mondragon (Department of Molecular Biosciences, Northwestern University, 

Evanston, Illinois, USA). The DNA segment, encoding CueR, was recloned into a pET21a 
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(AmpR) plasmid (Novagen). The gene was amplified by PCR using T7 sequencing primers 

(T7 forward primer: 5’-TAATACGACTCACTATAGGG-3’ and T7 reverse primer: 5’-

GCTAGTTATTGCTCAGCGG-3’) then cloned between NdeI and BamHI sites to create 

pET21a-CueR. A stop codon prior to the BamHI cleavage site assured the expression of the 

protein without any additional amino acids encoded by the plasmid. 

 

Protein purification 

E. coli BL21 (DE3) bacteria expressing the wild type CueR from the pET21a-CueR 

expression vector were first grown in 50 ml LB/Amp+ medium (including 0.1 mg/ml 

ampicillin at final concentration) at 37 °C for ~ 4 hours until OD600 = 0.6 – 1.0 was reached. 

This pre-culture was sedimented by centrifugation at 4 °C and 18000 × g for 10 min. The cells 

were re-suspended in 50 ml fresh LB/Amp+ medium, and 6.5 ml of this culture was used to 

inoculate 650 ml LB/Amp+ medium. When OD600 of 0.4 – 0.6 was attained, the expression of 

CueR was induced by the addition of IPTG to a final concentration of 0.1 mM. The cultures 

were incubated overnight at 20 °C to avoid aggregation otherwise observed at 37 °C. The 

cells were harvested by centrifugation at 4 °C and then suspended in 20 mM Tris/HCl buffer, 

pH 7.5 to a total volume of 40 mL. Na2S2O4 was added to the sample before and after cell 

lysis to a final concentration of 2 mM. The cells were lysed by sonication and the extract was 

centrifuged at 4 °C and 18000 × g for 20 min. Nucleic acids in the supernatant were digested 

at RT for 1.5 hours in the presence of DNase I (25 µg/mL) and MgCl2 (2 mM). The sample 

was diluted with 20 mM Tris/HCl, pH 7.5 to a conductivity of 2.3 mS/cm and filtered through 

a 0.45 µm GHP Acrodisc ® GF 25 mm Syringe Filter (Life Sciences). 

 After the preparatory procedures, the CuerR protein was purified in four 

chromatographic steps (Fig. 2) in the order of anion exchange, affinity chromatography, a 

second anion exchange and a finally gel filtration. Between each purification step the pooled 

fractions were ultrafiltrated three times in a Millipore 5124 Amicon Stirred Cell Model 8400, 

400 mL (N2 gas, PLBC 3000 membrane) with the binding buffer used during the following 

purification step. 

First, the filtered solution was loaded onto a HiLoad Sepharose Fast Flow Q 16/10 

column, which had been equilibrated with 5 column volume (CV) of 20 mM Tris/HCl, pH 7.5 

(Buffer A). The bound proteins were eluted with a linear gradient of 20 mM Tris/HCl, 1M 

NaCl, pH 7.5 (Buffer B) from 15 % to 60 % in 6 CV. The CueR containing fractions were 

collected and diluted with 20 mM Tris/HCl, pH 7.5 to a conductivity of 7 mS/cm. 
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In the second step the sample was filtered and loaded onto a HiPerp Heparin FF 16/10 

column, preequilibrated with a 20 mM Tris/HCl, 50 mM NaCl, pH 7.5 buffer. The bound 

protein was eluted with a linear gradient of 20 mM Tris/HCl, 1 M NaCl, pH 7.5 from 0 % to 

50 % in 10 CV. 

 

Fig. 2 – near here  

 

Following affinity chromatography, the fractions containing CueR were pooled and 

diluted 3 times with 20 mM Tris/HCl, pH 7.5. The ultrafiltered sample was loaded onto a 

Source 30 Q 16/13 column, preequilibrated with 5 CV of 20 mM Tris/HCl, pH 7.5. The 

bound protein was eluted with linear gradient of 20 mM Tris/HCl, 1M NaCl, pH 7.0 from 0 % 

to 60 % in 6 CV. The CueR fractions were collected and filtered again. 

Finally, the sample was loaded onto a HiLoad Superdex 75 26/60 column, 

preequilibrated with a buffer required for the subsequent application (Tris or HEPES 

containing also 1 mM dithiothreitol (DTT) as reducing agents). Proteins were eluted with 

isocratic elution and then concentrated by ultrafiltration. Collection of CueR is not 

recommended in NH4Ac buffers (pH 7.0) since aggregation of the protein was observed in 

this buffer. 

Protein samples obtained during the purification were analyzed by standard SDS-

PAGE gel electrophoresis [19] using Any kD™ Mini-PROTEAN®TGX™ (Bio-Rad) gels and 

Coomassie staining. 

 

Protein identification  

Proteins were identified by peptide mass fingerprint analysis (see details in the 

Supplementary Material), carried out with a MALDI-TOF mass spectrometer (Bruker, Reflex 

III) Protein bands were cut out from the SDS-PAGE gel, and sliced into small pieces. The 

samples were reduced with DTT, alkylated with iodoacetamide and digested with trypsin at 

37 °C for 4 hours. Extracted tryptic peptides were spotted onto the MALDI target plate using 

2,5-Dihydroxybenzoic acid (DHB) as a matrix and measured in positive reflectron mode. 

Detected peptide masses were subjected to database search against the Swissprot protein 

database on our in-house Mascot (Version: 2.2.07, Matrix Science) search engine. 

 

 

Analysis of the purified protein 
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Intact protein analysis were performed on an LTQ-Orbitrap Elite (Thermo) mass 

spectrometer coupled with a TriVersa NanoMate (Advion) chip-based electrospray ionsource. 

All the masses were measured in the Orbitrap in positive ion mode with the highest resolution 

(R = 240 000 at 400 m/z). For the top-down analysis ion-trap CID fragmentation was carried 

out in order to prevent multiple fragmentations and allow for the detection of the possible 

disulphide bridges (see Scheme 1). 

 

Scheme 1 – near here 

 

Circular Dichroism spectroscopy 

Circular dichroism spectra were recorded on a Jasco J-815 spectropolarimeter. 

Camphor-sulfonic acid served as a calibration material for the instrument. All spectra were 

recorded with 1 nm steps and a dwell time of 2 s per step, using a 0.2 mm quartz cell 

(SUPRASIL, Hellma GmbH, Germany), in the wavelength range of 180-260 nm. The protein 

was dissolved in 5 mM HEPES, pH = 7.7 buffer yielding cprotein = 2.3×10–5 M concentration. 

The raw spectra were baseline-corrected with the water spectrum. 

 

Electrophoretic gel mobility shift assay 

The DNA binding capability of the CueR was evidenced by electrophoretic gel 

mobility shift assay (EMSA). The volume of the protein-DNA reaction mixture was 5 µl by 

mixing 1 µl 50 µM DNA solution (in 20 mM Tris/HClO4, 0.1 mM NaClO4, pH 8.0 buffer) 

with 4 µl 100 µM Protein solution (in 20 mM Tris/HCl, 1 mM DTT, pH 7.5 buffer). After 4 

hours incubation at 37 °C this solution was mixed with 1 µl 6 × Loading Dye (10 mM Tris-

HCl, pH 7.6, 0.03% bromophenol blue, 0.03% xylene cyanol FF, 60% glycerol, 60 mM 

EDTA - Thermo Fischer Scientific) to load it onto 2% (2.0 g/100mL) agarose gel and then 

run for 30 minutes applying 100 V. After the electrophoresis, the gel was submerged into 1 

µg/ml ethidium bromide solution for 20 min, and washed two times with water for 10 min. A 

35 bp long PcopA promoter sequence was applied as a specific dsDNA: 5’-

AAAGGTTAAACCTTCCAGCAAGGGGAAGGTCAAGA-3’, while the sequence of the 35 

bp non-specific DNA was 5’-GCTGTACATATCGGTAGATTTCGATCGGTAGATGA-3’. 

 

Results and discussion 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 8

Difficulties encountered during the purification process of CueR and their solutions 

Our aim was to obtain the wild-type CueR without any affinity tag, which is 

indispensable for further experiments on the metal ion binding selectivity of the protein. CueR 

is made up of 135 amino acids. The average molecular weight of the apo-protein is 15235.1 

Da, and the theoretical pI is 5.72. This would allow for applying cation exchange at pH 3.0 

being a great advantage in the purification process of an air-sensitive protein. The pKa of 

cysteine thiols is ca. 8.4 [21]. A lower pH ensuring the protonated state of cysteines should 

decelerate the oxidation leading to the formation of intra- and/or intermolecular disulfide 

bonds and thus, to the potential formation of polymeric aggregates. However, it turned out 

that CueR in its highly positively charged form under acidic condition binds tightly to the 

negatively charged DNA being another reason for precipitation. Streptomycin sulfate, a water 

soluble antibiotic binding to the bacterial ribosome, is a widely used agent to precipitate 

nucleic acids. In our experiment streptomycin sulfate caused not only the removal of nucleic 

acids, but most of the CueR protein disappeared from the solution, too (data not shown). This 

necessitated a change of the purification strategy. 

In order to perform anion exchange the increase of the pH was required. Taking into 

account the acid-base properties of the cysteine thiol groups, pH = 7.5 was chosen for this 

procedure. Na2S2O4 was added to the samples before and after the lysis of cells to prevent the 

oxidation of CueR. Anion exchange alone was not enough to obtain an adequately purified 

CueR (see later in Fig. 6, lane 2). Therefore, the samples were loaded on a gel filtration 

column, preceded by a concentration step. However, precipitation was observed during the 

ultrafiltration step (data not shown). This experiment was repeated in the presence of DTT as 

a reducing agent and argon-flushed buffers but the precipitation could not be avoided. The 

precipitated proteins were analyzed with sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) showing two clear bands on the gel: a ~ 15 kDa size protein 

expected to be CueR, and an unknown protein with a size of ~ 45 kDa (Fig. 3). The latter 

protein appeared in all fractions of the previous purification steps (even in gel filtration 

experiment separating the molecules based on their size) together with the target CueR 

molecule. 

 

Fig. 3 – near here 

 

The two bands were cut from the gel and analyzed with peptide mass fingerprinting. 

As a result of this procedure the 15 and 45 kDa proteins were identified as the CueR 
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(CUER_ECOLI) and an Elongation factor of E. coli (EFTU1_ECOLI), respectively. The most 

intense peaks of the mass spectra obtained from the bottom and upper protein band matched 

to CueR with 44 %, and to the Elongation factor with 58 % sequence coverage, respectively. 

CueR co-precipitated with another nucleic acid binding protein, an elongation factor, 

suggesting that CueR interacted with this elongation factor through DNA. Therefore, we 

expected that CueR precipitation might have been prevented by digesting DNA with DNaseI 

enzyme before the first chromatographic step. Indeed, CueR precipitation was not observed in 

further downstream anion exchange and gel filtration purification steps after digesting DNA 

with DNaseI. However, the purity of the CueR containing fractions collected from the gel 

filtration column was found to be insufficient (data not shown). 

In order to achieve better separation, we started a new purification procedure by 

loading the DNaseI digested mixture directly onto an anion exchange column. After this step 

affinity chromatography purification by a Heparin column and a subsequent anion exchange 

were introduced. The glycosaminoglycan heparin mimics the polyanionic structure of nucleic 

acids. Consequently, nucleic acid binding proteins, such as CueR show a strong affinity to 

heparin, too. One may notice that heparin carries negative charges, and thus it can also work 

as a cation exchange column. However, in our system the positively charged proteins were 

removed in the flow-through fraction of the preceding anion exchange step. Anion exchange 

was introduced as the third chromatographic step in the protocol. This was necessary because 

a ~ 31 kDa protein contamination appeared in the collected fractions, in addition to CueR, 

when gel filtration was applied directly after affinity chromatography (Fig. 4).  

 

Fig. 4 – near here 

 

The separation of CueR from the ~ 31 kDa protein was successful in the purification process 

complemented with this second anion exchange, introduced between the affinity purification 

and gel filtration steps. A Source 30 Q 16/13 column was selected, with a higher resolution as 

compared to that of Sepharose FF. The anion exchange at this step was performed at pH = 7.0 

(Fig. 5C). The final gel filtration produced a single well separated peak (Fig. 5D). 

In summary, pure CueR fractions were obtained in the four-step chromatographic 

procedure (Fig. 5), preceded by the digestion of the DNA, as it was reflected by the SDS-

PAGE analysis (Table 1, Fig. 6). The average yield was 4 mg protein per 1 L culture. 

 

Table 1 – near here 
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Fig. 5 – near here 

 

Fig. 6 – near here 

 

Analysis of the integrity of the purified protein 

 The monoisotopic molecular mass of the singly charged (MH+) intact CueR was 

determined as 15225.5 Da by deconvolution of the mass spectrum. This value is in a good 

agreement with the theoretically calculated protonated monoisotopic mass of 15226.6 Da. In 

order to investigate the oxidation status of the cysteine residues, a collision-induced 

dissociation (CID) was performed. The ion at 897 m/z (z = 17) was chosen for fragmentation 

in the ion trap. The most abundant fragment peak at 789.66 m/z (z = 3) was further 

fragmented and identified as the C-terminal PGDDSADCPIIENLSGCCHHRAG part of the 

protein (Fig. 7). Analyzing the MS3 spectrum showed that the majority of the peaks 

corresponding to sequences containing various number of Cys residues e.g. the y10 

[LSGCCHHRAG]+, y7: [CCHHRAG]+ and y6: [CHHRAG]+ display masses expected from 

the reduced forms. Signals of fragments with a disulfide bridge typically between Cys129 and 

Cys130 represent only a small fraction of the CueR molecules. The fact that during ion-trap 

CID experiment the protein was broken between Cys112 and Pro113 indicates that Cys112 is 

not linked to the other Cys residue (Cys120) of the metal ion binding loop through an 

intramolecular disulfide bridge. All in all, from the MS3 experiment we have a clear evidence 

that all of the four Cys residues can be kept in their reduced form in the large majority of the 

protein molecules. 

 

Fig. 7 – near here 

 

Characterization of the purified CueR 

The solution structure of the protein was tested by CD spectroscopy. The recorded 

spectrum (Fig. 8) is characteristic for proteins that are rich in α-helices, in agreement with the 

crystal stuctures of the metal-bound forms of CueR (PDB id: 1Q05, 1Q06, 1Q07 [11]). The 

evaluation of the CD spectra by BeStSel program yielded ~ 43% α-helical content [22]. 

 

Fig. 8 – near here 
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The electrophoretic mobility shift assay (EMSA) clearly shows that the specific 35 bp 

long DNA fragment (the PcopA promoter region of the regulated copA gene) is shifted in the 

gel in the presence of the protein (Fig. 9). Similar effect was not observed with the non-

specific DNA. This undoubtedly verifies the proper folding of the CueR, which functions as a 

specific DNA binding protein recognizing the promoter sequence. 

 
Fig. 9 – near here 

 
Conclusion 

 

 In this work, we described an alternative purification strategy for a cysteine containing 

nucleic acid binding protein, the copper-efflux regulator CueR. In a previously published 

method, based on the purification protocol of a related MerR family member protein ZntR, 

the proteins were precipitated before the chromatographic purification. Such steps often lead 

to a significant loss of proteins, and the re-folding may also be problematic. Consequently, 

instead of the precipitation step, we removed the nucleic acids by enzymatic digestion 

followed by a multi-step chromatographic procedure to achieve a proper protein separation. 

 This four-step purification method resulted in CueR protein samples of high purity 

(Table 1) with an the average yield of 4 mg protein from 1 L culture. It is worth mentioning 

that the yield can be increased and the process can be shortened by the elimination of the 

second anion exchange step, if the very high purity of the protein is not crucial.  
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Table 1: Purity of CueR after the consecutive steps of the purification as estimated from 

SDS-PAGE analysis. 

 

Step Purity (%) 

Crude extract 1 

Nucleic acid digestion 1 

Sepharose column (pooled peak) 20 

Heparin column (pooled peak) 80 

Source column (pooled peak) 95 

Sephadex column (pooled peak) 99 
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Caption of Scheme and Figures 

 

Scheme 1: During the CID experiments, the peptides are fragmented at the amide bonds 

along the backbone, generating b- and y-type fragment ions [20]. 

 

 

Fig. 1: The crystal structure and the amino acid sequence of the CuI-binding CueR (PDB id: 

1Q05 [11]). Gray-scale coding applied for the various domains: the DNA-binding domains 

are marked with white, dimerization helices with light grey, metal-binding domains with dark 

grey and CuI-ions with black spheres. (The sequence of a fragment with unresolved structure 

is italicized.) 

 

Fig. 2: Flow chart of the four-step chromatographic purification protocol. 

 

Fig. 3: SDS-PAGE image of the precipitated proteins with the molecular weight standard 

given in kDa. 

 

Fig. 4: Chromatogram of gel filtration and SDS-PAGE analysis of the combined and 

concentrated CueR containing fractions obtained in a procedure without performing a second 

anion exchange between the affinity chromatography and gel filtration steps. 

 

Fig. 5: Representative chromatograms of the various purification steps (dotted lines denote 

the collected fractions). The dashed lines show the percentage of the applied, high ionic 

strength buffer during the elution. A: first anion exchange on a Sepharose FF 16/10 column; 

B: affinity purification on a Heparin FF 16/10; C: second anion exchange on Source 30 Q 

16/13; D: gel filtration on HiLoad Superdex 75 26/600 with isocratic elution. 

 

Fig. 6: SDS-PAGE analysis peformed at the various stages of the purification. 

M: molecular weight standard given in kDa; 1: supernatant, 2: sample after the first anion 

exchange; 3: sample after affinity purification; 4: sample after the second anion exchange;5: 

sample after gel filtration; 6: final concentrated sample. 
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Fig. 7: MS3 CID spectrum of CueR showing fragments of 

[PGDDSADCPIIENLSGCCHHRAG]3+ from the C-terminal part of the protein. The expected 

m/z values calculated by Protein Prospector program are shown in the table. Identified 

fragments from the spectrum are highlighted in bold and italic. 

 

Fig. 8: CD spectrum of CueR in 5 mM HEPES buffer recorded in a 0.2 mm quartz cell. 

 

Fig. 9: Gel mobility shift assay with CueR and 35 bp specific and non-specific DNA 

fragments. Lane 1 and 6 contain the 100 bp DNA ladder as marker. The free specific and non-

specific DNA samples are in lanes 2 and 3 respectively. Lane 4 shows the effect of CueR on 

the specific DNA while lane 5 represents the effect of CueR on the non-specific DNA.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 

- Bacterial transcription factor CueR was expressed and purified 

- DNA content of the lysed cells were removed by enzymatic digestion 

- The four step chromatographic procedure yielded the pure metalloregulatory protein 

- CD spectrum of CueR is characteristic for proteins with high α-helical content 

- Functionality of the purified protein was proven by gel mobility shift assay  

 


