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Abstract

Peroxisome Proliferator-Activated Receptor-Gamma (PPARγ) Coactivator-1 Alpha (PGC-1α)

is  involved  in  the  regulation  of  mitochondrial  biogenesis,  respiration  and  adaptive

thermogenesis. The full-length PGC-1α (FL-PGC-1α) comprises multiple functional domains

interacting with several transcriptional regulatory factors such as nuclear respiratory factors,

estrogen-related receptors and PPARs; however, a number of PGC-1α splice variants have

also been reported recently. In this study, we examined the expression levels of FL-PGC-1α

and N-truncated PGC-1α  (NT-PGC-1α), a shorter  but functionally active splice variant  of

PGC-1α protein, in N171-82Q transgenic and 3-nitropropionic acid-induced murine model of

Huntington’s disease (HD). The expression levels were determined by RT-PCR in three brain

areas (striatum, cortex and cerebellum) in three age groups (8, 12 and 16 weeks). Besides

recapitulating prior findings that NT-PGC-1α is preferentially increased in 16 weeks of age in

transgenic HD animals, we detected age-dependent alterations in both models, including a

cerebellum-predominant  upregulation  of  both  PGC-1α  variants  in  transgenic  mice,  and  a

striatum-predominant upregulation of both PGC-1α variants after acute 3-nitropropionic acid

intoxication.  The possible  relevance  of this  expression pattern is  discussed.  Based on our

results,  we  assume  that  increased  expression  of  PGC-1α  may  serve  as  a  compensatory

mechanism in  response  to  mitochondrial  damage  in  transgenic  and  toxin  models  of  HD,

which may be of therapeutic relevance.

Keywords: PGC-1α, NT-PGC-1α, FL-PGC-1α, Huntington’s disease, 3-nitropropionic acid
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Introduction

Neurodegenerative  diseases  comprise  a  heterogeneous  group  of  neurological  disorders,

characterized  by  a  relatively  selective  damage  of  specific  regions  of  the  central  nervous

system. Mitochondrial  dysfunction has been implicated in the pathogenesis of all  of these

disorders, including Huntington’s disease . This is well underlined by the fact that there are

several mitochondrial toxins, including the irreversible complex II inhibitor 3-nitropropionic

acid (3-NP) for HD, which can be applied for the modelling of neuronal damage.

In  respect  of  the  major  regulators  of  mitochondrial  functioning,  Peroxisome

Proliferator-Activated Receptor-Gamma (PPARγ) Coactivator-1 Alpha (PGC-1α) is assumed

to  be  a  key  regulator  of  mitochondrial  biogenesis,  respiration,  energy  homeostasis  and

adaptive  thermogenesis  . The  human  PGC-1α  gene  (reference  gene)  is  located  on

chromosome 4p15.2  (chromosome 5  in  mice)  and encodes  a  full-length  protein  (FL-

PGC-1α) containing 798 (human) or 797 amino acid (mouse).

The PGC-1α protein has a complex structure with multiple domains, which enable the

interaction with several transcriptional regulatory factors, such as nuclear respiratory factors

(NRFs), estrogen-related receptors (ERRs) and PPARs . The N-terminal domain of the PGC-

1α protein mediates interactions with nuclear receptors (NRs) and regulates the transcriptional

activity, whereas the central and C-terminal domains mediate interactions with NRFs, PPARγ

and FOXO1 . The activation of NRFs leads to the elevated expression of nuclear-encoded

mitochondrial respiratory complex subunits and several mitochondrial factors, which control

the mitochondrial DNA transcription; furthermore, the PGC-1α able to regulate the fatty acid

oxidation via the induction of PPARγ . 
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Besides  the  FL-PGC-1α,  several  PGC-1α isoforms  have  been  presented  recently  .

Among  isoforms,  the  N-truncated  PGC-1α  (NT-PGC-1α)  is  a  major  one,  which  is

considerably shorter (267 amino acids) than FL-PGC-1α, but functionally active. NT-PGC-1α

develops via an alternative 3’ splicing between exons 6 and 7 that introduces an in-frame stop

codon  into  PGC-1α mRNA.  This  protein  retains  the  N-terminal  transcriptional  activation

domains but lacks all domains within 268-797 amino acid of the FL-PGC-1α . Beside these

two  major  isoforms,  novel  tissue-specific  PGC-1α isoforms  have  been  described

recently . 

The role of PGC-1α  system in neurodegenerative disorders including HD has been

reported both in human patients and in animal models . HD is an inherited neurodegenerative

disease caused by the expansion of CAG trinucleotide repeat that encodes the polyglutamine

region in the huntingtin protein. Transcriptional dysregulation, impaired energy metabolism

and increased oxidative stress have all been implicated in HD pathogenesis . In addition, the

interaction of mutant huntingtin with PGC-1α has been demonstrated in number of studies; in

particular, mutant huntingtin is able to disrupt proper mitochondrial functioning via inhibiting

the expression  and/or influencing the activity of PGC-1α protein . 

Accordingly, Chaturvedi et al. found significant reductions in the functioning of PGC-

1α and its downstream genes in myoblasts from the skeletal muscle of HD transgenic mice

and in muscle biopsy samples from HD patients . Previously,  Cui et al. demonstrated that

PGC-1α mRNA expression is significantly downregulated in HD striatal cells and tissues .

Furthermore, the reduction in PGC-1α mRNA level was demonstrated in post-mortem HD

brain tissues . All of these studies examined only the potential role of FL-PGC-1α expression

in HD. Johri  et  al.  were the first  to demonstrate  that  the expression level of NT-PGC-1α

protein is also altered in transgenic murine models of HD (including the N171-82Q transgenic

mice), as well as in human HD brain tissues and in a striatal HD cell line. They found that the
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NT-PGC-1α protein  is  depleted  in  human  HD myoblasts  and  mouse  Q111  striatal  cells.

Contrary, the level of this protein was decreased in human brains with early HD stages, but

was strongly increased in advanced stages of HD. Furthermore, they demonstrated that the

NT-PGC-1α protein was upregulated in the striatum of older N171-82Q and R6/2 HD mice

compared to younger animals, but  the NT-PGC-1α level was measured only in the striatum

and  not  in  other  brain  regions  . Although  the  PGC-1α  level  was  investigated  in  several

transgenic model of HD, there is no data about its mRNA levels in 3-NP induced HD mouse

model.

The aim of this study was to investigate the expression levels of FL-PGC-1α and NT-

PGC-1α in the striatum, cortex and the cerebellum of N171-82Q transgenic mice and in the

respective brain regions of the 3-NP-induced HD mice in three age groups. 

Materials and Methods

Animals

C57Bl/6 mice (8, 12 and 16 weeks old; male) and N171-82Q mice (8, 12 and 16 weeks old,

males and females equally distributed in each groups) were involved in this study. The latter

animal strain was originally obtained from Jackson Labs (Jackson Laboratories, USA).  The

symptoms of  N171-82Q mice  begin  to  develop at  8  weeks  of  age.  The gait  becomes

abnormal, tremor, hypokinesia and reduced locomotor activity evolve. The body weight

becomes progressively decreased, and the animals die at an average age of 110-120 days.

The animals were housed in cages under standard conditions with 12-12 h light-dark cycle

and free access to  food and water.  The experiments  were carried  out  in accordance  with

European  Communities  Council  Directive  (86/609/EEC)  and  were  approved  by the  local

animal care committee. 

Treatment and sample handling
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3-NP (Sigma Chemical, USA) was dissolved in phosphate-buffered saline (PBS; pH adjusted

to 7.4) and was administered intraperitoneally (i.p.) to male C57Bl/6 animals (the reason for

the exclusive application of male mice for 3-NP treatment was the fact that female mice are

considerably  resistant  to  toxin  treatment  with  a  relatively  large  variance).  Animals  of  a

particular age were randomly divided into four groups (n=6-7 in each group). The first group

received a single i.p. injection of 100 mg/kg body weight 3-NP (acute treatment), the second

one received 50 mg/kg body weight i.p. injection twice a day for 5 days (subacute treatment).

The third and fourth groups served as the respective control (ctrl) groups, and were injected

according to the above-detailed treatment regimen with the vehicle.

Ninety minutes after the last injection, the C57Bl/6 animals were deeply anesthetized with

isoflurane (Forane; Abott Laboratories Hungary Ltd., Budapest, Hungary) and immediately

perfused transcardially with artificial cerebrospinal fluid (composition in mM: 122 NaCl, 3

KCl, 1 Na2SO4, 1.25 KH2PO4, 10 D-glucose, 1 MgCl*6H2O, 2 CaCl2*2H2O, 6 NaHCO3) for 2

min with a flow rate of 10 ml/min by an automated peristaltic  perfusor. The brains were

rapidly removed on ice and immediately halved at the midline.  The right hemisphere was

dissected on ice, and the striatum, cortex and cerebellum were stored at -80 °C until the RT-

PCR analysis. The left hemisphere was postfixed in 4 w/v% paraformaldehyde overnight, and

then transmitted into glycerol  (10 v/v%) until  immunohistochemical  sample  processing in

case of subacute treatment regimen.

In case of transgenic (tg; n=6-7 in each group) N171-82Q mice and the corresponding wild-

type (wt; n=6-7 in each group) counterparts, both hemispheres were dissected into the proper

brain regions and were stored at -80 °C until the RT-PCR analysis.

RT-PCR analysis
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For RT-PCR analysis,  total  RNA was isolated from striatum, cortex and cerebellum with

Trizol according to the manufacturer’s protocol. RNA concentrations were determined using

MaestroNano  spectrophotometer,  and  the  integrity  of  RNA  was  confirmed  by  gel

electrophoresis using 1% agarose gel. cDNA was synthesized from 1 µg total RNA with

random  hexamer  primers  using  RevertAid  First  Strand  cDNA  Synthesis  Kit  (Thermo

Scientific, USA). cDNA were kept at -20 °C until further use.

Real-time  PCR was performed  on CFX 96 Real  Time  System (Bio-Rad,  USA) to detect

changes in mRNA expression, using various primer pairs at a final volume of 20 µl. Thermal

cycling conditions were 95 °C for 2 min, followed by 40 cycles of 95 °C for 10 s and 60 °C

for 30 s.  The relative mRNA level was calculated by the 2-∆∆Ct method . A pre-optimized

primer  and  probe  assay  for  18S  rRNA  was  used  as  an  endogenous  control  (Applied

Biosystems, USA).

Immunohistochemistry

After  postfixation  in  paraformaldehyde  and cryoprotection  in  glycerol,  30-µm-thick serial

sections were cut to obtain consecutive sections from the entire striatum. The sections were

collected into 12 wells consecutively, i.e. the distance between the studied sections was 360

µm. The free-floating sections were rinsed in PBS and transferred in methanol, containing 0.3

w/v% H2O2 for 30 min. After washing in PBS containing 1 v/v% Triton-X 100 (PBS-T) and

blocking  for  1  h  with  PBS-T containing  2  v/v% normal  horse  serum,  the  sections  were

incubated  for  one night  at  room temperature  in  PBS-T containing  the anti-NeuN primary

antibody at 1:10,000 dilution (Millipore,  USA). After rinsing in PBS-T, the sections were

incubated in biotinylated anti-mouse IgG for 2 h, followed by the application of avidin-biotin-

peroxidase  complex  in  PBS-T  for  2  h,  and  visualized  with  nickel  ammonium  sulphate-

intensified 3,3’-diaminobenzidine (Sigma-Aldrich, USA). The sections were dried overnight
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on  glass  slides,  and  coverslipped  using  DPX  as  mounting  medium.  The  sections  were

analysed  in  a  Zeiss  Axio  Imager  M2  Upright  Microscope  (Carl  Zeiss  MicroImaging,

Germany)  supplied  with  an  AxioCam  MRC  camera.  Photographs  were  taken  at  10x

magnification. For the determination of NeuN density in the striatum, the MosaiX program

feature of  AxioVision program was used.  Briefly,  we measured  the density  of the whole

striatum and the corresponding corpus callosum in the consecutive sections and substracted

the values from each other to normalize the method for probable different background stain.

After adjusting the differences for the parameters of the corresponding striatum, we calculated

the average density/mm2 values. Thereafter, we compared these derived values in ctrl and 3-

NP-treated animals.

Statistics

All statistical  analyses were performed with the SPSS Statistics 17.0 software (SPSS Inc.,

USA). The normality of data  was checked by Shapiro-Wilk W test.  As most  of our data

groups  showed  non-Gaussian  distribution  and/or  displayed  significant  difference  in  the

homogeneity of variance (checked with the Levene’s test), we used non-parametric statistics

(Mann-Whitney  U  test)  for  the  comparison  of  the  relative  levels  of  expression  between

groups.  Due  to  multiple  comparisons,  in  cases  of  either  FL-PGC-1α or  NT-PGC-1α the

necessary corrections were done on p values. After corrections, a p < 0.05 value was regarded

as significant. We calculated the level of gene expression of all brain areas in all age groups

relative to the level of FL-PGC-1α gene expression in 8-week-old wt/ctrl striatum. The data

were plotted and expressed as median and interquartile range. 

Since  the  data  obtained  from  the  quantitative  analysis  of  immunohistochemical

patterns showed Gaussian distribution, we used the independent  t  test for the comparison of

ctrl and 3-NP treated groups in this respect. Data are presented as means ± SEM.
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Results

HD transgenic mice

There were no detectable changes in the FL-PGC-1α or NT-PGC-1α levels of wt animals with

aging.  Furthermore,  we could  not  detect  differences  in  PGC-1α levels  between male  and

female mice in tg/wt groups. The NT-PGC-1α expression level was approximately 30% of the

mRNA level  of FL-PGC-1α in all  brain regions of  wt animals.  Our results  demonstrated

significantly reduced FL-PGC-1α expression in the striatum (0.59 (0.50–0.77); p=0.039) and

cortex  (0.83;  (0.56–0.90);  p=0.009)  of  8-week-old  tg  mice compared  to  the  values  of  wt

animals  (striatum:  0.96  (0.77–1.29);  cortex:  1.49  (1.33–1.77)),  but  we  could  not  detect

significant changes in these brain regions of older mice (Fig. 1.A, C). The FL-PGC-1α mRNA

showed a tendency to  increase  in  the  cerebellum of  8-week-old tg  mice  compared to  wt

animals, which changes became significant in 12-week-old (wt: 0.23 (0.20–0.30); tg: 0.82;

(0.58–0.89); p=0.004) and 16-week-old tg mice (wt: 0.22 (0.15–0.27); tg: 0.74 (0.68–0.82);

p=0.018,  Fig.  1.E).  NT-PGC-1α  expression  showed  a  mild  tendency  of  decrease  in  the

striatum and cortex of 8-week-old tg mice, but it was significantly upregulated in the striatum

(wt: 0.25 (0.23–0.33); tg: 0.76 (0.53–0.86); p=0.018)  and cortex of 16-week-old tg animals

(wt: 0.45 (0.30–0.52); tg: 1.15 (0.89–1.33); p=0.018, Fig. 1.B, D). In the cerebellum, NT-

PGC-1α expression was, however, significantly increased as early as 8 weeks of age in tg

mice (0.18 (0.17–0.24); p=0.009) compared to wt animals (0.07 (0.07–0.13)). This difference

also  remained  significant  in  12-week-old  (wt:  0.06  (0.05–0.09);  tg:  0.37  (0.25–0.49);

p=0.004) and 16-week-old tg mice (wt: 0.06 (0.04–0.07); tg: 0.47 (0.42–0.57); p=0.018) (Fig.

1.F).
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Acute 3-NP treatment

After a single injection of 3-NP, the FL-PGC-1α expression had a tendency to be increased in

the striatum and cortex of all three age groups of C57Bl/6 mice,  which reached statistical

significance in the striatum of 16-week-old animals (ctrl: 1.04 (0.89-1.09); 3-NP: 1.37 (1.20-

1.76); p=0.036) and in the cortex of 12-week-old animals (ctrl: 1.10 (0.84-1.27); 3-NP: 1.67

(1.60-1.84); p=0.018) (Fig. 2.A, C), but not in other age groups. Contrarily, the alterations in

the  NT-PGC-1α  expression  were  significant  only  in  the  striatum  (Fig.  2.B),  where  its

expression was significantly greater in 3-NP-treated mice at 12 weeks of age (ctrl: 0.32 (0.26-

0.37); 3-NP: 0.62 (0.57-0.76); p=0.018) and 16 weeks of age (ctrl: 0.39 (0.36-0.41); 3-NP:

0.55 (0.51-0.65); p=0.036) compared to the respective ctrl animals.

We did not find differences in FL-PGC-1α and NT-PGC-1α levels in the cerebellum in either

group (Fig. 2.E, F).

Subacute 3-NP treatment

The subacute 3-NP regimen resulted in a significant reduction (28%, ctrl: 3414.9 ± 157.4; 3-

NP: 2443 ± 339.8; p=0.04) in the NeuN-related density values in the striatum of 3-NP-treated

mice  compared  to  ctrl  animals,  representing  the  toxin-induced  neuronal  damage

(Supplementary Fig. 1). After subacute 3-NP treatment,  however, no changes in the FL-

PGC-1α or NT-PGC-1α levels were demonstrated between ctrl and 3-NP-treated animals in

any brain area of any age group. (Fig. 3.A-F).
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Discussion

Although it  is  known that  an abnormal  trinucleotide  repeat  expansion leads  to  the

development of HD, the precise pathomechanism is still not fully understood. 

The use of transgenic murine models of HD enables to get a better insight into the

pathomechanism of  the  disease. The  pathogenic  process  shows  progression  in  transgenic

murine  models,  including  the  N171-82Q  strain.  However,  there  are  some  age-dependent

adaptive processes which may serve as protective tools to ameliorate the disease progression .

Jarabek et al. observed that N171-82Q mice adapt to NMDA receptor-mediated excitotoxicity

in  an  age-dependent  manner,  and  the  authors  concluded  that  N171-82Q mice  attempt  to

compensate for the progression of HD .

The involvement of mitochondrial dysfunction and the role of PGC-1α, which is a key

regulator of mitochondrial biogenesis and antioxidant response, have been demonstrated in

the pathogenesis of HD . In particular, alterations in the expression of FL- and NT-PGC-

1α protein in HD are the most well established . Notably, novel tissue-specific isoforms

transcribed from an alternative upstream promoter have also been described recently in

humans  ;  the  altered  expression of  which,  however,  have not  yet  been described  in

neurodegenerative diseases.

Supporting the  role  of  PGC-1α gene  in  HD,  it  has  also  been implicated as  a

candidate modifier gene in HD; indeed, a number of variations demonstrated modifying

effects on the age at onset (AO) . Among them, the  rs7665116 polymorphism has been

proven  to  have  significant  association  with  AO,  i.e.  its  presence  was  related  to  a

protective  effect  in  three  European  HD cohorts  .  However,  Ramus et  al.  could  not

confirm these results , which contradiction may be explained by the difference in the

genetic  backgrounds  of  the  different  populations  examined.  Furthermore,  certain
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haplotypes of a haplotype block where the promoter of novel PGC-1α isoforms is located

have also shown association with AO in HD .

In this study, we aimed to demonstrate the age- and brain region-related changes in the

mRNA expression of  FL-PGC-1α and one of its  main  splice  variants,  NT-PGC-1α,  in  a

transgenic  and  a  toxin-induced  murine  model  of  HD.  Alterations  of  these  two  main

isoforms  have  only  been  demonstrated  in  transgenic  HD  mice  at  the  protein  level,

whereas the role of PGC-1α system in 3-NP model of HD has not yet been addressed. 

Recent  studies  reported  male-specific  roles  of  PGC-1α  in  neurodegenerative

disorders . Notably, however, in our experiments, we could not detect any difference in

PGC-1α levels between genders either in N171-82Q tg mice or their wt counterparts,

therefore we were able to use pooled data in this case for further analyses. 

In the N171-82Q transgenic mouse model, we measured reduced FL-PGC-1α mRNA

levels in the striatum (the most affected region in HD) and the overlying cortex of 8-week-old

tg mice, which difference became normalized in older HD mice. This could represent an age-

dependent compensatory mechanism against the well-documented mitochondrial dysfunction

in this transgenic mouse model of HD . However, we could not detect a difference in FL-

PGC-1α mRNA expression between 8-week-old wt and tg mice in the cerebellum, which is

known to be a relatively resistant region to the degenerative changes in HD . Interestingly,

however,  in  older  animals  the  expression  level  of  FL-PGC-1α  mRNA in  the  cerebellum

showed a remarkable increase. Considering the possible neuroprotective roles of PGC-1α in

HD  ,  this  cerebellum-predominant  potentially  compensatory  phenomenon  against

mitochondrial dysfunction-related energy deficit might be an important factor underlying the

relative  resistance  of  cerebellar  neurons  against  neurodegenerative  processes  in  HD.  This

would be in line with the finding of reactive astrogliosis indicative of neuronal degeneration
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in the cerebellar nuclei of FL-PGC-1α knockout mice, which is virtually absent in the striatum

and the cortex of these animals .

Although the FL form of PGC-1α is the major gene product, the NT-PGC-1α splice

variant  could  also  have  important  functions  in  terms  of  neurodegeneration.  The  PGC-1α

protein has a complex structure with multiple functional domains. The N-terminal domain of

the PGC-1α protein mediates interactions with nuclear receptors, regulates a proportion of the

PGC-1α-mediated  transcriptional  activity  and  contains  a  strong  activation  domain  .

Accordingly, the role of NT-PGC-1α has also been studied in HD pathogenesis . Johri et al.

found that NT-PGC-1α protein was upregulated in the striatum of 4-month-old N171-82Q HD

mice (and in 3-month-old R6/2 strain mice). They also studied the FL-PGC-1α level in the

striatum and  not  in  other  brain  regions.  In  addition  to  the  detection  of  a  rather  similar

elevation in NT-PGC-1α expression in the striatum of 16-week-old tg mice at the mRNA

level as Johri et al. observed at the protein level, we also observed this type of change in the

overlying  cortex.  Furthermore,  we detected  a  considerable  elevation  of  cerebellar  mRNA

expression  of  NT-PGC-1α  as  well,  in  a  very  similar  pattern  to  that  of  FL-PGC-1α.  The

background of this preferential increased expression of the NT variant is currently unknown;

however,  it  might  represent  an  important  shift  in  the  transcriptional  regulation  of

mitochondrial functions in HD, and implicate the potential role of the N-terminal domain-

regulated nuclear  receptors,  especially the known neuroprotective PPARs , as endogenous

compensatory mechanisms in HD.

Although the transgenic models have several undisputable advantages, the simplicity of the

application of mitochondrial toxin models of HD provide a rapid assessment tool, e.g. for the

screening  of  drug  effects.  Accordingly,  the  mitochondrial  toxin  3-NP  has  been  well

characterized as an experimental model of HD . This toxin inhibits mitochondrial complex II,

inducing a mitochondrial  dysfunction  which causes striatal  lesion .  A number of  studies
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demonstrated that female animals are considerably resistant to 3-NP toxin treatment .

Since the mechanism of this differential effect of the toxin is not fully understood, it

would be hard to distinguish if any difference between genders were due to CNS-specific

mechanisms or merely due to secondary effects of differential pharmacokinetics of the

toxin. Accordingly, since our aim was to examine the evoked effect of the toxin per se on

expression patterns, we considered female mice inapplicable for animal modelling of HD

in 3-NP experiments,  and only  male mice were involved.  We measured the PGC-1α

expression  levels  either  after  a  single  injection  of  3-NP or  after  its  application  in  a

subacute dosing regimen.

After a single injection of 3-NP, the FL-PGC-1α expression was consistently increased in all

three age groups in the striatum and cortex; however, it reached significance only in older

animals after strict statistical correction. On the other hand, the NT-PGC-1α expression was

increased significantly only in the striatum of older 3-NP-treated mice. We propose that this

acute elevation after a single mitochondrial stress event might be an important compensatory

response to acute energy deficit and/or oxidative stress due to 3-NP-induced mitochondrial

dysfunction. In  addition,  the  predominant  elevation  in  aged animals  may reflect  the  age-

dependent vulnerability of the striatum to oxidative stress due to 3-NP treatment , as a more

pronounced toxicity  might  evoke a  more  expressed  compensatory  response.  Interestingly,

however, we did not find any difference in the expression levels of PGC-1α in the cerebellum

of either  age group, which might  be underlied by the fact  that 3-NP is  a rather  selective

striatal neurotoxin, and only limited cell death and energy deficit is observed in other brain

regions .

Surprisingly, there were no differences in either the FL-PGC-1α or the NT-PGC-1α

mRNA levels between toxin-treated and control animals in the striatum (nor in other brain

regions) at any age group after subacute 3-NP treatment (a total of 10 injections within 5
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days). We suggest that this may be the result of a reduced neuronal adaptive capability of the

striatum due to the histologically verified neuronal damage.

Although 3-NP model is one of the most widely applied toxin model of HD, this

model  cannot mimic all  alterations  of  genetically  determined HD. Indeed,  3-NP is  a

mitochondrial toxin which inhibits complex II and causes preferential striatal cell death,

whereas in the transgenic model other brain regions are affected as well. We believe that

the findings that NT-PGC-1α expression is elevated only in the striatum but not in other

brain regions in the acute 3-NP model may represent this preferential effect of 3-NP in

comparison with the transgenic model.

Supported by the prior findings that PGC-1α-deficient neurons  have increased

sensitivity to mitochondrial toxicity  , our results suggest that upregulation of PGC-1α

system may represent and important compensatory mechanism against mitochondrial

dysfunction in HD. 

Conclusions

To our knowledge this is the first report on the alterations in the expression profile of the main

PGC-1α splice  variants  at  the  mRNA level  in  multiple  brain  regions  of  different  murine

models of HD. Besides recapitulating the prior findings of Johri et al. that NT-PGC-1α at the

protein level is increased in 16 weeks of age in transgenic HD animals,  we detected age-

dependent  alterations  in  the  PGC-1α expression pattern  that  may correspond with known

predilections  of neurodegeneration in HD. Based on our results,  we suggest that  elevated

expression of  PGC-1α could be an important  tool  for  the  compensation  of  mitochondrial

damage in both transgenic and toxin models of HD. Although it is of question whether this

mechanism alone would be enough to ameliorate the neurodegenerative process, it may surely

serve as an important target for drug development in this currently incurable disease.

15



Acknowledgements

This  research  was  supported  by  TÁMOP-4.2.2.A-11/1/KONV-2012-0052,  MTA-SZTE

Neuroscience  Research  Group  and  Hungarian  Brain  Research  Program  –  Grant No.

KTIA_NAP_13-A_III/9. Furthermore,  this research was realized in the frames of TÁMOP

4.2.4.A/2-11-1-2012-0001  and  TÁMOP  4.2.4.  A/1-11-1-2012-0001  National  Excellence

Programs  –  Elaborating  and  operating  an  inland  student  and  researcher  personal  support

system.  The  projects  were  subsidized  by  the  European  Union  and  co-financed  by  the

European Social Fund.

Conflict of interest

The authors declare there is no conflict of interest.

References

Aleshin S, Reiser G (2013) Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, 
beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol 
Chem 394:1553-1570.

Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, 
Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions
produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181-4192.

Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to 
uncover physiopathological mechanisms underlying striatal degeneration in Huntington's 
disease. J Neurochem 95:1521-1540.

Browne SE, Beal MF (2004) The energetics of Huntington's disease. Neurochem Res 29:531-546.
Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella 

M, Sassone J, Ciammola A, Squitieri F, Beal MF (2009) Impaired PGC-1alpha function in 
muscle in Huntington's disease. Hum Mol Genet 18:3048-3065.

Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF (2010) Impairment of PGC-
1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of 
Huntington's disease following chronic energy deprivation. Hum Mol Genet 19:3190-3205.

Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP (2011) Localization of sequence variations 
in PGC-1alpha influence their modifying effect in Huntington disease. Mol Neurodegener 6:1.

16



Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of 
PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and 
neurodegeneration. Cell 127:59-69.

Damiano M, Diguet E, Malgorn C, D'Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D,
Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Deglon N, Beal MF, Brouillet E 
(2013) A role of mitochondrial complex II defects in genetic models of Huntington's disease 
expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22:3869-3882.

Eschbach J, Schwalenstocker B, Soyal SM, Bayer H, Wiesner D, Akimoto C, Nilsson AC, Birve A, Meyer 
T, Dupuis L, Danzer KM, Andersen PM, Witting A, Ludolph AC, Patsch W, Weydt P (2013) PGC-
1alpha is a male-specific disease modifier of human and experimental amyotrophic lateral 
sclerosis. Hum Mol Genet 22:3477-3484.

Felder TK, Soyal SM, Oberkofler H, Hahne P, Auer S, Weiss R, Gadermaier G, Miller K, Krempler F, 
Esterbauer H, Patsch W (2011) Characterization of novel peroxisome proliferator-activated 
receptor gamma coactivator-1alpha (PGC-1alpha) isoform in human liver. J Biol Chem 
286:42923-42936.

Jarabek BR, Yasuda RP, Wolfe BB (2004) Regulation of proteins affecting NMDA receptor-induced 
excitotoxicity in a Huntington's mouse model. Brain 127:505-516.

Johri A, Chandra A, Beal MF (2013) PGC-1alpha, mitochondrial dysfunction, and Huntington's disease.
Free Radic Biol Med 62:37-46.

Johri A, Starkov AA, Chandra A, Hennessey T, Sharma A, Orobello S, Squitieri F, Yang L, Beal MF 
(2011) Truncated peroxisome proliferator-activated receptor-gamma coactivator 1alpha 
splice variant is severely altered in Huntington's disease. Neurodegener Dis 8:496-503.

Kim GW, Chan PH (2001) Oxidative stress and neuronal DNA fragmentation mediate age-dependent 
vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum. 
Neurobiol Dis 8:114-126.

Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) 
Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol 
Genet 19:3919-3935.

Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 
30:145-151.

Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of 
transcription coactivators. Cell Metab 1:361-370.

Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative 
diseases. Nature 443:787-795.

Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009) Complex II inhibition by 3-NP 
causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-
dependent pathway. Cell Death Differ 16:899-909.

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative 
PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.

Martin E, Betuing S, Pages C, Cambon K, Auregan G, Deglon N, Roze E, Caboche J (2011) Mitogen- and
stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on 
chromatin remodeling at the PGC-1-alpha promoter. Hum Mol Genet 20:2422-2434.

McGill JK, Beal MF (2006) PGC-1alpha, a new therapeutic target in Huntington's disease? Cell 
127:465-468.

Nishino H, Nakajima K, Kumazaki M, Fukuda A, Muramatsu K, Deshpande SB, Inubushi T, Morikawa S,
Borlongan CV, Sanberg PR (1998) Estrogen protects against while testosterone exacerbates 
vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. 
Neurosci Res 30:303-312.

Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 
1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78-
90.

17



Ramos EM, Latourelle JC, Lee JH, Gillis T, Mysore JS, Squitieri F, Di Pardo A, Di Donato S, Hayden MR, 
Morrison PJ, Nance M, Ross CA, Margolis RL, Gomez-Tortosa E, Ayuso C, Suchowersky O, 
Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire 
MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Marder K, Gusella JF, Lee JM, 
Alonso I, Sequeiros J, Myers RH, Macdonald ME (2012) Population stratification may bias 
analysis of PGC-1alpha as a modifier of age at Huntington disease motor onset. Hum Genet 
131:1833-1840.

Rona-Voros K, Weydt P (2010) The role of PGC-1alpha in the pathogenesis of neurodegenerative 
disorders. Curr Drug Targets 11:1262-1269.

Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, 
Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-
1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 
151:1319-1331.

Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. 
Physiol Rev 88:611-638.

Soyal SM, Felder TK, Auer S, Hahne P, Oberkofler H, Witting A, Paulmichl M, Landwehrmeyer GB, 
Weydt P, Patsch W (2012) A greatly extended PPARGC1A genomic locus encodes several new
brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 
21:3461-3473.

St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon 
DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and 
neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397-408.

Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG (2013) 
Neuropathology of partial PGC-1alpha deficiency recapitulates features of mitochondrial 
encephalopathies but not of neurodegenerative diseases. Neurodegener Dis 12:177-188.

Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L (2009) PGC-1alpha as modifier of onset 
age in Huntington disease. Mol Neurodegener 4:10.

Tunez I, Collado JA, Medina FJ, Pena J, Del CMM, Jimena I, Franco F, Rueda I, Feijoo M, Muntane J, 
Montilla P (2006) 17 beta-Estradiol may affect vulnerability of striatum in a 3-nitropropionic 
acid-induced experimental model of Huntington's disease in ovariectomized rats. Neurochem
Int 48:367-373.

Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington's disease - neuropathology. Handb Clin 
Neurol 100:83-100.

Wenz T (2013) Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. 
Mitochondrion 13:134-142.

Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, 
Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, 
Schwartz MW, La Spada AR (2006) Thermoregulatory and metabolic defects in Huntington's 
disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. 
Cell Metab 4:349-362.

Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W 
(2009) The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease. Mol 
Neurodegener 4:3.

Weydt P, Soyal SM, Landwehrmeyer GB, Patsch W (2014) A single nucleotide polymorphism in the 
coding region of PGC-1alpha is a male-specific modifier of Huntington disease age-at-onset in
a large European cohort. BMC Neurol 14:1.

Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, 
Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW (2009) Alternative mRNA splicing 
produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem 284:32813-
32826.

18



19



Figure 1.

20



Figure 2.

21



Figure 3.

22



Fig. 1 Relative mRNA expression of FL-PGC-1α and NT-PGC-1α in the striatum, cortex and

the cerebellum of N171-82Q transgenic and respective wild-type mice in three age groups.

The  FL-PGC-1α  was  significantly  reduced  in  8-week-old  tg  striatum  and  cortex  (A,  C

respectively). In the cerebellum, FL-PGC-1α mRNA was significantly increased in 12-week-

old  and  16-week-old  tg  mice  (E).  The  NT-PGC-1α  was  significantly  upregulated  in  the

striatum and cortex of 16-week-old animals (B, D respectively). The NT-PGC-1α expression

was increased in all three age groups in the cerebellum (F). Values are plotted as medians and

interquartile range; *p<0.05, **p<0.01; tg transgenic, wt wild-type, w weeks.

Fig. 2 FL-PGC-1α and NT-PGC-1α levels in the striatum, cortex and the cerebellum in three

age  groups  of  mice  following  acute  3-NP  intoxication.  The  FL-PGC-1α  expression  was

significantly increased in the striatum of 16-week-old 3-NP treated mice and in the cortex of

12-week-old  3-NP treated  mice  (A,  C  respectively).  The  FL-PGC-1α  expression  did  not

change in the cerebellum of 3-NP treated mice (E). The NT-PGC-1α mRNA was significantly

upregulated in the 12-week-old and 16-week-old 3-NP treated mice striatum (B). In the cortex

and cerebellum of 3-NP treated mice there were no differences in the NT-PGC-1α mRNA

levels (D, F respectively). Values are plotted as medians and interquartile range; *p<0.05; ctrl

control, 3-NP 3-NP-treated, w weeks.

Fig. 3 Analysis of relative FL-PGC-1α and NT-PGC-1α mRNA expression of subacute 3-NP-

treated mice in three age groups. We measured the FL-PGC-1α level in the striatum (A),

cortex (C) and cerebellum (E) and the NT-PGC-1α levels in the striatum (B), cortex (D) and

cerebellum (F),  but  we could  not  detect  differences  between  ctrl  and 3-NP-treated  mice.

Values are  plotted  as  medians  and interquartile  range;  ctrl  control,  3-NP  3-NP-treated,  w

weeks.
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