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Abstract

Whereas migraine and neurodegenerative disorders have a high socioeconomic impact, their

therapeutic  management  has  not  been  fully  solved.  Their  pathomechanisms  are  not

completely understood, but glutamate-induced excitotoxicity, mitochondrial disturbances and

oxidative  stress  all  seem to  play  crucial  roles.  The overactivation  of  glutamate  receptors

contributes to the hyperexcitability observed in migraine and also to the neurodegenerative

process. The kynurenine pathway of the tryptophan metabolism produces the only known

endogenous N-methyl-D-aspartate receptor antagonist, kynurenic acid, which has been proven

in different preclinical studies to exert a neuroprotective effect. Influencing the kynurenine

pathway  might  be  beneficial  in  migraine  and  neurodegenerative  diseases,  and  in  the

normalization of glutamatergic neurotransmission and the prevention of excitotoxic neuronal

damage.  The  synthesis  of  kynurenic  acid  analogues  may  offer  a  valuable  tool  for  drug

development.
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Introduction

Brain disorders account for around 35% of the total burden of all diseases in Europe . The

WHO classifies  all  neurological,  neurosurgical  and psychiatric  disorders  in  this  category.

Among the neurological diseases, stress must be placed on the impact of neurodegenerative

disorders  (i.e.  Alzheimer’s  dementia  (AD),  Parkinson’s  disease  (PD)  and  Huntington’s

disease (HD)) and migraine. Migraine, as a primary headache disorder was ranked by a WHO

report as the 19th cause of disability worldwide, affecting 16% of the adult population . The

prevalence  of  dementia  in  Western  Europe  is  around  5.5%,  and  its  incidence  is  almost

9/100,000 . The most common neurodegenerative disorder is AD , which affects around 70%

of all dementia patients . PD has a lifetime risk of 2%, and overall prevalence of 1.5%, with

no gender difference . HD is a less common, autosomal dominantly inheritable disorder, but

the data indicate its rising prevalence, currently in the range 5.7-12.3/100,000 . 

In  spite  of  their  high  prevalence,  the  exact  pathomechanisms  of  these  neurodegenerative

disorders and migraine are still  not fully understood. However, there are several common

features  in  their  pathological  background,  including  glutamate  (Glu)  hyperexcitability  ,

mitochondrial impairment , oxidative stress  and neuroinflammation . As a consequence of the

lack of  a precise  understanding of their  pathomechanisms,  the therapeutic  approaches  are

mainly  symptomatic,  and  specific  disease-modifying  therapies  are  not  available.  The

kynurenine pathway (KP) of the tryptophan (Trp) metabolism produces both neurotoxic and

neuroprotective  metabolites.  Kynurenic  acid  (KYNA) is  the only known endogenous Glu

receptor  antagonist,  while  quinolinic  acid  (QUIN)  is  an  N-methyl-D-aspartate  (NMDA)

receptor  agonist.  The  KP has  additionally  been implicated  in  the  pathological  process  of

neurodegeneration and migraine , and increasing evidence is emerging on both preclinical and

clinical levels. Alterations in the balance of toxic and protective metabolites might lead to the

dominance of neurotoxic compounds, which can contribute to the excitotoxic process and to



neuroinflammation. Influencing the KP metabolism might offer a valuable therapeutic target

for the different neurological diseases. Kynurenine derivatives which are able to cross the

blood-brain barrier (BBB) are promising candidates for future drug development. This review

will focus on the role of Glu excitotoxicity and the KP in the pathomechanisms of migraine

and neurodegenerative diseases, and on the possible therapeutic options. 

The kynurenine pathway

The  metabolism  of  the  essential  aminoacid  Trp  has  two  main  routes:  the  well-known

serotonin pathway and the lesser-known KP  (Figure 1). This route is responsible for more

than 90% of the peripheral Trp degradation in mammals . 40% of the brain L-kynurenine (L-

KYN) is produced locally in the central nervous system (CNS), and 60% is taken up from the

blood .  The first,  rate-limiting  enzyme  of  the  KP is  indoleamine-2,3  dioxygenase  (IDO),

which forms the key intermediate, L-KYN. Here the pathway divides into two branches, and

results  either  in  the  synthesis  of  KYNA  or,  through  the  action  of  kynurenine  3-

monooxygenase  (KMO),  the  formation  of  3-hydroxy-kynurenine  (3-OH-KYN).  The

neuroprotective  KYNA  (4-hydroxyquinoline-2-carboxylic  acid)  is  mainly  produced  by

astrocytes  and neurones on the action of kynurenine aminotransferases (KATs), while the

neurotoxic metabolites are synthetised in the microglia . KYNA is a wide-spectrum antagonist

of  ionotropic  Glu  receptors  .  In  micromolar  concentrations,  it  antagonizes  the  NMDA

receptors by binding to the strychnine-insensitive glycine (Gly)-binding site, or with lower

affinity  to  the  Glu-binding  site  .  Importantly,  on  alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic  acid  receptors,  KYNA  is  a  Janus-faced  compound,  displaying  a

concentration-dependent dual effect: in nanomolar concentrations it is capable of facilitating

these  receptors,  while  at  higher  concentrations  it  inhibits  them  .  KYNA  is  also  a  non-

competitive  antagonist  of  the  alpha7-nicotinic-acetylcholine  receptors,  which  regulate  Glu



release presynaptically . 3-OH-KYN is further metabolised to QUIN, and the cascade finally

ends  with  the  synthesis  of  nicotinamide  adenine  dinucleotide.  3-OH-KYN mainly  causes

toxicity by producing free radicals . The neurotoxic effect of QUIN is predominantly due to

NMDA  agonism,  but  it  may  also  contribute  to  oxidative  stress  and  a  mitochondrial

dysfunction . QUIN is a weak competitive agonist of NR2A and NR2B subunit-containing

NMDA receptors . Trp, L-KYN and 3-OH-KYN are able to cross the BBB, whereas KYNA

can do so only poorly . 

Migraine 

Migraine is a highly disabling neurovascular disorder. The exact pathomechanism has not yet

been fully elucidated, but Glu-induced hyperexcitability, peripheral and central sensitization

and neurogenic  inflammation  have  been  reported  to  participate  .  The  concept  of  cortical

hyperexcitability in migraine patients was first suggested in the early 1980s, on the basis of

the  observation  that  migraineurs  demonstrated  an  increased  response  to  different  sensory

stimuli  .  This  theory  was  confirmed  by  means  of  several  electrophysiological  methods,

including the visual  evoked potential,  and transcranial  magnetic  stimulation  .  These early

results were later supported by the use of various functional neuroimaging methods, such as

positron emission tomography (PET) and proton magnetic resonance spectroscopy (MRS).

PET disclosed elevated cortical activation in migraineurs after olfactory, visual or trigeminal

stimulations . MRS revealed a significantly higher Glu/glutamine (Gln) ratio in the occipital

cortex in women with migraine during the interictal state as compared to healthy controls .

Glu and Gln in the CNS are highly compartmentalized (in the neurones for Glu and in the

astrocytes for Gln) . Measurements of the excitatory amino acids yielded further evidence of

neuronal hyperexcitability.  Significantly higher concentrations of Glu, serine, Gly, arginine

and  tyrosine  were  found  in  saliva  samples  of  migraine  patients  with  or  without  aura  as



compared  with  the  controls  in  the  interictal  period  .  A  decreased  plasma  level  and  an

increased cerebrospinal fluid (CSF) level of Glu were detected ictally in migraine patients

with or without aura relative to the controls. This suggests neuronal hyperexcitability of the

CNS during migraine attacks . Experimental data indicated enhanced Glu release from the

stimulated platelets  in both migraine patients with or without aura,  while the platelet  Glu

uptake  was  elevated  only  in  migraine  patients  without  aura.  This  is  suggestive  of  a

pronounced upregulation of the Glu-ergic metabolism in migraine patients without aura . The

plasma levels  of  aspartic  acid,  Gly,  cysteic  acid  and homocysteic  acid  were significantly

higher in migraine patients than in the controls .  All of the above data point to a cortical

hyperexcitability state in migraineurs.

Clinical data have demonstrated lower plasma and salivary magnesium ion (Mg2+) levels in

migraine sufferers with or without aura in the interictal period as compared with the controls .

Another human investigation revealed that the Mg2+   level in the erythrocytes in migraine

patients without aura was reduced in the period between attacks . 

The predominance of excitatory amino acids and the lower Mg2+ levels may lead to a raised

activation of Glu receptors and neuronal hyperexcitability. 

Glu and its receptors, especially the NMDA receptor, have also been implicated also in the

trigeminovascular activation and sensitization process . 

One of the leading hypotheses is the activation of the trigeminovascular system (TS) . The TS

includes  the  first-order  neurones,  such  as  the  pseudounipolar  neurones  of  the  trigeminal

ganglion (TRIG), the second-order neurones in the trigeminal nucleus caudalis (TNC) in the

brainstem, and the third-order neurones in the thalamus and the somatosensory cortex . 

In the activation of the TRIG, the calcitonin gene-related peptide (CGRP), which is a very

potent vasodilatory neuropeptide and several pro-inflammatory cytokines have a special role.

The  neuronal  CGRP  acts  on  the  satellite  glial  cells,  which  releases  pro-inflammatory



cytokines like interleukin-1 beta, that further modulate the neuronal response . Neurogenic

inflammation (vasodilatation and plasma protein extravasation) occurs in the vicinity of the

dural  vasculature  due  to  the  release  of  different  neuropeptides,  e.g.  CGRP and  pituitary

adenylate cyclase activating peptide .

Peripheral  sensitization  occurs  when  the  meningeal  nociceptors  of  the  afferents  of  the

trigeminal  neurones  are  soaked  with  inflammatory  mediators  such  as  prostaglandin  E2,

bradykinin,  histamine,  serotonin,  tumour  necrosis  factor-alpha,  interleukins  and  other

cytokines . Preclinical studies have shown that interleukin-6 enhances the excitability of dural

trigeminal afferents, causing sensitization .  

The central sensitization process involves the increased activity of the phosphorylated NMDA

receptors in the second-order neurones in the TNC, which leads to enhanced Glu sensitivity

and  hence  the  hyperexcitability  of  the  neurones  .  In  the  mid-1990s,  the  Weiller  group

elegantly demonstrated  via  high-resolution  PET that  the blood flow of specific  brainstem

nuclei, referred to as "migraine generators" (locus coeruleus – LC, nucleus raphe magnus –

NRM, dorsal raphe nucleus – DRN and periaqueductal grey matter – PAG), was increased

during  spontaneous  migraine  attacks  .  These  nuclei  could  influence  the  activation  of  the

TNC . Overstimulation of the second-order neurones evoked the sensitization of the third-

order neurones in the thalamus. A link is presumed between platelet activation and migraine

pathogenesis involving pro-inflammatory cytokines (e.g. interleukins 1, 6 and 8) and tumour

necrosis  factor-alpha,  which  can  contribute  to  the  induction  of  sterile  inflammation  and

hypersensitization  of  pain  pathways  in  the  brain  .  The  highest  neurone/astrocyte  ratio  is

present in the human visual cortex. Elevations in extracellular Glu or potassium ion (K+) can

be a  trigger  for  cortical  spreading depression  (CSD).  Astrocytes  could  play a  role  in  the

regulation of the amounts of the extracellular Glu and K+ . CSD is a slowly progressing wave

of neurono-glial depolarisation, which is likely to lie in the background of the migraine aura



phase . Experimental findings demonstrated that an enhanced microglial production of pro-

inflammatory cytokines could promote the initation of CSD. It was observed experimentally

that polarized microglia  (M2a) reduced pro-inflammatory,  but increased anti-inflammatory

cytokine production . 

Preclinical  and  clinical  observations  have  strongly  suggested  that  migraine  is  a  cerebral

neuronal hyperexcitability state. 

Neurodegenerative disorders

The pathomechanisms of AD, PD and HD, the most common neurodegenerative diseases,

share  several  common  characteristics.  Glu  excitotoxicity,  mitochondrial  impairments,

neuroinflammation and oxidative stress have been reported to contribute to the development

of these disorders . 

Glu  is  the  main  excitatory  neurotransmitter  in  the  brain,  but  the  overactivation  of  Glu

receptors may cause the neuronal damage, known as excitotoxicity. Excitotoxicity is mainly

mediated  by  an  excessive  calcium  ion  (Ca2+)  influx  into  the  cells,  which  induces  a

downstream metabolic  cascade,  finally  leading  to  neuronal  death  .  Neuronal  nitric  oxide

synthase (nNOS) is one of the isoforms of nitric oxide synthase (NOS), which serves a crucial

role  in  the  neurotoxic  process  .  NMDA receptors  are  linked  to  nNOS by a  postsynaptic

density protein of molecular weight 95 kDA, which preferentially binds to the NR2B subunit.

This is the reason of Glu excitotoxicity is mediated principally by NR2B-subunit-containing

receptors . Neuroinflammation involving astrocytic and microglial activation has been found

to be present in several neurodegenerative disorders, such as HD, and this process may alter

the release and uptake of Glu . 

The KP involves both an NMDA agonist and an NMDA antagonist, and it may therefore be

able  to  regulate  Glu-ergic  neurotransmission.  The  possible  role  of  the  KP  in  the



pathomechanisms  of  neurodegenerative  diseases  has  been  confirmed  in  a  number  of

preclinical and clinical studies. 

The KP and Alzheimer’s disease

An increasing amount of evidence has emerged that indicates an altered KP metabolism in

AD .  In the serum, red blood cells and CSF of AD patients, lower KYNA concentrations

have  been  measured  .  Several  brain  regions  of  AD patients  have  been  reported  to  have

reduced levels of L-KYN and 3-OH-KYN, whereas the levels of KYNA and KAT-I activity

were significantly elevated in the striatum and caudate nucleus . Moreover, increased IDO

activity was detected in the serum of AD patients, as reflected by a higher KYN/Trp ratio,

which  correlated  inversely  with  the  rate  of  cognitive  decline  .  An  immunohistochemical

investigation  revealed  an  increased  IDO  activity  and  QUIN  production  in  the  AD

hippocampus,  which  was  most  pronounced  in  the  perimeter  of  the  senile  plaques  .  A

mitochondrial  impairment  in  complex  IV has  been  described in  the  AD cortex,  with  the

activity  reduced  by  25-30%  .  This  may  contribute  to  increased  amyloid  production.

Importantly,  amyloid  beta  1-42  has  been  shown  to  induce  QUIN  production  in  human

macrophages  and  microglia  .  A  recent  study  suggested  that  3-HK  might  be  a  possible

biomarker for AD, as increased serum 3-HK levels were found to be specific for AD patients

as compared with controls. As concerns the possible background, it was suggested that an

elevated 3-HK availability might promote enhanced QUIN synthesis in the brain .

The KP and Parkinson’s disease

At the preclinical  level,  toxin models  are  widely used to  assess the pathomechanism and

potential therapeutic option in PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and

6-hydroxydopamine have both been confirmed to influence the KP, and to result in a decrease



in  KAT-I  activity  .  MPTP  treatment  additionally  gives  rise  to  significant  changes  in

aminoacid  concentrations  in  the brain .  Alterations  in  the KP metabolism have also been

found in the blood of PD patients: a decrease in the plasma, and increased levels of KAT

activity and KYNA production in the red blood cells . There is also evidence indicating an

elevated immune activity, correlating with an increased Trp metabolism in PD patients. The

neopterin concentrations  and KYN/Trp ratios were elevated in the serum and CSF of PD

patients, especially in advanced stages of the disease . Similarly, changes in the KP have been

detected in the brain of PD patients. The contents of 3-OH-KYN were elevated, while those of

KYNA and KYN were reduced in several brain regions . A recent metabolomic analysis study

identified  several  novel  biomarkers  in  the CSF of  PD patients,  one of  them being 3-HK

concentration elevation . 

The  described  alterations  in  the  KP  suggest  an  increased  formation  of  the  neurotoxic

metabolites, possibly associated with the neuroinflammatory process. 

The KP and Huntington’s disease

Intrastriatal administration of QUIN to rats induced a spatial learning deficit and characteristic

histological changes, which closely mimicked HD symptoms, and this was therefore a widely-

used  experimental  model  of  HD  before  transgenic  animals  became  available  .  Human

investigations revealed alterations in several brain regions of HD patients. The QUIN and 3-

OH-KYN  levels  were  elevated,  while  the  KYNA  concentration  and  KAT  activity  were

reduced . Stoy et al. observed a higher KYN/Trp and a lower KYNA/KYN ratio in the blood

of  HD  patients,  reflecting  increased  IDO  activity  and  decreased  KAT  activity  .  These

alterations suggest a shift in the KP towards the synthesis of neurotoxic metabolites, which

might contribute to excitotoxic neuronal damage. From a therapeutic aspect, the inhibition of

KMO, a key enzyme in the KP, results in an enhancement of KYNA production and inhibits



the  formation  of  neurotoxic  metabolites.  Accordingly,  the  application  of  KMO inhibitors

reduced huntingtin-induced toxicity in animal models . 

Future therapeutic strategies by kynurenine derivatives 

Migraine

One of the experimental migraine models comprises the electrical stimulation of the TRIG.

This demonstrated the decreased KAT expression of the Schwann cells, which enseathe nerve

trunks or single nerve fibres in the dura, the mast cells and the macrophages, while the content

of the NOS- immunoreactive nerve fibres increased. This observation led to the release of the

nitric oxide (NO) at the periphery . The main function of KAT is to synthesize KYNA, which

has an anti-Glu-ergic effect. A migraine attack may be associated with a hyperexcitability

condition, and KAT may play a role in the prevention of migraine attacks  (Figure 2). 

In  a  chemically  (NTG)  induced  animal  migraine  model,  the  area  covered  by  CGRP

-immunoreactive fibres in the TNC is decreased. L-KYN in combination with PROB and a

KYNA  derivative,  2-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide

hydrochloride),  inhibited  the  decrease  in  the  region  covered  with  CGRP-immunoreactive

fibres . One possible mechanism behind this finding is that these substances might block the

activation of the first-order neurones in the TRIG .  However, a recent in vitro study indicated

that KYNA has a central inhibitory effect on the capsaicin-induced CGRP release in mouse

brainstem slices .

The  main  function  of  the  second-order  neurones  in  the  TNC  is  to  convey  the  pain

transmission  to  the  thalamus.  The  administration  of  NTG  as  an  NO  donor  dramatically

increases the number of c-fos-immunoreactive second-order neurones. In this model, L-KYN

combined with PROB attenuated the number of c-fos-immunoreactive neurones in the TNC .

Under the same experimental  conditions,  the L-KYN + PROB combination and a KYNA



derivative (2-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride)

diminished the nNOS and calmodulin-dependent protein kinase II alpha-immunoreactive cells

. A recent study revealed that a newly synthesized KYNA-amide (N-(2-N-pyrrolidinylethyl)-

4-oxo-1H-quinoline-2-carboxamide  hydrochloride)  prevented  the  nitroglycerol-induced

neuronal activation and sensitization in the cervical part of the trigemino-cervical complex . 

These results pointed to the role of KYNA and its derivatives in the modified activation of the

second-order neurones in the TNC.

Preclinical findings indicated that KYNA acts on the "migraine generators", such as the LC,

DRN, NRM and PAG . In animal experiments,  noxious stimulation strongly activated the

central noradrenergic neurones in the LC, which was abolished by pretreatment with KYNA .

Activation  of  the  serotonergic  neurones  in  the  DRN  was  inhibited  by  substance  P

microinfusion,  which  was  prevented  by  KYNA  microinfusion  .  Neuroanatomical  tracing

studies revealed that the NRM sent a direct projection to the lateral reticular nucleus (LRN) in

the caudal ventrolateral medulla . Microinjection of Glu into NRM significantly altered the

discharge of the majority  of the LRN cells,  which was partially  antagonized by KYNA .

Anatomical  studies  demonstrated  a  connection  from  the  medial  preoptic  nucleus  of  the

hypothalamus (MPO) to the PAG and NRM . The interaction between the MPO and the NRM

can be modulated by inhibition of both the neuronal transmission and the Glu-ergic system in

the PAG.  Injection of KYNA into the PAG blocked both inhibitory and excitatory responses

in the different cell types in the PAG to chemical and electrical stimulation of the MPO . Glu

and  NMDA  can  trigger  CSD  .  KYNA  was  found  to  inhibit  K+-triggered  CSD  in  rat

neocortical  slices and in an  in vitro preparation of the turtle  cerebellum .  It  was recently

reported that the systemic administration of L-KYN suppressed CSD in rats . Peripherally

administered KYNA reduced the number of CSD waves and decreased the permeability of the

BBB during CSD in rats . 



All of the above-mentioned results clearly confirmed that KYNA and its derivatives exert

effects  on the  functional  anatomical  structures  of  the  nervous system participating  in  the

leading hypothesis of migraine . 

Neurodegenerative disorders (AD, PD and HD)

Glu-induced excitotoxicity is an important factor in the pathomechanisms of both migraine

and  neurodegenerative  disorders  .  Although  the  complete  inhibition  of  Glu-ergic

neurotransmission is not feasible, and is accompanied by severe side-effects, prevention of the

overactivation of NMDA receptors and restoration of the normal  Glu-ergic  balance might

offer neuroprotection. The KP produces both NMDA agonist and antagonist molecules, and

might  therefore  have  a  modulatory  role  in  Glu-ergic  neurotransmission.  Elevation  of  the

neuroprotective  KYNA level,  and reduction of the amounts  of neurotoxic KP metabolites

might  offer  a  valuable  therapeutic  option.  NMDA antagonism and modulation  of  the KP

metabolism have been suggested to be of therapeutic value in AD, PD and migraine (reviewed

by ). Modulation of the KP can be achieved by three main methods: the administration of

prodrugs  or  of  synthetic  KYNA derivatives  that  may  cross  the  BBB,  or  influencing  the

enzymatic processes of the KP . KYN administered together with probenecid (PROB), a non-

selective organic anion transporter inhibitor, results in an elevation of the brain KYNA level .

This  combination  effectively  prevented  trigeminal  activation  in  the  nitroglycerol  (NTG)-

induced and in the electrical stimulation-induced migraine model, and reduced the frequency

of CSD too . Moreover, KYN+PROB treatment exerted a neuroprotective effect in an AD

animal model, and prevented both the cognitive decline and the histopathological changes . In

the 6-hydroxydopamine model  of PD, KYN+PROB was able  to  reduce the histochemical

changes and prevent neuronal damage . 



KMO inhibition leads to increased KYNA production. This treatment has been demonstrated

to prevent histopathological changes and behavioural symptoms in animal models of AD and

HD . Another research group demonstrated that the KMO inhibitor Ro 61-8048 prevented

levodopa-induced dyskinesia in a primate model of PD . 

The  KYN  derivative  4-chlorokynurenine  successfully  prevented  QUIN-induced

neurotoxicity . This compound, which has the ability to cross the BBB, is converted in the

brain to 7-chlorokynurenic acid, which is an antagonist of the Gly-binding site of the NMDA

receptor . 

The  KYNA  analogue,  N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide

hydrochloride, proved to prolong survival and prevent neuronal damage in a transgenic HD

model . One important concern regarding the use of NMDA antagonists is the possibility of

inducing systemic side-effects. Behavioural studies have confirmed that, in the dose at which

it exerted a neuroprotective effect, the KYNA-amide did not exhibit any significant cognitive

side-effect . 

In an epilepsy model induced by pentylenetetrazole, another novel KYNA-amide (SZR104)

prevents seizures . These promising results allowed the conclusion, that modulation of the KP,

and  especially  the  development  of  KYNA  derivatives  with  a  beneficial  pharmacological

profile, appears to be a promising therapeutic option for future drug development. 

Medicinal chemistry strategy of the synthesis of novel kynurenic acid analogues

The  transformations  of  KYNA  derivatives  can  be  achieved  through  modification  of  the

aromatic ring, the synthetically active 4-OH group, or conversion of the 2-carboxylic function

to pharmacologically interesting ester or amide derivatives of KYNA. These transformations,

together  with  the  pharmacological  applications  of  the  resulting  KYNA  derivatives,  were

earlier reviewed .



The amides of KYNA are pharmacologically and synthetically highly promising synthons in

the patent literature. The KYNA amides were designed with regard to the following structural

properties:

1. the presence of a water-soluble side-chain; 

2. the inclusion of a new cationic centre; 

3. side-chain substitution to facilitate brain penetration.

Coupling  between  KYNA  and  2-dimethylaminoethylamine  was  achieved  by  using  N,N’-

diisopropylcarbodiimide (DCI) in the presence of 1-hydroxybenzotriazole hydrate (1-HOBT),

yielding 2 (Figure 3). 

The excellent biological activity of 2 led the authors to regard it as the basic amide and to

design further KYNA amides by modifying 2. To lengthen the side-chain by one CH2 group,

KYNA was reacted with 3-dimethylamino-1-propylamine, resulting in 3. Compound 3 proved

not to reduce the population spike amplitudes significantly.  Its biological effects  were not

valuable.

By using 2-diethylaminoethylamine as starting amine, 4 was synthesized as a diethyl analogue

of 2, and analogues 5, 6 and 7, containing the tertiary nitrogens in different ring systems, were

prepared by reacting KYNA with 2-morpholinoethylamine,  2-piperidinoethylamine  and 2-

pyrrolidinoethylamine, respectively . 

Conclusions

Neuronal hyperexcitability and glutamate excitotoxicity are imoprtant factors contributing to

the pathomechanism of neurodegenerative disorders and migraine. The KP involves several

neuroactive compounds which are capable of influencing glutamatergic  neurotransmission.

Alterations  in  the  KP have  additionally  been implicated  in  neurodegeneration  and in  the

nociceptive process, and targeting the KP might therefore provide novel future therapeutic



options. Synthetic KYNA analogues with a favourable pharmacological profile might be well

promising candidates for drug development. 
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Figures

Figure 1.

The kynurenine pathway (modified ref. )



Figure 2.

Scheme of the trigeminovascular system and the possible sites of action of kynurenine-

related substances
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Figure 3.

Synthesis of several kynurenic acid analogues
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