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Abstract—Wireless sensors are small-capacity devices with low
consumption. Their capabilities already exceed the limit required
for telephone-quality audio recording and processing, which calls
for porting a number of speech processing applications. To
do it, however, dynamically adjusting the sensitivity of their
microphone is vital, which is called Automatic Gain Control
(AGC). In this study we employed two simple algorithms for
this task and will show that they can indeed be very effective in
distant recording conditions, especially as it requires techniques
which have low computational requirements.

I. INTRODUCTION

Wireless sensors and wireless sensor networks have become
increasingly popular recently. Their main application is the
monitoring of their environment like movement detection and
measuring temperature and light. They are also capable of
recording audio data, which calls for porting a number of
speech processing applications. Being a relatively new area,
however, a number of quite basic issues for these sensors
have to be addressed. Because of their limited processing
capabilities, even the porting of standard algorithms might
require some modifications. In this paper we will focus on
a special problem of distant speech recording, namely the
automatic adjustment of the recording gain.

The problem arises from the fact that the positioning of
wireless sensors cannot be known in advance. From the
viewpoint of speech processing it means that a sensor having
a microphone and transmitting what it records does not know
how far it is from the speaker. It could also be the case that
this target is continuously changing its position, i.e. moving
away from or towards the sensor. Another situation might be
that there are several speakers, each at a different distance
from the sensor; but regardless these difficulties, the wireless
sensor should always try to record the actual speech in as high
a quality as possible.

Perhaps the most important factor affecting recording qual-
ity of a wireless sensor is that of setting the gain of the micro-
phone. This way the sensitivity of the recording process can be
affected. A good automatic gain control (AGC) algorithm [1]
can eliminate or at least smooth the above-mentioned jumps
in the volume level, which makes the effective processing of
the signal more straightforward.
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II. AUTOMATIC GAIN CONTROL IN WIRELESS SENSORS

The goal of automatic gain control is to dynamically ad-
just the sensitivity of the microphone, based on the actual
observations. It is used in various situations where signals of
different volumes (usually from different sources) are present.
A typical example is that of telephones or cell phones [1],
but it is also used for controlling the amplitude of interfering
signals using lasers [2] or in pacemakers [3]. Every case is
special, however, thus our sensor-based environment also has
its special requirements, which should be considered when
developing applications for them. Perhaps the most important
one is that, as these sensors were designed to have low power
consumption, they have very limited resources: they usually
have a low-capacity processor, and an extremely small amount
of RAM. They communicate via radio waves, which also have
a limited bandwidth. In this scenario, applications designed to
work on wireless sensors have to use as small a CPU time
and RAM as possible.

The main reason for using gain control in wireless sensors
is their limited resolution: for each sample we can represent
only 10 bits of information, so we should attempt to use as
much of it as possible. We could also follow the strategy
of sending the information recorded as is, and amplify it
later, in the device that receives the speech data. It would
clearly have the advantage that we would not be handicapped
by the computational limitations of sensors, so we could
use CPU-demanding algorithms, or ones that require more
memory. In this scenario, however, there would be a clear
loss of information as each sample has this fixed 10-bit long
representation. For a louder-speaking person large-amplitude
values would get clipped, which could have been avoided if
we had been using a lower gain value. In other cases, when
the speech recorded is too quiet, we would not be using the
whole 10 bits available, but only a part of it, which could be
avoided by using a higher gain value. And it is clear that in
both cases the quality of the recordings would suffer.

Fortunately in our wireless sensor environment the gain can
be adjusted. It is represented on one byte only: the higher this
value is, the more sensitive the microphone becomes, and vice
versa: a lower value means less sensitivity. From experience
we know that the microphone has a quasi-linear sensitivity as
a function of the gain value, and its default value is 64.
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III. THE ALGORITHMS APPLIED

Next, we will describe our algorithms introduced for auto-
matic gain control. An arbitrary AGC method can be summed
up in one sentence: if the signal is too strong, lower the
gain; otherwise, if the signal is too weak, increase the gain;
of course, our algorithms also followed this approach. In
this paper we sought to introduce actual algorithms for our
particular problem, so they were designed with the same
hardware limitations in mind, thus they are quite similar.
Due to this, we begin with their common properties. In the
following we will denote the actual gain value by gain, while
gain′ will be the new gain value.

A. Working in Packets

One characteristic of wireless sensors is that they commu-
nicate via radio waves, sending a small chunk of data called
packet at a time. In our case there can be at most 114 bytes
in a packet; after assigning some bytes to auxiliary bits of
information, we can send 88 10-bit precise samples. Of course
the actual values may vary between different hardware, but
the main concept (having small-sized packets which implies a
small, fixed number of samples at a time) remains the same.

This arrangement makes it straightforward to handle all
observed data in groups of 88 samples, i.e. A = a1 . . . aN , and
in our architecture N = 88. Thus the input signal is organised
into a (theoretically) endless flow of packet Ai-s, the last one
being At; it makes it plausible to perform the same actions for
each packet Ai. Of course some procedures may be performed
after every nth packet, but the same lines of code can still be
executed for each packet, because we do not refer to samples
of another packet. (Although using some value representing
another packet as a whole (like its energy level) is common.)

B. Relying on the Energy Level

Further, both algorithms rely on the energy level of the
speech signal observed. As the energy of a signal is closely
connected with its volume level, controlling the energy level
means controlling the volume. Moreover, the calculation of
energy is computationally very cheap, which is a vital re-
quirement in our case. In the actual solution we followed the
packet-oriented strategy described above. First we calculated
the mean of the values in the packet as the signals may contain
a DC bias, i.e.

baseA =
1

N

N∑

i=1

ai. (1)

Next we calculated the energy level of the packet, which is
usually done by taking the squared sum of its values. Due to
speed limitations we did not raise them to the second power;
instead we just added up the absolute values of the difference
of the sample and the above-calculated mean value, i.e.

energyA =

N∑

i=1

|ai − baseA|. (2)

This value was then treated as the energy level of the A packet,
used both for voice activity detection and by the gain control

Algorithm 1 General Gain Control Algorithm
totalenergy is the total energy of the last 50 packets
if totalenergy/(gain + c0) < TSIL then

gain is set to an intermediate value gainSIL

else if totalenergy > TUHIGH then
gain is reduced to its 3/4th

else if totalenergy > THIGH then
decrease gain

else if totalenergy < TLOW then
increase gain

end if

algorithms. As one packet corresponds to roughly 10ms of
the speech signal, we stored the energy levels of the last 50
packets, examining about half a second at a time; the sum of
these values gave the total energy of this interval, i.e.

totalenergyt =

t∑

i=t−49

energyAi
. (3)

Gain adjustments (including those of voice activity detection)
were made every 10 packets, i.e. in 100ms time intervals.

C. Voice Activity Detection

A typical gain control algorithm seeks to normalise the level
of the observed signal to a pre-set value. This aim, however,
becomes counterproductive if there is no voice activity at all;
in this case only the basic noise of the microphone is present,
which will be amplified to the highest level available by setting
the gain very high. When the silent period ends, the first part of
speech will be overamplified, leading to clipping and resulting
in a loss of information. To overcome this problem we should
detect these longer periods of silence, and set the gain level
to an intermediate value there. This way we will not lose too
much information at the beginning of the next speech portion
(either if the speaker is close or far away), and then we can
react to the current volume level quite quickly. In the actual
solution we divided the total energy of the last 50 packets by
the gain value and a small constant; if the result was below
some TSIL, we set the gain to an intermediate value.

D. The Common in the Two Algorithms

Next we will introduce two algorithms which, based on their
observations, dynamically adjust the gain level. Besides the
similarities described above (working in packets, using packet-
size energy levels and applying voice activity detection) there
is another common aspect of their behaviour. They seek to
keep the total energy of the last 500ms at a TIDEAL level;
for this, if the total energy is lower than a threshold TLOW,
the gain is increased, whereas if it is higher than THIGH, it
is decreased. TLOW was 80% of TIDEAL, while THIGH was
120% of it. We used another threshold (TUHIGH, being twice
that of THIGH); if the total energy level exceeded this value, we
supposed that the signal was clipped because it was excessive,
which called for an immediate and drastic reaction. At such
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times the gain was decreased by using the formula gain′ =
3
4 · gain based on preliminary tests (see Algorithm 1).

E. Equal-Stepping Gain Control Algorithm

In this algorithm (ES GCA) we adjust the gain in small,
equal steps: to increase the gain level we used the formula

gain′ = gain + step,

and we applied
gain′ = gain− step

to lower it. Naturally the best value of step has to be
determined, which must be a positive integer. This algorithm
is a simple and straightforward way of controlling gain.

F. Weighted-Average Gain Control Algorithm

The first algorithm makes equal-sized steps up- and down-
wards regardless of the difference between the measured
energy level and the ideal one. However, it might make sense
to have big steps if this difference is big, and only small ones
if it is small. The second algorithm (the WA GCA) follows this
strategy.

Assuming that the energy level of a recording is linearly
proportional to the gain used to obtain it (which is roughly
the case for our particular sensor boards), we have that

totalenergyideal

gainideal
=

totalenergyt

gain
, (4)

where totalenergyideal is the total energy level recorded under
ideal conditions, determined by preliminary tests, gainideal is
the corresponding gain, totalenergyt is the total energy level
recorded, and gain is the actual gain value. This formula can
be rearranged to express the expected gain level as

gainideal =
totalenergyideal · gain

totalenergyt

. (5)

Using this formula, however, would lead to frequent big
jumps in the gain level used, which would clearly harm the
recorded speech signal. To counter this effect we averaged the
previously used gain level with this calculated one weighted
via

gain′ = w · gainideal + (1 − w) · gain, (6)

where 0 ≤ w ≤ 1 is a weighting factor. After substituting
gainideal from Eq. (5) we get

gain′ =
gain(w · totalenergyideal + (1 − w) · totalenergyt)

totalenergyt

.

(7)
With the w weighting factor we can make the transition of
gain much smoother, eliminating the sudden jumps; of course
the optimal value for w has to be determined.

IV. THE TESTING PROCESS

Having defined the problem and presented the algorithms,
next we will turn to a description of the testing process.

Distance
Recording Volume 20cm 50cm 100cm 200cm

Reference constant
√

Basic constant
√ √ √ √

Baseline varying
√ √ √ √

ES AGC varying
√ √ √ √

WA AGC varying
√ √ √ √

TABLE I
THE RECORDINGS MADE AND THE DISTANCES USED.

A. Hardware

In this study we used Crossbow Iris sensor nodes (motes)
that have a 2.4 GHz processor with a RAM of 8K bytes and a
programmable flash memory of 128K bytes. The microphone
and other input peripherials are located on a piece of hardware
that can be attached to it, on the so-called sensor board.
We had Crossbow MTS300 sensor boards, which, besides the
microphone, also contain light and temperature sensors.

B. The Recording Environment

To simulate real-life conditions we made recordings at four
different distances: we positioned the sensor at 20, 50, 100 and
200 centimeters away from the speaker. The 50 centimeter-
long distance served as an ideal recording position, 20 as
the speaker being too close to the sensor, while the 100
and 200 centimeter values simulated speakers being quite far
away. Testing was performed on Hungarian broadcast news:
a five-minute-long signal was used. It was then modified
to contain a wide range of volume level changes such as
slowly growing quieter (simulating the speaker going away
from the microphone), slowly growing louder (the speaker is
approaching the microphone) and sudden jumps (simulating
multiple speakers being present at different distances from the
microphone). The same modified signal was played at different
distances to the sensors with different gain control algorithms.

We made recordings using the two gain control algorithms
at all four distances. To get a reference recording we recorded
the original signal (i.e. the one with constant volume) at
50 centimeters with a fixed gain value. We then made two
additional recordings at all four distances. First the original,
constant volume-level signal was recorded without using gain
control; these (the basic recordings) were treated as the ones
in quasi-ideal circumstances: the speaker is in a fixed position
and has a constant voice level, but it is not necessarily the
optimal one: it could be too high or too low. The performance
of the one at 50cm, compared to the reference recording,
served as the glass ceiling: as these recordings are as near
identical as possible, its score is the highest one available,
and this value cannot be exceeded no matter what sophisticated
gain control algorithms we apply. Next the signal with changes
in volume level was recorded at each of the four distances, still
without gain control. These were the baseline recordings, and
their performance scores simulate the results we would get in
real-life situations (multiple or moving speakers) without gain
control. For a list of recordings made, see Table I.
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C. Evaluation via the Energy Level

One standard way of evaluating a gain control algorithm is
to calculate the energy levels of the reference and the resulting
recordings, and take their difference or ratio. Fortunately the
energy is very easy to calculate, and the volume of speech is
directly related to its energy, so the more similar the energy
levels of the original and the gain-controlled recordings are,
the closer they are. The energy is calculated by taking the
squared sum of the samples, i.e.

energyS =

T∑

i=1

s(i)2, (8)

where s is the observed speech signal having a length of T . In
this form it has one value for the whole signal, which could
indeed be of interest; for this reason we will calculate

energyratioS =
energyS

energyref
, (9)

where energyref is the total energy of the reference recording.
This value, however, ignores the local variations within the
signals: two recordings with quite different local values could
have the same overall energy level. To overcome this problem
we introduced another measure. We calculated the energy
levels in 500ms-long windows with a 80% overlap, moving
the window in 100ms-long steps. To compare the energy of
two signals we calculated a squared error-like value by taking
the squared sum of the difference between the energy levels
of the corresponding windows:

diff A,B =
K∑

i=1

(energyA(i) − energyB(i))
2, (10)

where energyA(i) is the energy level of signal A in the ith
window, and K is the number of windows. One signal will
always be the reference recording, thus we get one value for
each recording made. These scores can be easily compared:
the lower this number is, the closer the recording is to the
reference one, thus the better it is. As these values are difficult
to read, we calculated their relative error reduction (or RER)
scores as well: the appropriate baseline recording had a score
of 0%, whereas the reference recording having an energy
difference of 0 had 100%. The intermediate values were
assigned linearly, e.g. for a baseline energy difference of 5000
and a score of 1500, the RER value will be 70%, as this much
of the error was eliminated.

D. Evaluation via Phoneme Classification

Energy levels can be calculated quickly, and they can be
used very reliably to estimate the difference between the
volume levels of two recordings. But we adjust the gain to
make the recording more understandable; if two signals have
quite different energy levels, but both can be understood very
well, this technique cannot distinguish between the two cases.

To measure this “understandability” we turned to standard
techniques of speech recognition, following the frame-based
approach [4]: we divided the speech signal into small, equal-
sized parts, which – after feature extraction – were classified

Distance
Recording 20cm 50cm 100cm 200cm

Basic 1.53 1.00 0.75 0.51
Baseline 1.59 1.09 0.87 0.62
ES AGC, step = 3 1.05 0.96 0.93 0.86
WA AGC, w = 5/32 1.08 1.02 0.95 0.88

TABLE II
TOTAL ENERGY RATIOS OF THE TWO GAIN CONTROL ALGORITHMS (ES

AND WA).

as one of the possible phonemes. Usually we check whether
the result of this phoneme-identification matches the correct
label of the corresponding frame, performed for each frame
of the utterance. To do it, however, the correct labeling has to
be known in advance, which requires great manual effort. As
we wanted to know how the result of a gain control algorithm
differs from the one made under ideal conditions, we used
the reference recording: the result of phoneme classification
on this signal was treated as the correct labeling of frames.

We applied the standard 13 MFCC coefficients along with
their derivatives and the second derivatives (MFCC + ∆ +
∆∆ for short) [5] as features for phoneme classification, and
applied Artificial Neural Networks (ANN) for it [6]. As usually
several hours of hand-labeled and hand-segmented recordings
are required for training, we used another database for this
task [7]. This database was recorded over the phone, and not
via the wireless sensors, but the recording conditions were
very similar: it had a sampling frequency very close to 8861
Hz (8000 Hz) and about the same level of basic noise. The
features were calculated by using the HTK toolkit [8].

We again calculated the relative error reduction scores. We
did not consider 100% accuracy as the maximum; instead we
took the performance of a basic recording; here we could
choose either the one at the corresponding distance, or the
one made at 50cm (having the glass ceiling value). As both
are valid options, we calculated both ratios. The (original)
error value is the difference between the accuracies of the
basic and the baseline recordings; to express how much of
it was eliminated (which is the RER score), we calculated
the difference between the accuracies of the actual and the
baseline recordings, and divided it by the error value.

V. RESULTS

First we had to set the parameter of both algorithms to
the optimal value: for this we determined an interval of well-
performing values by preliminary tests, then explored it with
a small step size. The step parameter of the Equal-Stepping
Algorithm (ES) was tested between 1 and 6, whereas for the
Weighted-Averaging Algorithm (WA) w was tested between
1
32 and 10

32 with a step size of 1
32 . We found that the best

values were step = 3 and w = 5
32 .

A. Results Using the Energy Level

First the total energy ratio was calculated for each recording
(see Table II). As can be seen, the distance clearly affects
the energy ratios when we do not use a gain control: the

IEEE International Joint Conferences on Computational Cybernetics and Technical Informatics (ICCC-CONTI 2010) • May 27-29, 2010 • Timisora, Romania.

– 404 – 



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

time (s)

E
ne

rg
y

constant volume (50cm)
varying volume (50cm)
ES gain control (50cm)

Fig. 1. Energy levels of the reference recording (grey continuous line), the baseline recording (grey rugged line) and the ES algorithm with step = 3.

Distance
Recording 20cm 50cm 100cm 200cm

Basic 7341 3 1647 6412

Baseline 13953 4439 3728 5835

ES AGC, step = 3 1580 1161 1251 1933

WA AGC, w = 5/32 2318 1300 1412 1761

TABLE III
ENERGY DIFFERENCES OF THE TWO BASIC RECORDING TYPES AND OF

THE TWO GAIN CONTROL ALGORITHMS (ES AND WA) FROM THE
REFERENCE RECORDING.

recordings made at 20cm had a 50% bigger total energy than
the reference recording, whereas the recordings made at 100
and 200 centimeters had significantly less. Both gain control
algorithms, however, could indeed compensate for the overall
loudness (or quietness) at these distances, resulting in a total
energy ratio very close to 1. For the whole parameter intervals
tested, this ratio varied between 0.77 and 1.08 for the ES
algorithm and between 0.87 and 1.11 for the WA method.

The energy level difference diff values, calculated according
to Eq. (10), can be seen in Table III, while the relative error
reduction scores are shown in Table IV. It is not surprising that
the diff values of the basic and baseline recordings increase
when the distance changes from the optimal one. The only
exception is the baseline recording at 100cm: it has a lower
diff score than that at 50cm, which is probably due to the high
number of loud parts in the signal played. It may also be why
a smaller score is obtained for the baseline signal than that
for the basic one at 200cm, leading to the negative RER score
for the latter. Both gain control methods, however, performed
quite well. As the distance varied from the optimal one, the diff
values increased slightly, but the RER scores reflect the fact
that using gain control was an effective way of countering this
effect. The 66.44− 86.88% and 62.12− 83.39% RER values
(ES and WA algorithms, respectively) are quite good, and in
almost every case these are higher scores than those of the
basic recordings. The only exception is at 50cm, but it was
practically impossible to beat this score (99.93%) there, and
the values exceeding 70% are also quite satisfactory.

Visually inspecting the energy levels at 50cm using the ES
algorithm with step = 3 (see Figure 1), we may say that the
algorithm seems effective. (The WA method produced a very

Distance
Recording 20cm 50cm 100cm 200cm

Basic 47.39% 99.93% 55.82% −9.89%
Baseline 0.00% 0.00% 0.00% 0.00%
ES AGC, step = 3 88.68% 73.85% 66.44% 66.87%
WA AGC, w = 5/32 83.39% 70.71% 62.12% 69.82%

TABLE IV
ENERGY DIFFERENCE RELATIVE ERROR REDUCTIONS SCORES OF THE

TWO BASIC RECORDING TYPES AND OF THE TWO GAIN CONTROL
ALGORITHMS (ES AND WA).

similar graph with w = 5
32 .) While the energy levels of the

baseline recording greatly differ from the reference one, the
gain control algorithm compensated for the jumps in volume:
it usually differs from the reference recording by only a small
amount. The only weakness of the method seems to be the
periods after longer silences, where it resulted in much higher
energy values than those of the reference.

Figure 2 shows the energy levels of the basic recordings (in
the upper box), and of the ES algorithm with step = 3 (in
the lower box) at each distance tested. It can be clearly seen
that the distance of the sensor and the sound source strongly
affects the energy levels when there is no gain control: the four
corresponding curves are quite far from each other. (Note that
energy is displayed on a log-scale.) On the other hand, the
energy levels of the recordings using a gain control algorithm
fall fairly close to each other, indicating that the method was
able to amplify sources having different volumes to roughly
the same level, which agrees with our previous findings based
on the total energy ratios.

B. Results in Phoneme Classification

The best phoneme classification results of the methods can
be seen in Table V. It may seem surprising that even the
recording made in the very same circumstances (i.e. the basic
recording at 50cm) only attained a score of 83.19%. It is,
however, due to the indeterministic nature of the recording
process: two recordings made in the same way will not be
exactly the same, just very similar. This effect, combined with
the fact that the frames are very small-sized (1/40th of a
second) and were independently classified, led to this 83.19%
score, and this value then served as the glass ceiling.

G. Gosztolya et al. • Automatic Gain Control Algorithms for Wireless Sensors

– 405 – 



0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

time (s)

E
ne

rg
y

20cm 50cm 100cm 200cm

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

time (s)

E
ne

rg
y

20cm 50cm 100cm 200cm

Fig. 2. Energy levels of the basic recording (up), and the signal with varying volume using the ES algorithm with step = 3 (down) at different distances.

Distance
Recording 20cm 50cm 100cm 200cm

Basic 68.88% 83.19% 64.71% 53.75%
Baseline 62.32% 72.02% 61.84% 53.03%
ES AGC, step = 3 69.40% 76.65% 64.39% 58.41%
RER (same distance) 107.93% 41.45% 88.85% 747.22%
RER (glass ceiling) 33.97% 41.45% 11.94% 17.84%
WA AGC, w = 5/32 68.23% 74.54% 64.73% 57.77%
RER (same distance) 90.09% 22.56% 100.70% 658.33%
RER (glass ceiling) 28.32% 22.56% 13.54% 15.72%

TABLE V
BEST PHONEME CLASSIFICATION RESULTS OF THE TWO GAIN CONTROL

ALGORITHMS (ES AND WA).

We may also conclude that when the conditions become
less ideal by going farther or closer from the optimal 50cm
distance, the difference between the corresponding basic and
baseline recordings decreases: from the 11.17% at 50cm it fell
back to the hardly noticeable 0.72% at 200cm, where probably
neither of them could be heard adequately. In a normal
situation (i.e. at 50cm) both gain control algorithms were able
to improve the recognition accuracy to a fair extent: the ES
algorithm achieved a 76.65% accuracy, meaning a 41.45%
relative error reduction, whereas the WA algorithm produced
scores of 74.45% and 22.56%, respectively. In the less ideal
cases, however, these performed much better: although they
produced scores that fell much farther than the glass ceiling
value, they matched or even outperformed the basic recording
score. This is probably because at 20cm the general volume
was just too high, requiring a lower gain value, which was
only possible by using a gain control algorithm. In the other
two cases the greater distance called for higher sensitivity,
which could also be done easily via gain control. This led
to a performance that was practically identical to the basic
recording at 20 and 100 cm (meaning 107.93% and 88.85%
same-distance RER scores for the ES algorithm, and 90.09%

and 100.70% for the WA method), and a much better value
at 200cm. In addition, the RER scores compared to the glass
ceiling value are also good.

VI. CONCLUSIONS

Due to the unknown positioning of wireless sensors, their
distance from the speaker or speakers represents a serious
problem during sound recording as the optimal recording
volume level cannot be known beforehand. One good solution
is to apply an Automatic Gain Control (AGC) algorithm.
In this study we applied two simple solutions, keeping the
limited capacity of sensors in mind, and tested their be-
haviour at different distances. Evaluating both via energy level
comparisons and phoneme classification from the field of
speech recognition, we showed that their application is indeed
worthwhile: we could achieve significant improvements in the
quality of the recordings, which could be improved still further
when the recording distance changed from the ideal one.
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