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Abstract—Wireless sensors are frequently used for recording
surrounding speech and then sending it to a base station. Their
way of communication via radio waves makes it important to
employ some form of audio compression, while their limited RAM
and low-capacity CPU restrict the range of methods which can be
applied. In this paper a number of such methods are tested, and
show that they can indeed be effective: a 30% bandwidth saving
was achieved practically without information loss and a 50%

bandwidth reduction at the cost of some negligible information
loss.

I. INTRODUCTION

Wireless sensors and wireless sensor networks have become
increasingly popular recently. Among their possible uses (like
movement detection or measuring temperature and light), they
are also capable of recording and transmitting speech audio
data. This application is limited, however, by their way of
communication, which is done via radio waves with finite
bandwidth. Moreover, multiple wireless sensors may form a
network, in which case the amount of radio traffic definitely
increases. It could happen that several sensors are sending
their observations to one receiver (the base station), in which
case even real-time data transmission becomes inefficient.
Hence a bandwidth that is as low as possible should be
used for transmitting signals, which calls for some form of
compression.

On the other hand, wireless sensors are designed to have
exceptionally low power consumption. In order to achieve this,
their resources are limited: they usually have a low-capacity
processor, and an extremely small amount of RAM. In this
scenario, applications designed to work on wireless sensors
must use as small a CPU time and RAM as possible.

This paper focuses on audio signal compression methods
which require little computation and do not use much memory.
As most methods suggested here implement a lossy compres-
sion, besides the compression ratio the amount of information
loss is also important. Since this issue is investigated from an
audio point of view, standard techniques taken from the area
of speech recognition are used to measure this loss.

II. DATA COMPRESSION ALGORITHMS

Many data compression algorithms exist in the literature,
including those for audio (speech) encoding. Earlier methods
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sacrificed quality for a high rate of compression, whereas
recent methods achieve high compression rates and preserve
the quality of the signal, but at the expense of significant
memory and CPU use. Unfortunately the quality of the former
methods is unsatisfactory, and the hardware used in this study
excludes the use of the latter types.

Next the special requirements of this task will be listed, then
the well-known methods adapted to suit our special needs will
be described, and some novel ones will be introduced.

A. Requirements
Wireless sensors have some special properties which should

be taken into account when developing applications for them.
Perhaps the most important one is the limited amount of
resources: we have very small available RAM (in our particular
case it is 8K bytes), and, due to a small-capacity CPU,
we cannot use computationally intensive algorithms. These
requirements greatly restrict the range of possible compression
methods available for this problem.

Wireless sensors communicate via radio waves, sending a
small chunk of data called a packet at a time. (In our case
a packet may be at most 114 bytes long.) This arrangement
makes it straightforward to handle all observed data in groups
of N samples: compress them, put them into a packet and
send it. Furthermore, due to external factors some packets
may be lost. Although these cannot be restored later, it is
natural to expect that this loss should not make later processing
impossible, which should also be taken into account when
developing or applying compression methods.

Being a digital device, the CPU of the sensor gets audio data
after sampling and quantization, thus the samples are elements
of a fixed set. In our case a sample is an integer in the range
of 0 . . . 1023, i.e. represented on 10 bits, using a sampling
frequency of 8861 Hz.

We have one more requirement: scalability. In this paper
lossy methods are examined, which sacrifice quality to some
extent for the sake of compression; in this case it is desirable
to have a parameter by which the amount of this tradeoff can
be controlled. All the methods tested have an n value, which
in fact represents the number of bits sent per sample.

B. The Truncate Method
The first compression method is a quite straightforward

way of compression: the lower bits of the samples are simply
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thrown away by performing bit shifting and sending only the
remaining ones. On the receiver side these bits are restored as
0-s. The number of bits kept (n) also provides a simple way
of introducing scalability.

This solution, owing to its simplicity, can be treated as the
baseline method: we expect the other compression algorithms
to outperform it, especially as they are somewhat more com-
plicated.

C. The µ-Law Method

The µ-Law Algorithm is a well-known way of performing
lossy speech compression, primarily used in digital telecom-
munications systems in Japan and in the USA. It is based
on the observation that intensity is not linearly related to
perceived loudness, but a logarithmic scale is employed. This
way lower values should be represented more accurately than
higher ones. Encoding is done by using the formula

F (x) =
sgn(x) ln(1 + µ|x|)

ln(1 + µ)
, (1)

where −1 ≤ x ≤ 1 is the normalized input signal and µ
is the compression parameter (usually µ = 255) [5]. The
F (x) values are then converted into discrete integer values by
quantization, these being the codes of the original x values.

In our case µ-Law compression is interesting for two
reasons. First, it mimics the properties of human hearing
much better than the Truncate Method, which suggests that
it should fit better in audio encoding. Second, it can be
efficiently implemented for discrete-valued signals: Eq. (1) and
the quantization step can be precalculated for each possible
x, which can then be stored in a table. That is, encoding a
sample is done simply by reading the appropriate value from
the encoding table, then the resulting values can be put into a
packet. On the receiver side another table (the decoding one) is
used, which can be also precalculated using Eq. (1). Scalability
can also be readily guaranteed by limiting the number of codes
at the quantization step to 2n for n bits of traffic per sample.

D. The Delta Method

A well-known property of speech signals is the high level
of correlation of the neighbouring samples. From this, a
straightforward choice is to take the difference between these
samples (the ∆ values) and send just these instead of the
original values. As the successive sample values lie quite close
to each other, it can be expected that most of the ∆ values will
be quite low, making it easy to carry out signal compression.

In the actual solution only n bits are allowed to represent
∆; that is, a −(2n−1) ≤ ∆ < 2n−1 constraint is set. If
∆ falls outside this range, the corresponding extreme value
(i.e. −(2n−1) or 2n−1 − 1) is used instead. By altering n the
scalability requirement is also satisfied. Of course, to make
the transmission of data reliable, each packet has to begin
with the first sample value represented on the whole 10 bits;
this modification, however, clearly does not really affect the
average bandwidth of this algorithm.

The n = 1 special case is known as Delta Modulation [5].

E. The Delta + Multipliers Method

The basic Delta method has a definite drawback for lower
average bit rates: it is unable to represent higher-valued
differences in the signal, just those with an absolute value
not greater than 2n−1. In contrast, all other values can be
represented exactly. It may be a wise step to give up some of
this precision if the range of ∆s can be expanded.

For this a simple solution was applied: instead of the
−(2n−1) ≤ ∆ < 2n−1 integer values allowed before, ∆ lay
in the range −c · (2n−1) ≤ ∆ < c · 2n−1. Rearranging this
formula leads to −(2n−1) ≤ ∆/c < 2n−1, where the ∆/c
value is transmitted after rounding it to the nearest integer
value. c ≥ 1 is a weighting constant, which, in theory, could
be any value, but in practice we should use the best value
for this particular task. In order to achieve this, we chose the
value which modified the original speech signal the least, i.e.
the one that produced the lowest mean squared error value.
This, of course, led to a different c value for each possible
value of n.

F. The Delta + µ-Law Method

The idea behind the µ-Law Method is to represent values
close to zero more accurately than values far from zero, as the
former ones are more important and occur more frequently in
audio samples. Examining the ∆ values, however, also led us
to discover that values with a lower absolute value are much
more common than ones with higher values. This way it might
be a good idea to compress the ∆ values by applying a µ-Law
compression on them.

The solution was quite straightforward: first the actual
∆s were computed, assuming that they fell in the range
−512 . . .511 (i.e. they could be represented on 10 bits), for
which there are only a few exceptions. Then the same µ-
Law compression function was applied to the ∆ + 512 values
(which then fell in the range 0 . . . 1023) that was used in the
µ-Law Method. Decoding and ensuring scalability was also
accomplished in the same way as before.

G. The Delta + µ-Law + Multipliers Method

The Delta + µ-Law Method has a similar weakness as the
basic Delta Method does: when using lower n values, the
range of values transmitted may not be enough to represent the
actual difference of the original samples. The solution for this
could again be to apply a c multiplier, which extends the range
of values available at the price of not representing values as
precisely as before. The determination of this c constant is also
performed similarly to that of the Delta + Multipliers Method:
for each value of n the constant is chosen which produces the
least mean squared error for a specified input signal.

III. PERFORMING HUFFMAN CODING

Huffman coding is a well-known lossless compression
method for any kind of data [3]. The basic idea is to assign
binary codes of varying lengths to the possible input symbols
(here the possible samples) based on their relative frequency:
the more common a symbol is, the shorter its code will be.
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Fig. 1. The frame-level phoneme accuracy scores and the average bits per
sample used for the Truncate, µ-Law and Delta methods.

The codes are not prefixes of each other; this way decoding
can be done easily by parsing the encoded stream from left
to right bitwise. It is clear that the possible samples of an
audio signal are usually represented unevenly, hence such a
compression method could be used in this environment quite
effectively.

Huffman coding, however, clearly has a drawback for our
purposes: it is a CPU-demanding method, which clearly cannot
be applied on a wireless sensor in its basic form. Moreover,
the online calculation of the codes for each packet would
also require sending the list of codes, which would waste a
lot of bandwidth. To overcome these problems, we had to
apply a small trick: we precalculated the Huffman codes of
each possible sample on a normal PC. For this the probability
value (i.e. frequency) of each sample is needed, which values
were calculated based on a sample recording made using the
wireless sensor. This way encoding on the sensor consisted
only of reading the appropriate code from a pre-calculated
table for each sample value, and then these codes were put
together into one packet. Note however, that during this
last step the varying length of the codes had to be taken
into account. Decoding on the remote side could be done
by parsing the incoming packet bitwise, as in the original
Huffman algorithm.

The application of this variation of Huffman coding is
not restricted to that of raw signals: it can be applied to
practically any fixed set where the relative frequencies of
elements are known. Hence we used this algorithm for every
single compression method described above: e.g. for the Delta
algorithm, after computing the value of ∆ for n bits, we sent
its precalculated Huffman code instead of ∆. As Huffman
coding is a lossless compression, it does not affect the quality
of the resulting signal, just the bandwidth required to transmit
it.

IV. EXPERIMENTS AND RESULTS

Having defined the problem and the methods applied, we
will now turn to the experiments section. First we will describe
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Fig. 2. The frame-level phoneme accuracy scores and the average bits per
sample used for the Delta method and its modified versions.

the testing environment, then explain the evaluation method-
ology applied. Finally the obtained results are presented and
analysed.

A. Hardware

In this study Crossbow Iris sensor nodes (motes) were used
that have a 2.4 GHz processor with a RAM of 8K bytes and a
programmable flash memory of 128K bytes. The microphone
and other input peripherals are located on a piece of hardware
that can be attached to it, on the so-called sensor board.
Crossbow MTS300 sensor boards were used, which, besides
the microphone, also contain light and temperature sensors.

B. The Recordings Used

Testing was performed on Hungarian broadcast news: a five-
minute-long signal recorded via the wireless sensor was used
for training purposes. Firstly, for the determination of Huffman
codes the relative frequency values are required, which were
calculated based on this signal. Secondly, for the Delta +
Multipliers and Delta + µ-Law + Multipliers methods those c
multiplier values were incorporated which produced the least
mean squared error values for this particular recording.

For testing a longer, 23 minute-long recording was used,
which contained Hungarian broadcast news from a different
TV channel. This signal was used to determine the actual
compression ratio of the Huffman method using the above-
calculated codes, and it was utilized to measure the perfor-
mance of the low-complexity audio compression methods.

C. The Evaluation Process

One standard way of evaluating lossy compression methods
could be to measure the difference between the input and the
output signals via some kind of error function like the mean
squared error. On sound signals, however, this approach has a
limitation: it does not take the aspect of understandability into
consideration. That is, if a compression configuration greatly
modifies the input signal, but at the same time preserves its
sound quality, then such an error function cannot detect it.
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Fig. 3. The frame-level phoneme accuracy scores and the average bits per
sample used for the methods tested, in the accuracy range 87.5 . . . 100%.

To approximate this “understandability” we turned to stan-
dard techniques of speech recognition. Apart from the fact that
there are a number of already developed methods to do it in
this domain, there is yet another reason: on the receiver side we
probably do not want to play the transmitted signal to a human,
but we would like to process it by a speech recognition system.
In this case technologies from the field of speech recognition
are clearly adequate to measure the quality of compression.

We followed the frame-based approach [4]: we divided
the speech signal into small, equal-sized parts, which – after
feature extraction – were classified as one of the possible
phonemes. Usually it is checked to see whether the result
of this phoneme-identification matches the correct label of
the corresponding frame, performed for each frame of the
utterance. To do it, however, the correct labeling has to be
known in advance, which requires great manual effort. As
we wanted to know how the signal after compression differs
from the one made without compression, we opted for the
latter: the result of phoneme classification on the signal sent
uncompressed was treated as the correct labeling of frames.

The standard 13 MFCC coefficients along with their deriva-
tives and the second derivatives (MFCC + ∆ + ∆∆ for
short) [2] were applied as features for phoneme classification,
which was performed by employing Artificial Neural Net-
works (ANNs) [1]. As usually several hours of hand-labeled
and hand-segmented recordings are required for training, an-
other database was used for this task [6]. This database was
recorded over the phone, and not via the wireless sensors, but
the recording conditions were very similar: it had a sampling
frequency very close to 8861 Hz (8000 Hz) and about the
same level of basic noise. The features were calculated using
the HTK toolkit [7].

D. Results

The phoneme-level accuracy scores of the methods tested
have been plotted in figures 1 and 2. In these, the tradeoff
between the compression ratio and the accuracy achieved
can be readily seen: the higher the former is, the lower
the latter becomes. The Truncate Method loses its accuracy

Method Avg. bits Accuracy
Truncate + Huffman n = 9 6.05 97.74%

µ-Law + Huffman n = 8 6.84 99.28%

µ-Law + Huffman n = 9 7.04 99.89%

Delta + Huffman n = 9 6.92 98.89%

Delta + Mult. + Huffman n = 9 6.00 97.16%

Delta + µ-Law + Huffman n = 9 6.91 99.84%

Delta + µ-Law + Mult. + Huffman n = 9 6.91 99.84%

Truncate + Huffman n = 8 5.06 94.41%

µ-Law + Huffman n = 6 5.37 94.76%

Delta + Huffman n = 8 6.80 93.58%

Delta + Mult. + Huffman n = 7 4.45 93.86%

Delta + Mult. + Huffman n = 8 5.22 96.42%

Delta + µ-Law + Huffman n = 6 5.51 95.52%

Delta + µ-Law + Mult. + Huffman n = 7 6.16 95.01%

No compression 10.00 100.0%

TABLE I
SOME NOTABLE PERFORMANCE SCORES OF THE COMPRESSION METHODS.

rapidly with the decrease of bits per sent, while the µ-Law
Method performs much better than this except in the 1- and
2-bit case, where the accuracy score is too low anyway. It
is surprising, however, that the basic Delta Method led to
worse results even at n = 8; the reason for this is probably
that the n ≤ 8 bits were not enough to adequately transmit
the actual ∆ values. The application of the c multipliers,
however, was able to overcome this problem: the Delta +
Multipliers Method performed just slightly worse than the
µ-Law Method. Applying the µ-Law compression on the ∆
values also increased the efficiency of the method: the Delta
+ µ-Law Method proved to be the best among the Delta
variations; on the other hand, using the c multiplier constants
clearly reduced its performance.

Concentrating on those method configurations that produced
higher accuracy scores (see Figure 3), we can draw similar
conclusions. The Delta + Multipliers Method performed ade-
quately; the best ones were the µ-Law and the Delta + µ-Law
methods, while the others performed quite poorly.

Using Huffman coding, however, led to a surprise: most
methods could be compressed only to a limited extent, with
the single exception of the Truncate Method. The reason
could be that the other algorithms carry out some kind of
compression themselves, and sometimes this compression is
based on the same principles as the Huffman coding. For
example the µ-Law Method represents samples closer to the
zero level more precisely (i.e. with a larger number of codes),
which samples are more common than the rest; this way the
other samples are combined into fewer groups, increasing their
relative frequencies and making them harder to compress any
further. Sadly, these compression methods did not prove to be
as effective as the Huffman algorithm. It is true, however,
only if we do not expect a very high accuracy score: the
Truncating Method with n = 9 could only achieve 97.74%,
which is significantly lower than the 99.89% score of the µ-
Law Method (n = 9).

Due to the tradeoff between compression and accuracy, it is
hard to clearly rank the compression rate of the methods tested.

G. Gosztolya et al. • Low-Complexity Audio Compression Methods For Wireless Sensors

– 80 –



To make this ranking easier, we set two levels of accuracy: in
the first the algorithms are expected to achieve an accuracy
close to 100%, while in the second case a level around 95%
is enough (see Table I). Two methods could not fulfil the first
criterion: the accuracy values of 97.74% and 97.16% (Truncate
and Delta + Multipliers methods, respectively) fell quite far
from 100%; the remaining four methods all performed quite
similarly; their 6.84 − 7.01 bits per sample (using Huffman
coding) meant a 30% reduction in the required bandwidth.

As for the second criterion, comparing the methods is more
difficult as the minimum accuracy score is not clearly set due
to the limited amount of scalability available (in practice n has
to be in the range 5 . . . 9). Still, the best-performing methods
are clearly the Truncate Method with n = 8 and the Delta +
Multipliers Method with n = 7 and n = 8, which are just
the two algorithms that failed to meet the first criterion. The
accuracy scores achieved by these configurations lie between
93.86% and 96.42%, while their average required bandwidth
is between 4.45 and 5.22 bits per sample, which means a 50%
reduction in radio traffic.

V. CONCLUSIONS

Because of the limited amount of bandwidth available for
communication between wireless sensors, an important aspect
that has to be considered is the compression of data sent. In
our particular case wireless sensors were used for recording

and transmitting audio data, which led us to test algorithms
for audio compression. Since wireless sensors usually have
extremely weak hardware, only methods with small CPU
and memory requirements could be applied. We found that
even within these limitations, sufficient compression could be
achieved. By using the µ-law method especially designed for
audio compression, we could cut the required bandwidth by
30% with practically no information loss. On the other hand, if
we allow a small information loss, the simple algorithm that
discards the lower bits of samples can reduce the required
bandwidth by 50% when combined with the well-known
Huffman coding method.
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