
Spoken Term Detection From Noisy Input
Gábor Gosztolya

University of Szeged, Hungary
Department of Informatics

Email: ggabor@inf.u-szeged.hu

György Kovács and László Tóth
Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences

Szeged, Hungary
Email: {gykovacs, tothl}@inf.u-szeged.hu

Abstract—The aim of the spoken term detection task is to
find the occurrence of user-entered keywords in an archive of
audio recordings. The kind of techniques that are used usually
are vocabulary-independent, using only the acoustic information
available. In this scenario, however, we rely exclusively on the
acoustic model, which is a drawback when it is unreliable; for
example when the input is noisy. In this paper we investigate the
possible accuracy of spoken term detection when the recordings
were obtained using small-capacity, portable devices (wireless
sensors) that have a quite low-quality microphone. The accuracy
scores show, however, that despite the high amount of noise in
the input recordings, our spoken term detection method can still
produce an acceptable level of accuracy.

I. INTRODUCTION

Wireless sensors and wireless sensor networks have become
increasingly popular recently. Among their possible uses (like
movement detection or measuring temperature and light), they
are also capable of recording and transmitting speech audio
data. The main weakness of wireless sensors, however, is
their low capacity, which limits their possible uses. It is
unlikely that speech recognition can be implemented solely
on them; however, other speech technology applications which
have less RAM and CPU requirements could be transferred
to this platform. A straightforward choice is spoken term
detection (STD), which is a relatively new area in speech
technology. While speech recognition seeks to produce the
correct transcript of speech utterances, spoken term detection
attempts to locate those parts of the utterance where the user-
entered keyword occurs. In the case of wireless sensors this
means in practice that they are monitoring the audio data of
their environment, and if the given keyword or keywords are
uttered, they send a notice message to the base station (the
central wireless sensor).

The potential of wireless sensors in this area is, however,
limited due to their poor microphone, which can record only
very noisy audio signals. In this study we seek to determine
whether their audio quality reaches the level where spoken
term detection could be performed efficiently; for this reason
we perform STD experiments on noisy audio data recorded on
the wireless sensors, and compare the achieved accuracy scores
with the scores achieved on the same, although clean (noise-
free) recordings. To make the experiments more relevant,
we performed this testing using two techniques for phoneme
identification.

This study was partially supported by the TÁMOP-4.2.2/08/1/2008-0008
program of the Hungarian National Development Agency.

The structure of this paper is as follows. First we will
describe the spoken term detection task and its relation to
speech recognition, and then introduce the STD algorithm
we use and explain how it works. After, we will explain the
phoneme recognition techniques we experimented with. Then
we will describe the experimental setup, namely the evaluation
methodology applied, the database and the wireless sensors
used, and the process of testing. Lastly, we will present and
analyze the test results, and draw some conclusions.

II. THE SPOKEN TERM DETECTION TASK

In the spoken term detection task we would like to find
the user-entered expressions (which we will call terms or
keywords) in an audio database, which will be referred to as
the set of recordings. An STD method returns a list of hits,
each of which contains the point of occurrence (i.e. a speech
signal index, starting and ending times), the term found, and a
probability value that can be used to rank the hits. In contrast
to other similar tasks, in STD the order of the hits does not
matter; instead, the probability value is mainly used to filter
the hit list further, keeping just the more probable elements.

A. Formulating the Spoken Term Detection Task

Spoken term detection is a relatively new task; it has,
however, been intensively studied for more than a decade [1].
(We also regard keyword spotting as just another term for open-
vocabulary spoken term detection [2].) Now, following [3], we
will present a mathematical formulation of the STD task.

As we perform exactly the same task for each given speech
signal, we will present our formulation for only one speech
signal A. We will denote the user-entered keyword by w,
treated as a phoneme-sequence w1, . . . , wn. In STD we are
looking for each A′ (which is some kind of continuous subset
of A) that is likely to contain exactly w; that is,

P (A′|w) ≥ Pmin. (1)

The concept of a continuous subset is quite intuitive; in
practice this simply means some parts of the input speech
signal A. It is straightforward to come up with a general
way of calculating P (A|w), which then could be extended
to work also on the A′ parts of A. In the following we will
deal with this case, which will be needed when we investigate
the connection between spoken term detection and speech
recognition.

– 91 –

6th IEEE International Symposium on Applied Computational Intelligence and Informatics • May 19–21, 2011 • Timişoara, Romania

978-1-4244-9107-0/11/$26.00 ©2011 IEEE

From the viewpoint of the run time requirements of a
classic spoken term detection method, the whole process can
be divided into two distinct phases: before the user types in the
search terms, and after it. The run times of the former part are
not too important; of course it has to finish within a reasonable
time, but even ten times that of real time is still acceptable.
The latter part, however, is crucial: if a user would like to find
a keyword in several hours of recordings, even 1/100th of real
time might be regarded as far too slow.

To meet this requirement, it is straightforward to divide the
processing of the speech signals into two parts so that after the
first part (which we will call the preparation phase) we get an
intermediate representation which is compact, but contains as
much relevant information as possible. This way a search in
the search phase could be done quite quickly, and still produce
good accuracy scores. Formulating this approach, we can write

P (A|w) =
∑

S

P (A|S, w) · P (S|w), (2)

where S is some intermediate representation. Doing this,
however, means that the set of all possible S-s has to be
evaluated, which in practice makes the use of this formula
quite difficult. In practice it is convenient to approximate it;
that is,

∑

S

P (A|S, w) · P (S|w) ≈ max
S

P (A|S) · P (S|w), (3)

and therefore

Ŝ = arg max
S

P (A|S) · P (S|w), (4)

where Ŝ is a (simplified) intermediate representation. This
equation can now be divided into two distinct parts: P (A|S)
describes the connection between the original speech signal
and the intermediate representation, which is just what the
preparation phase calculates; while P (S|w) represents the
relationship between the intermediate representation and the
word w, for which the search phase is responsible.

At this point we should mention that we would like to have
a vocabulary-independent solution; that is, when we calculate
Ŝ in the preparation phase, we do not want to use w, but it is
present in Eq. (4). In practice this means that we will use

Ŝ = argmax
S

P (A|S) (5)

in the preparation phase. Furthermore, in the search phase
we would like to identify those parts of speech where the
occurrence of a search term w is probable, which means that
we are looking for all non-overlapping Ls for which

P (L|w) ≥ Pmin, (6)

where L is a continuous part of Ŝ, and Pmin is a minimum
probability threshold. (We assume that from a part of the
representation Ŝ we can obtain the corresponding part of the
speech signal.)

B. Relation to Speech Recognition

The STD task is quite closely related to speech recognition;
clearly, in theory, one possible solution is to perform speech
recognition on the recording set, and then search for the given
keywords only in the text output. This approach, however,
relies heavily on the vocabulary used during speech recogni-
tion, which is a definite weak point for any search application:
the list of frequent search terms changes quite rapidly. It is
so mainly because most search terms are nouns, and a big
proportion of them are proper nouns, whose use is liable to
fluctuate quite markedly. Yahoo said that 70% of the keywords
entered into their search engine are nouns, and more than half
of them (40%) are proper nouns [4]. Due to this, nowadays in
spoken term detection a great emphasis is laid on vocabulary-
independence, which excludes simply searching in the text
output of speech recognition performed on the recognition
set. Still, spoken term detection could use many techniques
developed for and used in speech recognition, so next we will
examine the speech recognition problem.

In the speech recognition task we have an input speech
signal A and a dictionary (i.e. a list of possible words or word
sequences) W , and we look for the most probable word ŵ for
this signal; that is,

ŵ = arg max
w∈W

P (w|A). (7)

The discriminative approach of speech recognition makes use
of this formula. Usually, however, Bayes’ theorem is first
applied to this equation, then

ŵ = arg max
w∈W

P (A|w) · P (w)

P (A)
. (8)

Now we should remark that P (A) has the same positive value
for all w ∈ W . So if we omit it from our equations, the most
probable word sequence ŵ will still be the same, i.e. [5]

ŵ = arg max
w∈W

P (A|w)P (w). (9)

The more common generative approach of speech recognition
makes use of Eq. (9), and we will also use it here. This
formula has two distinct components; the former one, P (A|w),
describes the relationship between the speech signal A and the
actual word w, and it is called the acoustic model. The latter
one, P (w), which is the language model, is independent of
the signal A, and it estimates the probability of the word w.
Note that in practice these two values are indeed calculated
independently.

So at this point we have found that what we would like to
calculate in spoken term detection happens to be the acoustic
model in the field of speech recognition.

The choice of the format of the intermediate representation
for STD is not trivial; several choices are available in the
literature. A straightforward one is a table of all phoneme
probabilities for each frame (usually every 1/100th of a
second) [6]; it might, however, be quite big, and performing a
search in this data structure would take quite a lot of time.
Another possibility is to run a speech recognizer without

G. Gosztolya et al. • Spoken Term Detection from Noisy Input

– 92 –

a language model to obtain a graph of the most probable
phonemes for each utterance; it is much more compact,
although searching in it could also be rather slow. Here we
chose a simpler solution: for each speech signal just the most
probable phoneme sequence is generated.

C. Using the Most Probable Phoneme Sequence

When choosing an intermediate representation in the STD
problem we have to satisfy two requirements. First, this
representation should contain as much relevant information
as possible, to achieve a good accuracy score; and second, it
should be simple and very compact, to allow a quick search.
Clearly, it is hard to fulfil these two requirements at the same
time; thus all intermediate representations represent a trade-off
between these two aspects.

In the literature it is common to keep an N -best list of
the most probable phoneme sequences, which then produces a
special type of graph called a lattice [7]. The nodes of this lat-
tice are assigned to frames (i.e. time indices), while the edges
between these nodes are the possible transitions belonging to
one phoneme each, and they also have a probability value.
Within this kind of data structure a dynamic search can be
performed. In practice, however, this could still prove to be
too slow; for this reason we decided to just keep the most
probable phoneme sequence for each recording.

This approach has two clear advantages over the lattice-
based one: firstly, the number of phonemes (which form the
edges of the graph) is dramatically reduced. The reason for
this is that when constructing a lattice, the N best phoneme
edges are kept for each possible node, i.e. for each frame; from
experience it means about 50 times more edges when using
N = 3 than when keeping only the most probable phoneme
sequence. The second advantage of this approach is that a
string itself is a much simpler data structure than a lattice,
and this makes performing a search more straightforward.

This approach can be formulated in the following way. Ŝ
will be represented as a phoneme sequence, Ŝ = s1 . . . sN ,
and for each si we also note its starting and ending time, its
probability value and the phoneme label. Then, for a term w =
w1w2 . . . wn we look for all the non-overlapping subsequence
Ls for which

P (L|w) ≥ Pmin, (10)

where Pmin is a threshold set previously. Making the assump-
tion that the phonemes of a word are independent, we get

P (L|w) =

n
∏

i=1

P (li|wi) ≥ Pmin, (11)

where l1, . . . , ln are the phonemes of the subsequence L.
Naturally this approach is very vulnerable to the errors of
phoneme classification: during a search we can no longer
use acoustic information to correct the errors of phoneme
classification. (Of course this is also the drawback of the
lattice-based approach, but not to this extent as we can correct
these classification errors by using the alternative edges of
the graph.) To compensate for this, it is common to allow

phoneme insertions, deletions and substitutions. This means
that we allow wi and li to be empty (λ), although not at the
same time; that is,

P (L|w) =

m
∏

i=1

P (li|wi) ≥ Pmin, (12)

where by omitting the wi = λ values from the sequence
w1, . . . , wm we get the word w, and without the li = λ
values the sequence l1, . . . , lm forms L. P (λ|wi) denotes
the probability of deleting the phoneme wi (if wi 6= λ),
P (li|λ) means the probability of inserting the phoneme of
li (if li 6= λ), while P (li|wi) is the probability of substituting
phoneme wi for the phoneme of li in the case where neither
wi nor li is λ. The optimal sequences can be determined by
calculating the edit distance. The probability values may be
computed from the errors of the phoneme recognizer, which
were determined based on its confusion matrix [8]. It is
also possible to assign different weights for each phoneme
operation, but earlier we found [3] that it is usually not
required, therefore we assigned the same weight for each
operation. A further task is to set the value of the threshold
Pmin, where we should choose a score which works well for
search terms having quite different lengths. For this reason we
used an adaptive threshold, which was normalized based on
the number of phonemes in the search term.

Using the most probable phoneme sequence as an interme-
diate representation has another potential advantage over the
lattice-based one. It is common to use some kind of indexing;
that is, use some kind of data structure for storing the inner
representation, which permits very quick search operations at
the cost of a slower preparation phase and using (much) more
storage space. It can readily be seen that indexing a phoneme
array is much easier than indexing a much more complex
graph; although even more sophisticated indexing methods
can be used if we no longer allow phoneme insertions and
deletions. In this study we have not yet applied any kind of
indexing method, but we plan to do so in the near future as it
is a very effective way of speeding up the search phase.

III. HIGH-PRECISION PHONEME IDENTIFICATION

The STD approach described above relies on the output of
the phoneme recognizer, so it is vital to use one which works
with a high precision. The standard method for performing
speech recognition is the application of hidden Markov models
(HMMs) [5]; however, we used the more effective Artificial
Neural Networks (ANNs) [9] instead. To get the most probable
phonetic transcripts of the utterances we applied the publicly
available HTK package [10]. As we intended to build an open-
vocabulary system, at the language modelling level only a
phoneme bigram was used, so the usual word-level model was
not included in our system.

A typical way of enhancing the phoneme identification
process is to decompose the phones into three pronunca-
tion phases, or states. Hence, standard monophone systems
dedicate a 3-state model to each phoneme. The recognition
accuracy score can be further improved if we use different

– 93 –

6th IEEE International Symposium on Applied Computational Intelligence and Informatics • May 19–21, 2011 • Timişoara, Romania

models for the same phone pronounced in a different context.
These context-dependent models are called triphones, and their
application is standard practice nowadays. As acoustic features
we used the mel-frequency cepstral coeffcients (MFCCs) with
their ∆ and ∆∆ values [5], which is the most conventional
feature set. The monophone phone set consisted of 52 labels,
while the triphone system was composed of 1073 physical
states.

It is also a fairly recent result that the performance of the
HMM/ANN hybrid can be improved if a second neural net is
trained on a longer context of outputs produced by the ANN
of the hybrid [11]. The reason is that, thanks to the context,
this second net is able to correct the errors of the first net to a
certain extent. We shall call this construct the 2-stage hybrid
model.

In our experiments with the hybrid case we tested two
acoustic models. First a 3-state hybrid was created by training
a multi-layer perceptron on the 156 phone label targets (i.e.
three for each phonetic label). This neural net had 5000 hidden
neurons and was trained using error backpropagation on 9
neighbouring MFCC frames as input. The output of this ANN
was then used as input for training the second net of the 2-
stage models. Again, 9 neighbouring blocks of outputs were
used as input features to allow context modelling, serving as
the second configuration tested. As we wanted to measure the
effect of noise present in the input audio signals, the training
and testing phases were done both for clean recordings and
ones having noise in them; for the phone recognition results,
see Table I in Section IV-E.

IV. EXPERIMENTS AND RESULTS

Having defined the spoken term detection method and the
phoneme recognition techniques used, we now turn to the
testing process. First we define the evaluation methodology,
then describe the database employed and the way of testing,
and finally we present and analyze the results.

A. Methods of Evaluation

A Spoken Term Detection system returns a list of hits
for a query. Given the correct list of hits (the references),
we should rate the performance of the system to be able
to compare different systems and configurations. Since it is
a standard information retrieval task, it is straightforward to
apply standard IR metrics: precision and recall, defined as

Precision =
NC

NC + NFA

(13)

and
Recall =

NC

NTotal

, (14)

where NC is the number of correct hits returned, NFA is the
number of false alarms, and NTotal is the total number of
reference occurrences [12]. Thus, a perfect system has both a
precision and a recall score of 1 (or 100%). The problem with
these metrics is that in practice there is a trade-off between
these two values: high precision can easily lead to a low recall

score, while it is easy to achieve high recall rates while getting
poor precision scores. Hence it would be better to summarize
the performance of a system using just one score. In IR tasks
usually the F-measure is used for this, which is the harmonic
mean of precision and recall, defined as

F =
2 · Precision · Recall

Precision + Recall
. (15)

This formula, however, has the drawback that it weights
precision and recall equally, which might be different from our
preferences. We could also use different weights for the two
measures, but their relative importance is also not really clear.
This is why in the field of Spoken Term Detection usually
some other – although similar – measures are used, which
usually filter further the list of hits returned, keeping just the
more probable candidates. The one which was more commonly
applied previously is the Figure-of-Merit (FOM), which the
average of the recall scores when we allow only 1, 2, . . . 10
false alarms per hour per keyword. Another, more strict
measure was defined by the National Institute of Standards
and Technology (NIST) in its 2006 evaluation of Spoken Term
Detection [13]. Unlike FOM, it uses all the hits supplied by
the STD method in its primal form, and is defined as

ATWV = 1 −
1

T

T
∑

t=1

(

PMiss(t) + βPFA(t)
)

, (16)

where T is the number of terms, PMiss(t) is the probability
value of missing the term t and PFA(t) is the probability value
of a false alarm. These probability values are defined as

PMiss(t) = 1 −
NC(t)

NTotal(t)
(17)

and
PFA(t) = 1 −

NFA(t)

Tspeech − NT (t)
, (18)

where Tspeech is the duration of the test speech in seconds.
Usually the penalty factor for false alarms (β) is set to 1000. A
system achieving perfect detection (i.e. having a precision and
a recall of 1.0) has an ATWV score of 1.0; a system returning
no hits has a score of 0.0; while a system which finds all
occurrences, but produces 3.6 false alarms for each term and
speech hour also has a score of 0.0 (assuming that Tspeech is
significantly larger than NT). Further, max-ATWV (or MTWV)
is a (theoretical) upper bound of ATWV, where we calculate
the ATWV score for every N -best list of the hit list returned,
and take their maximum. It summarizes the performance of a
given algorithm if the minimal probability threshold Pmin has
been optimally chosen.

Recently ATWV has become the more frequently used eval-
uation metric, and we will mainly use this. Out of curiosity,
however, we will also calculate the FOM and MTWV scores.

B. The Testing Database

We used recordings of Hungarian broadcast news for testing,
which were recorded from 8 different TV channels. The 70
broadcast news items were divided into three groups: the

G. Gosztolya et al. • Spoken Term Detection from Noisy Input

– 94 –

Classification Method Accuracy

Clear HMM/ANN, 3 states 76.93%

HMM/ANN 2-stage, triphone, 3 states 83.33%

Noisy HMM/ANN, 3 states 66.32%

HMM/ANN 2-stage, triphone, 3 states 73.42%

TABLE I
PHONEME ACCURACY SCORES OF THE DIFFERENT PHONEME

RECOGNITION TECHNIQUES.

first, largest one (about 5 hours long) was used for training
purposes. The second part (about 1 hour long) was the
development set: these recordings were used while developing
the search method and fine-tuning its parameters. The third
part was the test set (about 2 hours long), and it was used to
evaluate the overall performance of each method. We chose 25
words and expressions as search terms, which came up in the
news recordings quite frequently. They varied between 6-16
phonemes in length (2-6 syllables), and they were all nouns,
half of them (12) being proper nouns.

C. Recording Via Wireless Sensors

As in this study we wanted to test the effect of noise for
spoken term detection, we performed each STD test twice:
once for the original recordings, and once for recordings
with significant noise. Although in these situations usually
some kind of ”artificial” noise (like white noise, pink noise
or ”babble” noise [14]) is introduced, we opted for another
solution: we also recorded the broadcast news through a
low-quality microphone of wireless sensors. This solution,
besides having the same broadcast news recordings in two,
parallel forms, also had the advantage that our noisy recordings
were not created artificially, but were created in everyday
circumstances, mirroring conditions of a typical application.

In this study Crossbow Iris sensor nodes (motes) were used
that have a 8 MHz processor with a RAM of 8K bytes and a
programmable flash memory of 128K bytes. The microphone
and other input peripherals are located on a piece of hardware
that can be attached to it, on the so-called sensor board.
Crossbow MTS300 sensor boards were used, which, besides
the microphone, also contain light and temperature sensors.

D. The Testing Process

To evaluate the effect of noise on STD accuracy scores we
tested two phoneme identification techniques for both noisy
and clean data, resulting in a total of four variations. For
each variation we had to set the minimal probability threshold
Pmin, for which we used a quite straightforward method:
we performed spoken term detection on the development
set, calculated the MTWV metric, and chose the threshold
belonging to the peak value. Then we performed STD on
the test set of recordings using the value determined for the
threshold. The performance of the method using different ways
of phoneme classification was measured with this list in terms
of ATWV, MTWV and FOM.

Classification Method ATWV MTWV FOM

Clear ANN, 3 states 0.3852 0.4101 78.63%

ANN 2-stage, 3 states 0.6057 0.6323 90.42%

Noisy ANN, 3 states 0.1858 0.1909 54.07%

ANN 2-stage, 3 states 0.3985 0.3985 78.93%

TABLE II
THE PERFORMANCE OF THE PHONEMESEQUENCE-BASED STD METHOD

USING THE DIFFERENT PHONEME RECOGNITION TECHNIQUES.

1 2 3 4 5 6 7 8 9 10

40

50

60

70

80

90

False alarms per hour

R
ec

al
l (

%
)

ANN 3 states (clean)
ANN 2−stage, triphone, 3 states (clean)
ANN 3 states (noisy)
ANN 2−stage, triphone, 3 states (noisy)

Fig. 1. Recall scores achieved when allowing 1, . . . 10 false alarms per hour.

E. Results

Table I shows the phoneme-level accuracy scores of the
different phoneme recognition techniques, while Table II gives
the accuracy scores of the STD method using them. Figure 1
shows the FOM curve (the recall values when allowing only
1, . . . , 10 false alarms per keyword per hour) of each con-
figuration. From the phoneme-level accuracy scores it is clear
that noise indeed lowers these values: the scores of the noisy
recordings are about 10% lower than the corresponding ones
of the clear recordings. Further, it can be seen that 2-stage
training is beneficial for both the clean and the noisy cases.

Looking at the STD accuracy scores, the first thing we
notice is that the MTWV and ATWV scores fall quite close
to each other. As they differ only in the applied probability
threshold Pmin (MTWV uses the optimal one for the test set,
whereas ATWV uses the optimal one got on the development
set and used in the test), this suggests the stability of the
thresholds found. Another thing to notice is the superiority
of the 2-stage ANN training mechanism over the classic 3-
state one in both clean and noisy environments: the accuracy
scores obtained are far better in both cases.

As for the effect of noisy input, it is clear that it reduces
all the accuracy scores. In the case of the standard 3-state
ANN training technique without two passes, it even turned
out that this configuration is practically unusable in such a
noisy environment: the ATWV score of 0.1858 is very poor,
and the FOM score of 54.07% is also quite low. By using the
2-stage ANN training technique, however, these scores rose to
0.3985 and 78.93%, which are practically identical to those of
the one-stage configuration with a clean input, and it indicates

– 95 –

6th IEEE International Symposium on Applied Computational Intelligence and Informatics • May 19–21, 2011 • Timişoara, Romania

that it is suitable for practical applications.

V. CONCLUSIONS

In the spoken term detection task we seek to find all oc-
currences of a given, user-entered keyword. A straightforward
extension of this problem is to monitor the audio data in some
environment and send an alert when the given keyword or
keywords were uttered. For this task wireless sensors are ideal
devices, but due to the poor microphones they can produce
only noisy audio recordings. In this study we examined the
possible spoken term detection accuracy scores, and found that
they can still be applied: the ATWV score of about 40% and
the FOM score of almost 80% mean an accuracy level which
is acceptable in practice.

REFERENCES

[1] J. Junkawitsch, L. Neubauer, H. Höge, and G. Ruske, “A new keyword
spotting algorithm with pre-calculated optimal thresholds,” in Proceed-
ings of ICSLP, vol. 4, Philadelphia, PA, USA, 1996, pp. 2067–2070.

[2] D. Wang, “Out-of-vocabulary spoken term detection,” Ph.D. dissertation,
University of Edinburgh, 2010.

[3] G. Gosztolya and L. Tóth, “Spoken term detection based on the most
probable phoneme sequence,” in Proceedings of the 2011 International
Symposium on Applied Machine Intelligence and Informatics (SAMI)
(IEEE), Smolenice, Slovakia, Jan 2011, pp. 101–106.

[4] C. Barr, R. Jones, and M. Regelson, “The linguistic structure of
English web-search queries,” in Proceedings of EMNLP 2008, Waikiki,
Honolulu, Hawaii, 2008, pp. 1021–1030.

[5] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing.
Prentice Hall, 2001.

[6] R. Wallace, R. Vogt, B. Baker, and S. Sridharan, “Optimising Figure of
Merit for phonetic spoken term detection,” in Proceedings of ICASSP
2010, Dallas, Texas, USA, 2010.

[7] I. Szöke, P. Schwarz, P. Matějka, and M. Karafiát, “Comparison of
keyword spotting approaches for informal continuous speech,” in Pro-
ceedings of Eurospeech 2005, Lisbon, Portugal, 2005, pp. 633–636.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley & Sons Inc., 2001.

[9] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[10] S. Young, The HMM Toolkit (HTK) (software and manual),
http://htk.eng.cam.ac.uk/, 1995.

[11] H. Ketabdar and H. Hermansky, “Enhanced phone posteriors for improv-
ing speech recognition systems,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 6, pp. 1094–1106, 2010.

[12] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
ACM Press, New York, 1999.

[13] NIST Spoken Term Detection 2006 Evaluation Plan,
http://www.nist.gov/speech/tests/std/docs/std06-evalplan-v10.pdf,
2006.

[14] G. Kovács and L. Tóth, “Localized spectro-temporal features for noise-
robust speech recognition,” in Proceedings of the 2010 International
Joint Conferences on Computational Cybernetics and Technical Infor-
matics (ICCC-CONTI) (IEEE), Timisoara, Romania, May 2010, pp.
481–485.

– 96 –

G. Gosztolya et al. • Spoken Term Detection from Noisy Input

