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Abstract – When performing speech recording it is 
desirable to have the speech signal in as a high quality as 
possible. In everyday recording conditions one of the most 
important aspects of sound quality is to have a uniform 
volume level, because it is very hard to understand (and to 
automatically recognize) an utterance with a volume level 
that varies considerably. Of course this uniform volume 
level should also be an average one, avoiding either too 
loud or too quiet recordings. To overcome this problem 
usually an approach called Automatic Gain Control is 
used, which is an adaptive method for controlling 
microphone sensitivity (gain). Wireless sensors are recent, 
low-powered devices, which are ideal for recording and 
transmitting observations such as speech, thus they are a 
good area for applying automatic gain control. Due to 
their low power consumption, however, only very simple 
solutions can be implemented. Here we will present a 
general gain control algorithm, then introduce two 
variations that we test in a situation which simulates the 
actual use. We perform evaluations by using two types of 
measurement: the first one compares local volume levels 
to recordings made under ideal conditions, while in the 
second we measure the understandability of the 
recordings made by applying standard speech recognition 
techniques. Our results in both cases confirm that it is 
indeed an area where automatic gain control can be 
applied, and that both our algorithms perform well in 
practice. 
 
Keywords:  wireless sensors, sound quality, automatic 

gain control, volume level, speech 
recognition. 

 
 

I. INTRODUCTION 
 
Wireless sensors and wireless sensor networks have 
become increasingly popular recently. Their main 
application is the monitoring of their environment like 
movement detection and measuring temperature and light. 
They are also capable of recording audio data, which calls 
for porting a number of speech processing applications. 

Being a relatively new area, however, a number of quite 
basic issues for these sensors have to be addressed. 
Because of their limited processing capabilities, even the 
porting of the most basic algorithms might require some 
modifications. In this paper we will focus on a special 
problem of distant speech recording, namely the automatic 
adjustment of the recording gain. 
 
The above problem arises from the fact that the positioning 
of wireless sensors cannot be known in advance. From the 
viewpoint of speech processing it means that a sensor 
having a microphone and transmitting what it records does 
not know how far it is from the speaker. It could also be the 
case that this target is continuously changing its position, 
i.e. moving away from or towards the sensor. Another 
situation might be that there are several speakers, each at a 
different distance from the sensor; but regardless these 
difficulties, the wireless sensor should always try to record 
the actual speech in as high a quality as possible. 
 
Perhaps the most important factor affecting recording 
quality of a wireless sensor is that of setting the gain of the 
microphone. This way the sensitivity of the recording 
process can be affected. A good automatic gain control 
(AGC) algorithm [1] can eliminate or at least smooth the 
above-mentioned jumps in the volume level, which makes 
the effective processing of the signal more straightforward. 
 
The structure of the paper is as follows. First we shall 
describe the problem of automatic gain control and its 
importance in our study. Then we will introduce our 
algorithms applied and explain how they work in detail. 
Next, we will describe the evaluation methodologies used 
and our testing environment. Finally, we will present the 
results obtained and draw our conclusions.  
 

II. AUTOMATIC GAIN CONTROL IN WIRELESS 
SENSORS 

 
The goal of automatic gain control is to dynamically adjust 
the sensitivity of the microphone, based on the actual 
acoustic observations. It is used in various situations where 
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signals having different strengths (usually from different 
sources) are present. A typical example is that of 
telephones or cell phones [1], but it is also used for 
controlling the amplitude of interfering signals using lasers 
[2] or in pacemakers [3]. Every case is special, however, 
thus our sensor-based environment also has its special 
requirements, which should be considered when 
developing applications for it. Perhaps the most important 
one is that, as these sensors were designed to have 
exceptionally low power consumption, they have very 
limited resources: they usually have a low-capacity 
processor, and an extremely small amount of RAM. They 
communicate via radio waves, which also have a limited 
bandwidth. In this scenario, applications designed to work 
on wireless sensors have to use as small a CPU time and 
RAM as possible. 
 
The main reason for using gain control in wireless sensors 
is their limited resolution: for each sample we can represent 
it only using 10 bits of information, so we should attempt 
to use as much of it as possible. We could also follow the 
strategy of sending the information recorded as is, and 
amplify it later, in the device that receives the speech data. 
It would clearly have the advantage that we would not be 
handicapped by the computational limitations of sensors, so 
we could use CPU-demanding algorithms, or ones that 
require more memory. In this scenario, however, there 
would be a clear loss of information as each sample has 
this fixed 10-bit long representation. For a louder-speaking 
person large-amplitude values would get clipped, which 
could have been avoided if we had been using a lower gain 
value. In other cases, when the speech recorded is too 
quiet, we would not be using the whole 10 bits available, 
but only a part of it, which could be avoided by using a 
higher gain value. And it is clear that in both cases the 
quality of the recordings would suffer. 
 
Fortunately in our wireless sensor environment the gain can 
be adjusted. It is represented on one byte only: the higher 
this value is, the more sensitive the microphone becomes, 
and vice versa: a lower value means less sensitivity. From 
experience we know that the microphone has a quasi-linear 
sensitivity as a function of the gain value, and its default 
value is 64. 
 

III. THE ALGORITHMS APPLIED 
 
Next, we will describe our algorithms introduced for 
automatic gain control. An arbitrary AGC method can be 
summed up in one sentence: if the signal is too strong, 
lower the gain; otherwise, if the signal is too weak, 
increase the gain. This simplicity, however, leads to 
difficulties at the point of its application: we could find no 
mention of a general AGC algorithm in the literature. It 
seems that all the details are heavily application-dependent, 
which is convenient for determining the threshold values 
for the concepts too strong and too weak, or finding out the 
ideal frequency of performing the checks and modifying 
the gain. On the other hand, there is no standard way even 

for the process of increasing or decreasing the gain (which 
seems to be an issue for which quite general solutions 
should exist), and further, we have to come up with a way 
of measuring the strongness or weakness of the signal 
(loudness in the case of sound signals). In this paper we 
sought to introduce actual algorithms for our particular 
problem, thus all these open issues have to be addressed. 
These issues were solved in a similar way as that for our 
algorithms introduced, and of course they suffer from the 
same hardware limitations, thus the resulting methods are 
indeed quite similar. Due to this, we begin with their 
common properties, defining a general gain control 
algorithm. In the following we will denote the actual gain 
value by gain, while gain' will be the new gain value; of 
course 0 ≤ gain, gain’ ≤ 255. 
 
A. Working with Packets 
 
One characteristic of wireless sensors is that they 
communicate via radio waves, sending a small chunk of 
data called a packet at a time. In our case there can be at 
most 114 bytes in a packet; assigning one two-byte integer 
to the number of the packet (to be able to recognize 
missing packets) 112 bytes remain. As the digital-analogue 
converter (DAC) of the microphone supplies observations 
of 10 bits per sample, we can send 88 10-bit samples in a 
packet, and the two remaining bytes could be used to send 
extra information. Of course the actual values may vary 
somewhat between different hardware, but the main 
concept (having small-sized packets which implies working 
with a small, fixed number of samples at a time) remains 
the same. 
 
This arrangement makes it straightforward to handle all 
observed data in groups of 88 samples, i.e. A = a1 … aN, 
and in our architecture N=88. Thus the input signal is 
organised into a (theoretically) endless flow of packet Ai-s, 
the last one being At; it makes it plausible to perform the 
same actions for each packet Ai. Of course some procedures 
may be performed after every nth packet, but the same 
lines of code can still be executed for each packet, and 
these do not refer to samples of another packet. (Although 
using some value representing another packet as a whole 
(like its energy level) is allowed.) 
 
B. Relying on the Energy Level 
 
Another common feature of our algorithms is that they both 
rely on the energy level of the speech signal observed. As 
the energy of a signal is closely connected with its volume 
level, controlling the energy level means controlling the 
volume. Moreover, the calculation of energy is 
computationally very cheap, which is a vital requirement in 
our case. In the actual solution we followed the packet-
oriented strategy described above. First we calculated the 
mean of the values in the packet as the signals may contain 
a DC bias, i.e. 
 



 

49 

.1
1
∑
=

=
N

i
iA a

N
base     (1) 

Next we calculated the energy level of the packet, which is 
usually done by taking the squared sum of its values. Due 
to speed limitations we did not raise them to the second 
power; instead we just added up the absolute values of the 
difference of the sample and the above-calculated mean 
value, i.e. 
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This value was then treated as the energy level of packet A, 
used both for voice activity detection (see below) and for 
measuring the loudness of the actual signal observed in 
order to control the gain. As our sensor boards produced 
sound signals with a 8861 samples per second sampling 
rate, one packet corresponds to roughly 10ms of the speech 
signal. We stored the energy levels of the last 50 packets, 
examining about half a second at a time; the sum of these 
values gave the full energy of this interval, i.e.  
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Gain adjustments (including those of voice activity 
detection) were made every 10 packets, i.e. in roughly 
100ms time intervals. 
 
C. Voice Activity Detection 
 
A typical gain control algorithm seeks to normalise the 
level of the observed signal to a pre-set value. This aim, 
however, becomes counterproductive if there is no voice 
activity at all; in this case only the basic noise of the 
microphone is present, which will be amplified to the 
highest level available by setting the gain very high. When 
the silent period ends, the first part of speech will be 
overamplified, leading to clipping and it will result in a loss 
of information. To overcome this problem we should detect 
these longer periods of silence, and set the gain level to an 
intermediate value there. This way we will not lose too 
much information at the beginning of the next speech 
portion (either if the speaker is too close or too far away), 
and then we can react to the current volume level quite 
quickly. In the field of speech recognition the problem of 
detecting longer silent parts is called Voice Activity 
Detection, and there exist several algorithms to solve it [4] 
[5]. The simplest of them are based on calculating some 
kind of loudness of the signal present, and treating it as 
silence if this loudness remains under a threshold for a long 
period. 
 
We also followed this approach of voice activity detection; 
thus, to use sparingly the limited resources of wireless 
sensors, we based the Voice Activity Detection process on 
the same measurements as the actual gain control, reusing 
the values calculated above. That is, we used the full 

energy level of the last 50 packets (roughly 500ms), 
calculated in (3). For the sake of simplicity we assumed 
that the gain value was the same throughout this interval, 
which in practice worked quite well. After every ten 
packets (i.e. every 100ms) we checked to see whether the 
energy level for the last half a second divided by the gain 
value and a small constant stayed below a threshold TSIL; if 
so, we considered it silence, and set the gain to an average 
value gainSIL. So we used the condition  
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where c0 was determined empirically. (It was necessary 
because using a gain value of 0 does not mean silence in 
our architecture.) If we interpreted the last part of signal as 
silence, it also meant that we did not adjust the gain any 
further this time. 
 
D. The Common Parts in the Two Algorithms 
 
Next we will introduce two algorithms which, based on 
their observations, dynamically adjust the gain level. 
Besides the similarities described above (working with 
packets, using packet-size energy levels and applying voice 
activity detection) there is another common aspect of their 
behaviour. They seek to keep the total energy of the last 
500ms (i.e. fullenergyt) at a TIDEAL level; for this, if the full 
energy is lower than a threshold TLOW, the gain is increased, 
whereas if it is higher than THIGH, it is decreased. TLOW was 
set to 80% of TIDEAL, while THIGH was 120% of it, which 
values were determined by simple preliminary tests. We 
used another threshold (TUHIGH, being twice that of THIGH): 
if the full energy level exceeded this value, we supposed 
that the signal was clipped because its loudness was 
excessive, treating it as an overdrive was present, which 
called for an immediate and drastic reaction. At such times 
the gain was decreased by using the formula 
gain' = ¾ · gain based on preliminary tests again. For the 
pseudocode of this general algorithm, see Table 1. 
 
TABLE 1. General Gain Control Algorithm. 
 

Step Instruction 
1 fullenergy is the total energy of the last 50 packets 
2 if fullenergy / (gain + c0) < TSIL then 
3     gain is set to an intermediate value gainSIL 
4 else if fullenergy > TUHIGH then 
5     gain is reduced to its 3/4th 
6 else if fullenergy > THIGH then 
7     decrease gain 
8 else if fullenergy < TLOW then 
9     increase gain 

10 end if 
 
E. Equal-Stepping Gain Control Algorithm 
 
In this algorithm (ES GCA) we adjust the gain in small, 
equal steps: to increase the gain level we used the formula 
 

gain' = gain + step, 
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and we applied 

gain' = gain – step 
 
to lower it. Naturally the best value of step has to be 
determined, which must be a positive integer. This 
algorithm is a simple and straightforward way of 
controlling gain. 
 
F. Weighted-Average Gain Control Algorithm 
 
The previous algorithm makes equal-sized steps up- and 
downwards regardless of the difference between the 
measured energy level and the ideal one. However, it might 
make sense to have big steps if this difference is big, and 
only small ones if it is small. The second algorithm (the 
WA GCA) follows this strategy. 
 
Assuming that the energy level of a recording is linearly 
proportional to the gain used to obtain it (which is roughly 
the case for our particular sensor boards), we have that  
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where fullenergyideal is the full energy level recorded under 
ideal conditions, determined by preliminary tests, gainideal 
is the corresponding gain, fullenergyt is the total energy 
level recorded, and gain is the actual gain value. This 
formula can be rearranged to express the expected gain 
level; that is, 
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Using this formula directly, however, would lead to 
frequent big jumps in the gain level used, which would 
clearly harm the recorded speech signal. To counter this 
effect we averaged the previously used gain level with this 
calculated one weighted via  
 

,)1(' gainwgainwgain ideal ⋅−+⋅=    (7) 
 
where 0 ≤ w ≤ 1 is a weighting constant. After substituting 
gainideal from (6) we get 
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With the w weighting factor we can make the transition of 
gain much smoother by eliminating sudden jumps. 
Needless to say, the optimal value for w first has to be 
determined. 
 

IV. THE TESTING PROCESS 
 

Having defined the problem and presented the algorithms, 
next we will turn to a description of the testing process. 
 
A. Hardware 
 
In this study we used Crossbow Iris sensor nodes (motes) 
that have a 7.37 MHz processor with a RAM of 8K bytes 
and a programmable flash memory of 128K bytes. The 
microphone and other input peripherials are located on a 
piece of hardware that can be attached to the mote, on the 
so-called sensor board. We had Crossbow MTS300 sensor 
boards, which, besides the microphone, also contain light 
and temperature sensors. 
 
B. The Recording Environment 
 
To simulate real-life conditions we made recordings at four 
different distances: we positioned the sensor at 20, 50, 100 
and 200 centimeters away from the speaker. The 50 
centimeter-long distance served as an ideal recording 
position, 20 centimeter as the speaker being too close to the 
sensor, while the 100 and 200 centimeter values simulated 
speakers being quite far away. Testing was performed on 
Hungarian broadcast news: a five-minute-long signal was 
used. It was then modified to contain a wide range of 
volume level changes such as slowly growing quieter 
(simulating the speaker going away from the microphone), 
slowly growing louder (the speaker is approaching the 
microphone) and sudden jumps (simulating multiple 
speakers being present at different distances from the 
microphone). The same modified signal was played at 
different distances to the sensors with different gain control 
algorithms, but otherwise the situation (volume level, 
position) was exactly the same as before, so that their 
performances could be compared. 
 
We made recordings using the two gain control algorithms 
at all four distances. To get a reference recording we 
recorded the original signal (i.e. the one with constant 
volume) at 50 centimeters with a fixed gain value. We then 
made two additional recordings at all four distances. First 
the original, constant volume-level signal was recorded 
without using gain control; these (the basic recordings) 
were treated as the ones in quasi-ideal circumstances: the 
speaker is in a fixed position and has a constant voice level, 
but it is not necessarily the optimal one: it could be too 
high or too low. The performance of the one at 50cm, 
compared to the reference recording, served as the glass 
ceiling: as these recordings are as near identical as possible, 
its score is the highest one available (at least in theory), and 
this value cannot be exceeded no matter what sophisticated 
gain control algorithms we develop. Next the signal with 
changes in volume level was recorded at each of the four 
distances, still without gain control. These were the 
baseline recordings, and their performance scores simulate 
the results we would get in real-life situations (multiple or 
moving speakers) without gain control. For a list of 
recordings made, see Table 2.  
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TABLE 2. The recordings made and the distances used. 
 

  Distance 
Recording Volume 20cm 50cm 100cm 200cm 

Reference constant  ●   
Basic constant ● ● ● ● 
Baseline varying ● ● ● ● 
ES AGC varying ● ● ● ● 
WA AGC varying ● ● ● ● 

 
 
C. Evaluation via the Energy Level 
 
One standard way of evaluating a gain control algorithm is 
to calculate the energy levels of the reference and the 
resulting recordings, and take their difference or ratio. 
Fortunately the energy level is very easy to calculate, and 
the volume of speech is directly related to its energy, so the 
more similar the energy levels of the original and the gain-
controlled recordings are, the closer they are. The energy is 
calculated by taking the squared sum of the samples, i.e. 
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where s is the observed speech signal having a length of T. 
(Note that the evaluation of the resulting signals was not 
done on the wireless sensors, so we could apply even 
computationally demanding algorithms for it. This way we 
were not forced to calculate the energy using absolute 
values, but we could take the squared sum of the samples 
instead.) In this form it has one value for the whole signal, 
which could indeed be of interest; for this reason we will 
calculate 
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where energyref is the total energy of the reference 
recording. This value, however, ignores the local variations 
within the signals: two recordings with quite different local 
values could have the same overall energy level. To 
overcome this weakness we introduced another measure. 
We calculated the energy levels in 500ms-long windows 
with a 80% overlap, moving the window in 100ms-long 
steps. To compare the energy of two signals (the reference 
one and one using a gain control algorithm) we calculated a 
squared error-like value by taking the squared sum of the 
difference between the energy levels of the corresponding 
windows: 
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where energyA(i) is the energy level of signal A in the ith 
window, and K is the number of windows. One signal will 
always be the reference recording, thus we get one value 
for each recording made. These scores can be easily 
compared: the lower this number is, the closer the 

recording is to the reference one, thus the better it is. As 
these values are difficult to read, we calculated their 
relative error reduction (or RER) scores as well: the 
appropriate baseline recording had a score of 0%, whereas 
the reference recording having an energy difference of 0 
had a score of 100%. The intermediate values were 
assigned linearly, e.g. for a baseline energy difference of 
5000 and a score of 1500, the RER value will be 70%, as 
5000 - 1500 is  70% of 5000, meaning this much of the 
error was eliminated.  
 

 
D. Evaluation via Sentence Recognition 
 
Energy levels can be calculated quickly, and they can be 
used very reliably to estimate the difference between the 
volume levels of two recordings. But this approach has a 
serious limitation: we adjust the gain to make the recording  
more understandable; if two signals have quite different 
energy levels, but both can be understood very well, this 
technique cannot detect it. Unfortunately, understandability 
is not a well-defined notion. Hence to assess it, we turned 
to standard techniques of speech recognition. 
 
The aim of speech recognition is to transform spoken 
words to written text. In a typical speech recognition 
process, first features [6] are calculated from the input 
signal, usually on the basis of its spectral representation 
[7], which process is called feature extraction. In the next 
step, following the frame-based approach [8], small, equal-
sized parts (the so-called frames) are classified 
independently and assigned to one of the possible 
phonemes, which is the phoneme classification subtask [9]. 
It is usually done by applying some statistical machine 
learning algorithm like Gaussian Mixture Models (GMMs) 
[10] or Artificial Neural Networks (ANNs) [11]. (The 
combined steps performed up to this point are usually 
called the acoustic model.) Next, based on the result of the 
classification and the probabilities of possible word-
sequences (which are supplied by a language model) the 
most probable word sequence is chosen, which will be the 
transcript of the input speech signal. The accuracy value of 
this process can be determined by comparing this result to 
the real word sequence belonging to the speech signal. As 
one can see, it is a quite standard process, which makes it 
feasible for generating automatic measures. 
 
One interesting aspect of this process is that, similar to the 
case of human hearing and comprehension, the accuracy 
value obtained decreases when the quality of the played 
recording becomes worse. It is so because in this case the 
input signal contains less and less information, which 
means that the signal processing and feature extraction 
parts calculate more noisy features. It produces a less and 
less reliable phoneme classification, finally resulting in 
word-level mistakes. It is known, however, that current 
speech recognition systems are much more sensitive to 
noise than human listeners. 
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One might find it surprising that this behaviour is actually 
beneficial for the application of sentence-level speech 
recognition for measuring the understandability of a 
recording, but this is due to two main reasons. Firstly, it 
follows the way human hearing works; and if we want to 
measure the amount of human understandability, any 
method that mirrors human hearing is of course helpful. 
And secondly, it is likely that, on the receiver side, we do 
not want to play the transmitted signal to a human, but we 
would like to process it by an automatic speech recognition 
system. In this case today’s speech recognition 
technologies are quite capable of measuring the quality of 
the signal played.  
 
In practice we followed the frame-based approach [8]: we 
divided the speech signal into small, equal-sized parts, 
which – after feature extraction – were classified as one of 
the possible phonemes. We could have measured the 
quality of signals based only on the result of phoneme 
classification [9]; performing sentence recognition, 
however, is a higher-level concept, which seems to be more 
meaningful. 
 
We applied the standard 13 MFCC coefficients along with 
their derivatives and the second derivatives (MFCC + Δ + 
ΔΔ for short) [12] as features for phoneme classification, 
and applied Gaussian Mixture Models (GMMs) for it with 
11 components [10].We performed the training of these 
GMMs on recordings of broadcast news, also recorded by 
using the wireless sensors, but this time using the fixed 
distance of 50 centimeters. The features were calculated by 
utilising the HTK toolkit [13]. 
 
For language modeling usually a solution called N-gram 
modeling [14] is used in speech recognition systems. In it 
the occurrence of all N possible successive words are 
counted, from which the probability of the Nth word can be 
determined; then the probability of a word sequence can be 
calculated by multiplying the probability of each word 
occurring. This approach unfortunately has the drawback 
that a quite big and relevant database (in our case written 
texts of broadcast news) is required, thus we opted for 
another, although simpler solution: we simply listed the 
possible words and allowed any combination of them with 
the same probability. 
 
Measuring the performance of a continuous recognizer 
speech recognition application is somewhat more 
complicated than measuring it for an isolated word 
recognizer, where word-level accuracy scores can be 
determined readily as the number of exact word matches. 
In the case of sentence recognition the common method is 
to calculate the word-level edit distance of the two word 
sequences (the real and the resultant); that is, we construct 
the resulting sentence from the real transcript by using the 
following operations: inserting and deleting words, and 
replacing one word with another one. These operations 
have some cost (in our case the common values of 3, 3 and 

4 were used, respectively), and then we pick an operation 
set having the lowest cost. Now we can calculate the 
following measures: 
 

N
DSNsCorrectnes −−

=     (12) 

 
and 
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N
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where N is the total number of words in all the original 
sentences, S is the number of substitutions, D is the number 
of deletions and I is the number of insertions. Correctness 
does not take the number of insertions into account, but the 
accuracy value can be negative, which is why usually both 
scores are used. 
 
We again calculated the relative error reduction scores, 
where we had several options of choosing the maximum 
value for both the accuracy and correctness values. We 
could pick 100% as the maximum, as is common in speech 
recognition. The drawback of this choice is that it totally 
ignores the recording conditions, and assumes that perfect 
recognition can be achieved. The reason for this is that in 
the field of speech recognition usually the best 
configuration is tuned, which in our case is the recording 
we chose for the role of a glass ceiling. 
 
In the remaining two choices we do not consider 100% 
accuracy as the maximum; instead we took the 
performance of a basic recording. Here we could choose 
either the one at the corresponding distance, or the one 
made at 50cm (having the glass ceiling value). As both are 
valid options, we also calculated both ratios. The (original) 
error value is the difference between the accuracy scores of 
the basic and the baseline recordings; to express how much 
of it was eliminated (which is the RER score), we 
calculated the difference between the accuracy score of the 
actual and the baseline recordings, and divided it by the 
error value. These scores are referred to as “same distance” 
and “glass ceiling” RER values, whereas the first version, 
described above, was called the “absolute” RER score. 
(This process, of course, was repeated for the correctness 
values as well.) 
 

V. RESULTS 
 
First we had to set the parameter of both algorithms to the 
optimal value: for this we found the interval of values 
which worked well by preliminary tests, then explored it 
with a small step size. The step parameter of the Equal-
Stepping Algorithm (ES) was tested between 1 and 6, 
whereas for the Weighted-Averaging Algorithm (WA) w 
was tested between 1/32 and 10/32 with a step size of 1/32.  
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A. Results Using the Energy Level 
 
We found that the best parameter values were step = 3 and 
w = 5/32 when evaluating the recordings in terms of their 
energy level. First the full energy ratio was calculated for 
each recording (see Table 3). As can be seen, the distance 
clearly affects the energy ratios when we do not use a gain 
control: the recordings made at 20cm had a 50% bigger 
total energy than the reference recording, whereas the 
recordings made at 100 and 200 centimeters had 
significantly less. Both gain control algorithms, however, 
could indeed compensate for the overall loudness (or 
quietness) at these distances, resulting in a total energy 
ratio very close to 1. For the whole parameter intervals 
tested, this ratio varied between 0.77 and 1.08 for the ES 
algorithm and between 0.87 and 1.11 for the WA method. 
 
TABLE 3. Full energy ratios of the two gain control algorithms 
(ES and WA). 
 

 Distance 
Recording 20cm 50cm 100cm 200cm 

Basic 1.53 1.00 0.75 0.51 
Baseline 1.59 1.09 0.87 0.62 
ES AGC, step = 3 1.05 0.96 0.93 0.86 
WA AGC, w = 5/32 1.08 1.02 0.95 0.88 

 
The energy level difference diff values, calculated 
according to (11), can be seen in Table 4, while the relative 
error reduction scores are shown in Table 5. It is not 
surprising that the diff values of the basic and baseline 
recordings increase when the distance changes from the 
optimal one. The only exception is the baseline recording at 
100cm: it has a lower diff score than at 50cm, which is 
probably due to the high number of loud parts in the signal 
played. It may also be why a smaller score is obtained for 
the baseline signal than for the basic one at 200cm, leading 
to the negative RER score for the latter. The basic 
recording from 50cm has an exceptionally small difference 
value due to the indeterministic nature of recording (i.e. it 
was not exactly the same as the reference one). Both gain 
control methods, however, performed quite well. As the 
distance varied from the optimal one, the diff values 
increased slightly, but the RER scores reflect the fact that 
using gain control was an effective way of countering this 
effect. The 66.44-86.88% and 62.12-83.39% RER values 
(ES and WA algorithms, respectively) are quite good, and 

in almost every case these are higher scores than those of 
the basic recordings. The only exception is at 50cm, but it 
was practically impossible to beat this score (99.93%) 
there, and the values exceeding 70% are also quite 
satisfactory. 
 
TABLE 4. Energy differences of the two basic recording types and 
of the two gain control algorithms (ES and WA) relative to the 
reference recording. 
 

 Distance 
Recording 20cm 50cm 100cm 200cm 

Basic   7341        3   1647   6412 
Baseline 13953  4439   3728   5835 
ES AGC, step = 3  1580  1161   1251   1933 
WA AGC, w = 5/32  2318  1300   1412   1761 

 
TABLE 5. Energy difference relative error reductions scores of 
the two basic recording types and of the two gain control 
algorithms (ES and WA). 
 

 Distance 
Recording 20cm 50cm 100cm 200cm 

Basic 47.39% 99.93% 55.82%  -9.89% 
Baseline  0.00%  0.00%   0.00%   0.00% 
ES AGC, step = 3 88.68% 73.85% 66.44% 66.87% 
WA AGC, w = 5/32 83.39% 70.71% 62.12% 69.82% 

 
Visually inspecting the energy levels at 50cm using the ES 
algorithm with step = 3 (see Figure 1), we may say that the 
algorithm seems to be quite effective. (The WA method 
produced a very similar curve with w = 5/32.) While the 
energy levels of the baseline recording greatly differ from 
the reference one, the gain control algorithm compensated 
for the jumps in volume: it usually differs from the 
reference recording by only a small amount. The only 
weakness of the method seems to be the periods after 
longer silences, where it resulted in much higher energy 
values than those of the reference. 
 
Figure 2. shows the energy levels of the basic recordings 
(in the upper box), and of the ES algorithm with step = 3 
(in the lower box) at each distance tested. It can be clearly 
seen that the distance between the sensor and the sound 
source strongly affects the energy levels when there is no 
gain control: the four corresponding curves are quite 
different from each other. (Note that energy is displayed on 
a log-scale.) On the other hand, the energy levels of the 
recordings using a gain control algorithm fall fairly close to 
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Fig. 1. Energy levels of the reference recording (grey continuous line), the baseline recording (grey rugged line) and the ES algorithm with step = 3. 
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each other, indicating that the method was able to amplify 
sources having different volumes to roughly the same level, 
which agrees with our previous findings involving total 
energy ratios. 
 
B. Results Using Sentence Recognition 
 
Unlike evaluating the gain control methods in terms of the 
energy levels, we found no definite best parameter values 
when performing sentence recognition. Overall, we chose 
the parameters step = 2 and w = 7/32, but we shall discuss 
this issue more throughly later. 
 
The resulting correctness values can be seen in Table 6, 
while the corresponding accuracy scores are given in 
Table 7. We achieved 72.59% and 70.17% on the reference 
recording for correctness and accuracy, respectively, which 
are indeed very close to those of the basic recording made 
at 50cm (which were is as identical as was practically 
possible to the reference one). Considering the very noisy 
recordings due to the small microphone on the sensor 
board, and the simplicity of the language model (which 
usually significantly aids the speech recognition process 
[15]), we found this score surprisingly high. 
 
TABLE 6. Correctness results of the two gain control algorithms 
(ES and WA). The reference recording produced a score of 
72.59%. 
 

 Distance 
Recording 20cm 50cm 100cm 200cm 

Basic   67.07% 72.24% 52.41%   5.52% 
Baseline   54.48% 59.31% 38.28%   7.07% 
ES AGC, best values   74.31% 68.45% 43.45% 10.00% 
ES AGC, step = 2   74.31% 65.86% 41.21% 10.00% 
RER (same distance) 157.51% 50.66% 20.74% – 
RER (glass ceiling) 111.66% 50.66%   8.63%   4.50% 
RER (absolute)   43.56% 16.10%   4.75%   3.15% 
WA AGC, best values   75.17% 68.79% 45.34% 10.17% 
WA AGC, w = 7/32   75.17% 64.48% 44.48% 10.17% 
RER (same distance) 164.34% 39.98% 43.88% – 
RER (glass ceiling) 116.50% 39.98% 18.26%   4.76% 
RER (absolute)   45.45% 12.71% 10.05%   3.34% 

 
TABLE 7. Accuracy results of the two gain control algorithms (ES 
and WA). The reference recording produced a score of 70.17%. 
 

 Distance 
Recording 20cm 50cm 100cm 200cm 

Basic   63.28% 69.48% 50.17%   5.34% 
Baseline   50.17% 56.72% 35.69%   6.55% 
ES AGC, best values   70.69% 65.34% 40.86%   8.45% 
ES AGC, step = 2   70.52% 63.10% 37.93%   8.45% 
RER (same distance) 155.23% 50.00% 15.47% – 
RER (glass ceiling) 105.39% 50.00%   6.63%   3.02% 
RER (absolute)   40.84% 14.74%   3.48%   2.03% 
WA AGC, best values   72.41% 65.52% 43.10%   9.14% 
WA AGC, w = 7/32   72.41% 64.48% 42.76%   9.14% 
RER (same distance) 169.64% 60.82% 48.83% – 
RER (glass ceiling) 115.17% 60.82% 20.94%   4.12% 
RER (absolute)   44.63% 17.93% 10.99%   2.77% 

 
The performance of the basic and baseline recordings 
clearly show that, among the four tested cases, the distance 
of 50 cm could be considered as the ideal for both cases: 
the accuracy and correctness scores are the highest using 
this distance, while they fall when the sensor is closer or 
further away from the microphone. The extremely small 
scores of the recordings made at 200cm, however, are 
surprisingly low. Our previous tests involved phoneme 
recognition in the same circumstances as we had here [16], 
and they also showed a decrease in the phoneme 
classification scores at this distance, but by a much smaller 
amount (they fell from the 83.19% glass ceiling level to 
53.75% and 53.05%, basic and baseline recordings, 
respectively). It could be, however, that this decrease in the 
phoneme identification performance made the acoustic 
model of speech recognition unreliable in practice, which 
brought the sentence-level recognition performance down 
to this level. This hypothesis is also corroborated by the 
small difference in the phonetic accuracy of the two 
recordings, suggesting that due to the low volume (caused 
by the very large distance), most parts of the utterances 
were just not distinguishable from background noise (i.e. 
silence). Low speaker volume could also be the reason for 
the higher speech recognition accuracy for the baseline 
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Fig. 2. Energy levels of the basic recording (up), and the signal with varying volume using the ES algorithm with step = 3 (down) at different distances. 
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recording than that of the basic one: the baseline recording 
had a varying volume, so in a number of cases it was 
louder, aiding the understanding process in this situation, 
whereas the lower-volume parts did not degrade accuracy 
any further. (Note that this result mirrors our findings when 
we evaluated these two recordings via the use of energy 
levels: the baseline recording also performed better than the 
basic one measured by that evaluation metric.) It also 
means that calculating the relative error reduction using the 
basic score at the same distance makes no sense in this 
case. 
 
Examining the performance of the gain control algorithms, 
perhaps the most interesting finding is that, unlike the 
evaluation done via energy levels, we could not find an 
optimal parameter value for either algorithm. Usually the 
settings which performed best at 50 and 100 centimeters 
produced worse sentence recognition scores at 20 and 200 
centimeters than the other cases, which, in contrast, worked 
suboptimally when using the former distances. The reason 
for this is probably that at 50 and 100 centimeters the 
volume has a relatively small variation, which prefers 
methods with smaller, smoother changes. On the other 
hand, recordings made at 20 and 200 centimeters require 
more flexible gain control methods, which allow greater 
jumps in the gain. Of course, for a recording application it 
is unreasonable to expect constant switching between 
parameter values while recording, thus we chose one 
parameter setting for both algorithms that we considered 
best; but we also listed the best scores achieved for both 
algorithms and for all four distances in all the parameter 
intervals tested. 
 
Looking at the scores, we may conclude that we could 
achieve significant improvements by using either of the 
gain control algorithms described here. The only exception 
was when we made recordings at 200 centimeters, where, 
despite the relatively high error reduction scores, the 
performance scores still remain at the unusable level. It is 
probably because training was performed on recordings 
made from a fixed distance (50 centimeters). In theory gain 
control could counter this effect by raising microphone 
sensitivity, but the Signal-to-Noise Ratio (SNR) [17] 
cannot be raised this way, because the background noise is 
also amplified. 
 
In the other cases, however, the relative error reduction 
scores based on using the same distance are quite 
convincing (ranging from 20.74% to 164.34% and 15.47% 
to 169.64%, correctness and accuracy, respectively), and 
the other two RER values are also good. A noteworthy case 
is using gain control when recording at 20 centimeters, 
where even the glass ceiling value could be exceeded. 
These results imply that what we regarded as an ideal 
recording environment (using a constant volume-level 
recording from the best distance) was not the best one 
possible. The reason for this is probably that in human 
speech, even without artificially introducing volume level 
changes (as we did when constructing the baseline 

recordings and the ones recorded using gain control), there 
are also volume level changes present [18] that could also 
be handled by the use of gain control. 
 
Overall, although there are small differences in the 
performance of the two methods, both achieved similarly 
good results, hence both can be recommended for practical 
use. The small advantage of the Weighted-Averaging Gain 
Control Algorithm over the Equal-Stepping one could be 
due to its smoother transition of gain level and its ability to 
make bigger jumps when required. Also, it was 
demonstrated that gain control could indeed be effective 
when using wireless sensors to record speech data, since 
the understandability of the sound signals transferred 
(measured in terms of speech recognition sentence-level 
error scores) improved significantly. 
 

VI. CONCLUSIONS 
 
Wireless sensors are recent, low-capacity devices used for 
monitoring their immediate environment, which includes 
recording and transmitting audio information. In this 
situation, however, there could be a big difference in the 
volume level of the observed signals due to the presence of 
multiple and/or moving speakers. Varying volume can 
indeed harm the understandability of signals, which can be 
compensated for by applying Automatic Gain Control 
methods. The two algorithms introduced in this work 
(which were designed to meet the particular requirements 
of our set-up, but could also be used elsewhere) proved 
successful when we measured their performance using the 
difference in volume levels and when applying sentence-
level automatic speech recognition. Overall, the quality of a 
sound recording made could be improved significantly 
using some AGC technique like our solutions. 
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