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Abstract: In recent years it has become possible to extract non-trivial information 

from audio sources. One such task is to determine the intensity of conflicts arising in 

speech recordings, based solely on audio information sources. This intensity is 

expressed as a real number, therefore this task is essentially a regression one, the 

objective being to estimate a given numeric score. As the number of examples in these 

tasks are limited, a kNN-like solution may work well in these problems. Such an 

approach is the Inverse Distance Weighting (IDW) algorithm, which is also a suitable 

choice as it is computationally cheap. By applying this method on the conflict intensity 

estimation task using the SSPNet Conflict Corpus, we were able to reach the level of 

performance of baseline SVM. 

 

Keywords: speech technology, conflict detection, regression, KNN, inverse distance 
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1. Introduction 

In the past, within the field of speech technology, most of the researchers' 

efforts were devoted to speech recognition. But in recent years they have turned 

their attention to other areas as well like emotion detection [25, 10], speaker 

verification [17], speaker age estimation  [5], detecting social signals like 

laughter and filler events [1, 10, 12], and estimating the amount of physical or 

cognitive load during speaking [20, 11, 14]. What these tasks have in common 

is that what is considered noise in speech recognition (i.e. non-verbal audio 

information) becomes important, while what was relevant in speech recognition 

(i.e. what the speaker actually said) becomes irrelevant. 

Such a task is to determine the level of conflict from the audio. Conflicts 

influence the everyday lives of people to a significant extent, either in their 

public or personal lives, and they are one of the main causes of stress [23]. With 



48 G. Gosztolya 

 

  

the rise of socially intelligent technologies, the automatic detection of conflicts 

can be the first step of handling them properly. 

In this study we focus on the automatic estimation of the level of conflict in 

televised political debates. This is mainly a regression task [2], i.e. we have to 

match a score as closely as possible, as the level of conflict is expressed as one 

numerical value. Of course, from an application point of view, a categorical 

approach looks more practical, where the question is whether there a conflict 

present or not, and if so, we want to know what its level is. This in fact means 

that the task is turned into a classification one [6]. However, this categorization 

may be readily performed by setting up intervals for the conflict score; therefore 

we approached this task mainly from a regression point of view. 

Although such recordings can be obtained quite easily, their annotation can 

be rather expensive; hence it is preferable to use a machine learning method that 

works well for small-sized training sets. One such algorithm for classification is 

the K Nearest Neighbours method (kNN), where the label of the given utterance 

to be classified is determined by simple majority voting of its K nearest 

neighbours. Of course, the distance function used and the value of K have to be 

determined, but these are not major requirements (especially when compared to 

the parameters of other machine learning methods like Artificial Neural 

Networks (ANNs) [3] and Support Vector Machines (SVM) [19, 24]). 

Another advantage of this method is its low computational cost if both the 

train and test sets consist of just a small number (e.g. hundreds) of examples − 

especially when compared to high-complexity approaches like SVM and 

AdaBoost [18, 4]. A similar approach for regression is Inverse Distance 

Weighting (IDW) [22]. In it, the function value of a given point is calculated by 

computing the weighted sum of the function value of the training points, where 

the weight of a training point is inversely proportional to its distance from the 

point to be evaluated. 

The structure of this paper is as follows. First, we describe the audio corpus 

used for conflict intensity estimation, and the evaluation methodologies. Then 

we describe the original and an improved version of the IDW algorithm. After, 

we explain the slight modifications made that we felt necessary to use IDW for 

this task. Then we present and analyse our results got from applying them on 

the development and test sets. Lastly, we draw some conclusions and make 

some suggestions for future study. 

2. The SSPNet Conflict Corpus 

We performed our experiments on the (freely accessible) SSPNet Conflict 

Corpus [15]. It contains recordings of Swiss French political debates taken from 

the TV channel “Canal9”. It consists of 1430 recordings, 30 seconds each, 
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making a total of 11 hours and 55 minutes. The ground truth level of conflicts 

was determined by manual annotation performed by volunteers not 

understanding French (French-speaking people were excluded from the list of 

annotators). Each 30-second long clip was tagged by 10 annotators, and in the 

end we got a score in the range [-10, 10], 10 meaning a high level of conflict 

and -10 meaning no conflict at all. The data was later used in the Conflict sub-

challenge of the Interspeech 2013 ComParE Challenge [21]. 

The database contains both audio and video recordings, and the annotators 

were able to rely on both sources. In the latter experiments, however, attention 

was focused only on the audio information for a number of reasons. Firstly, the 

annotators judged the level of conflict in a similar way based on the two 

sources: the correlation of the scores was 0.95 [15]. Furthermore, in a television 

political debate, audio can be a more reliable indicator: the subjects can hear all 

the participants, but they can only see the one that the cameraman of the debate 

has chosen, which is not the one speaking in many cases (especially in the heat 

of a debate when several persons may be speaking at the same time). 

3. Inverse Distance Weighting 

Inverse Distance Weighting (IDW) was introduced by Shepard in 1968, 

originally for interpolating surfaces from irregularly-spaced data [22]. Later it 

was used for other interpolation tasks as well [9, 26]. This method (sometimes 

called “Shepard's algorithm”) estimates the target score of a given point by the 

weighted sum of the input scores, and the weight of a training point is inversely 

proportional to its distance. Given a set of sample points x1, …, xN, score values 

f1, …, fN and a distance function d(x,y), for a point y ≠ xi, its score F(y) will be 
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where c > 0. Inserting this into Eq. (1) we get 
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The value of c regulates the relative importance of closer and more distant 

points: for larger values of c, the closer points are more important, while using 

smaller values of c tends to equalize the weights. It is a global method in the 

sense that to determine the score of a test example, all training points are used, 

no matter how far away they are. A simple extension to make this method local 

was suggested by Franke and Nielson [8], who introduced the limiting 

parameter R. Their formula for determining the weights is 
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where (v)+ denotes max(v, 0). 

4. Experimental setup 

Speech recognition usually decomposes the speech signal of an utterance 

into small-equal sized parts (frames), from which it is easy to extract the same 

number of features for machine learning. In the current task, however, we have 

to estimate the level of conflict for the whole 30 second-long utterance, 

therefore features which describe the whole recording are preferred. A 

straightforward choice is to compute the standard features (e.g. MFCC and filter 

banks) for each frame, then calculate the minimum, maximum, mean and 

standard deviation of these values. 

In our experiments we used the feature set introduced in [21]. It contained 

6373 features overall, extracted by using the tool openSMILE [7]. The set 

includes energy, spectral, cepstral (MFCC) and voicing-related low-level 

descriptors (LLDs) as well as a few LLDs including logarithmic harmonic-to-

noise ratio (HNR), spectral harmonicity and psychoacoustic spectral sharpness. 

Of course, as this is a quite general feature set, not all attributes are useful for 

our current task; now, however, we focused on the application of IDW, and did 

not experiment with any kind of feature selection. 
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Following standard machine learning practice, the available data was split 

into training, development and test sets. The first one was used for training 

purposes, i.e. IDW estimation was done using the points belonging to this set. 

The development set was used to find the meta-parameters of the learning 

algorithm, i.e. c and R by choosing the values which led to the best results by 

training on the training set and evaluating on the development one. Next, using 

the “optimal” c and R values, we evaluated our model on the test set; in this 

case we used the points of both the training and development sets as training 

points. We used the division described in [21], so 793 recordings were used for 

model training, whereas 240 and 397 were used for the development and test 

sets, respectively. 

A straightforward choice for measuring the similarity of the reference and 

the estimated values is cross-correlation. For the signals X  x1, …, xn, and  

Y  y1, …, yn, it is defined as 
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where µX and µY are the mean and σX and σY are the standard deviation values 

of X and Y, respectively. Another choice for measuring the difference between 

the two series is the Root-Mean-Square Error (RMSE), defined as 
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While cross-correlation measures the tendency of the two signals, RMSE 

measures the actual difference between the values; this means that in a 

regression task it may be sensitive to the scaling of results. 

Another possibility is to turn this task into a classification one. We also 

carried out experiments for this, following the setup described in [21], where 

non-negative conflict scores were considered as high ones, while negative ones 

were converted into the class label low. Methods applied on such two-class 

classification problems can be measured by a number of metrics, all of which 

are based on the values of the confusion matrix. There, TP will be the number of 

true positives (i.e. the occurrences of class high that were classified correctly) 

and FP the number of false positives (the low occurrences classified as high), 

while the values TN (true negatives) and FN (false negatives) are defined in a 

similar way. (The sum of the four values will be n.) Then accuracy will simply 

be the ratio of correctly classified examples, i.e. 



52 G. Gosztolya 

 

  

 .
n

TT
Accuracy NP 

  (7) 

If we treat our task as an information retrieval one, meaning that we are 

interested in the detection of occurrences of the positive class only (in our case, 

class high), we can measure our performance by means of precision and recall. 

Precision measures how many of the identified examples actually belonged to 

this class, i.e. 
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whereas recall expresses how many of the examples actually belonging to the 

positive class were found; i.e. 
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As there is clearly a tradeoff between these two scores, they are usually 

aggregated via F-measure (or F1-score), defined as the harmonic mean of the 

two values, i.e. 
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Using the concept of recall, we can define another variant of accuracy, 

namely the Unweighted Average Recall (UAR) or True Positive Rate (TPR), 

expressed as the mean of the recall values for all the classes. In a two-class set-

up it is equal to 
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Accuracy is sensitive to class distribution, whereas UAR can be viewed as 

an accuracy which is balanced class-wise. For this task and this dataset in the 

past, regression metrics (especially cross-correlation) were used [15], and we 

also find this approach more logical, so we will follow this in our study. 

However, we will also view the task as a classification one, where we will 

primarily rely on the UAR score, just as it was common in some earlier studies 

on this dataset [21, 16]. 
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5. Applying IDW for estimating the conflict scores 

Shepard's algorithm and Franke’s modified version were developed for 

generating surfaces based on sparsely distributed input points in a two-

dimensional space and a function value. In a large-dimension regression task 

they might require some minor changes in order to perform well (and in our 

case there were 6373 features). To achieve this, we included some minor pre-

processing and post-processing steps, which we will now describe in detail. 

First, we used the Euclidean distance metric; that is, for two points y  y1, y2, 

…, yn and z  z1, z2, …, zn, their distance d(y,z) was simply 
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and in our preliminary tests we found that applying other distance functions 

yielded somewhat worse results. To prevent confusion caused by differently-

scaled features (where a few of them might dominate the distance, whereas 

other, perhaps more important attributes might simply be ignored because of 

initial scaling), feature normalization was clearly required. For this reason, first 

all the vectors were normalized so that they had a standard deviation of 1. A 

couple of features had a standard deviation of 0, which were discarded, but this 

step clearly did not lead to any information loss (as it meant that the value of 

these features was the same for all examples). 

After performing the IDW procedure, the resulting values were quite small 

compared to the real ones, perhaps because of the high dimensionality of the 

input data. To handle this issue, the resulting scores were also normalized: the 

mean was set to zero, and they were multiplied by a factor such that the 

standard deviation of the results became equal to the one of the scores of the 

training set. Next, scores falling below or above the limits of the scores of the 

training set were set to the minimum or maximum score, respectively, and each 

value was rounded to one decimal place. 

Franke’s method has two parameters, namely c and the limit value R. As for 

the latter, we decided to express it via the function of maxd  max(d(x,y)) for all 

possible values of x and y (of the training set); that is, R  r ∙ maxd. Eventually 

when r  1, all the training points were considered, whereas for lower values the 

more distant points were ignored. When no training points were found in the R-

sized neighbourhood, the conflict score of the closest training point was used. 

We optimized the parameters cross-correlation, for UAR and for F-measure; we 

used linear SVM in regression (the SMOReg method in Weka [13]) mode as the 

baseline. (Note that this method was used as the baseline approach for ComParE 
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2013 [21]; the only difference is that the c parameter was tuned to maximize 

UAR, while we optimized CC as well). 

5. Results 

The results when optimizing for cross-correlation can be seen in Table 1. 

Table 1: Scores obtained by optimizing for cross-correlation. 

Method CC RMSE Acc. UAR F1 

dev 

IDW, c = 13.56 0.805 2.390 80.83% 80.67% 79.28% 

IDW, r = 0.15 0.816 2.314 81.67% 81.46% 80.00% 

SVM 0.828 2.427 74.58% 73.40% 66.30% 

test 

IDW, c = 13.56 0.782 2.654 80.60% 80.47% 77.94% 

IDW, r = 0.15 0.768 2.727 79.35% 79.23% 76.57% 

SVM 0.804 2.414 83.63% 82.35% 79.37% 

 

Here, IDW achieved practically the same level of performance as SVM for 

all the metrics on the development set; Franke’s method was somewhat better 

than the basic IDW algorithm. On the test set, however, the standard IDW 

method proved to be more stable, and Franke’s variation (case r  0.15) showed 

signs of overfitting. Shepard’s method performed slightly worse than the 

baseline SVM, but the difference is not that big. 

Table 2: Scores obtained by optimizing for UAR. 

Method CC RMSE Acc. UAR F1 

dev 

IDW, c = 7.22 0.801 2.430 82.08% 81.95% 80.72% 

IDW, r = 0.69 0.808 2.383 82.50% 82.39% 81.25% 

SVM 0.806 2.330 80.42% 79.55% 75.65% 

test 

IDW, c = 7.22 0.775 2.702 79.09% 79.29% 76.88% 

IDW, r = 0.69 0.765 2.725 80.86% 80.55% 77.91% 

SVM 0.826 2.271 84.64% 83.87% 81.46% 

 

Upon examining the classification results (see Table 2), it can be seen that 

the IDW classification performance significantly exceeded that of SVM for the 
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development set in its basic form, and using the variation developed by Franke 

and Nielsen (case r = 0.69) even surpassed this. (This variant also performed 

better judging from the regression scores.) However, on the test set the best 

variation with r = 0.69 performed slightly worse than the baseline SVM, 

although the difference is again not that big. Still, in our opinion even matching 

the score of the SVM is a good result for an algorithm that has such low 

computational requirements as IDW. 

 

Figure 1: The estimated scores got as a function of the reference values, using IDW 

optimized for cross-correlation; Shephard’s (left) and Franke’s (right) methods. 

Fig. 1 shows the regression scores in the function of the reference scores for 

the development set, obtained using the IDW algorithm with c  13.56 

(Shephard’s method, left) and with r  0.15 and c  7.68 (Franke’s algorithm, 

right). The strong correlation between the two values can clearly be seen; 

overall, the points produced by Franke’s method seem a bit more packed, which 

is confirmed by both the higher CC and lower RMSE scores. It is 

understandable, though, as in this case we had one more parameter to set. 

Fig. 2 shows the corresponding scores we got with the value c  7.22 

(Shephard’s method, left) and with r  0.69 and c  5.44 (Franke’s algorithm, 

right). This time we optimized for the UAR score, which is reflected in the 

lower cross-correlation value, resulting in somewhat more scattered points. The 

reason for this is that UAR only measures which point falls into which quarter 

of the chart (i.e. both the reference and the estimated scores are non-negative, 

both are negative, etc.), while the actual difference between the expected and 

the estimated scores is completely ignored. 
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Figure 2: The estimated scores got as a function of the reference values, using IDW 

optimized for UAR; Shephard’s (left) and Franke’s (right) methods. 

An interesting observation is that the optimal c values for Shepard’s method 

were somewhat higher (13.56 and 7.2) than those of Franke’s algorithm (7.68 

and 5.44). This might be because for such a regression task training points 

which fall closer should be more important than those further away; this can be 

realized in the basic IDW method by using high values of c. When using the 

version developed by Franke and Nielsen, however, we can simply do this by 

choosing the right R value; then c can be set to a lower value as well. 

Finally we should note that there were higher accuracy scores among the 

participants of ComParE 2013. (Although the cross-correlation scores were not 

always reported, since the official metric of the Challenge was UAR even for 

this regression task.) The more successful attempts, however, performed some 

kind of feature selection [16] or extracted new features from the utterances [12], 

while in this study we applied a different machine learning method for the 

regression task of conflict score estimation. Of course, it could be beneficial to 

use some kind of feature selection method for IDW as well, but this is clearly 

the subject of future work. 

6. Conclusions 

Regression tasks are quite rare in speech technology, but one exception is the 

detection of the intensity of conflicts based on speech recordings. We applied 

the Inverse Distance Weighting method to this task, which was originally 

developed for estimating surfaces on the basis of just a few sparsely and 

unevenly distributed reference points. After making a few minor alterations, this 

method outperformed the baseline SVM in terms of classification accuracy, and 

gave only slightly worse results in terms of regression scores. Taking into 

account the fact that IDW has low computational requirements and we can add 
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further training points without having to retrain a complicated model, we think 

that this method is a valid tool for conflict intensity estimation in particular, and 

speech technology regression tasks in general. 
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