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Abstract

We study asymptotic behavior of conditional least squares estimators for 2-type doubly
symmetric critical irreducible continuous state and continuous time branching processes

with immigration based on discrete time (low frequency) observations.

1 Introduction

Asymptotic behavior of conditional least squares (CLS) estimators for critical continuous state
and continuous time branching processes with immigration (CBI processes) is available only
for single-type processes. Huang et al. [11] considered a single-type CBI process which can be
represented as a pathwise unique strong solution of the stochastic differential equation (SDE)
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for t € [0,00), where fS,c¢ € [0,00), B € R, and (Wi)i=o is a standard Wiener process,
N and M are independent Poisson random measures on (0,00)> and on (0,00)? with
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intensity measures dsp(dz)du and dsv(dz), respectively, N(ds,dz,du):= N(ds,dz,du) —
ds p(dz) du, the measures p and v satisfy some moment conditions, and (W;)i0, N and
M are independent. The model is called subcritical, critical or supercritical if B< 0, B=0
or B >0, see Huang et al. [11, page 1105] or Definition 2.8. Based on discrete time (low
frequency) observations (Xg)refo1,..n3, 7 € {1,2,...}, Huang et al. [11] derived weighted CLS
estimator of (f, E) Under some regularity assumptions, they showed that the estimator of
(8, E) is asymptotically normal in the subcritical case, the estimator of B has a non-normal
limit in the critical case, and the estimator of B is asymptotically normal with a random
scaling in the supercritical case.

Overbeck and Rydén [22] considered CLS and weighted CLS estimators for the well-known
Cox—Ingersoll-Ross model, which is, in fact, a single-type diffusion CBI process (without jump
part), i.e., when ;=0 and v =0 in (1.1). Based on discrete time observations (Xj)ke{o,1,....n};
n € {1,2,...}, they derived CLS estimator of (/3, B, ¢) and proved its asymptotic normality in
the subcritical case. Note that Li and Ma [21] started to investigate the asymptotic behaviour
of the CLS and weighted CLS estimators of the parameters ([, é) in the subcritical case for
a Cox—Ingersoll-Ross model driven by a stable noise, which is again a special single-type CBI
process (with jump part).

In this paper we consider a 2-type CBI process which can be represented as a pathwise
unique strong solution of the SDE
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for ¢ € [0,00). Here X;;, i € {1,2}, denotes the coordinates of X,;, B € [0,00)?,
B € R>2 has non-negative off-diagonal entries, c¢j,co € [0,00), ey, ..., e; denotes the
natural basis in RY, Uy := [0,00)2\{(0,0)}, (Wi1)i=0 and (W;2)i0 are independent standard
Wiener processes, N;, j € {1,2}, and M are independent Poisson random measures on
(0,00) x Uy x (0,00) and on (0,00) X Uy with intensity measures dsp;(dz)du, j € {1,2},
and dsv(dz), respectively, Nj(ds,dz,du) = N;(ds,dz,du) — ds p;(dz)du, j € {1,2}. We
suppose that the measures p;, j € {1,2}, and v satisfy some moment conditions, and
(Wii)i=0, (Wia)eso, Ni, No and M are independent. We will suppose that the process

(1.2)

(X¢)¢=0 is doubly symmetric in the sense that

~ K
B=|""|
k-
where 7 € R and k € [0,00). Note that the parameters v and x might be interpreted as the

transformation rates of one type to the same type and one type to the other type, respectively,
compare with Xu [25]; that’s why the model can be called doubly symmetric.
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The model will be called subcritical, critical or supercritical if s < 0, s =0 or s > 0,
respectively, where s:= v+ k denotes the criticality parameter, see Definition 2.8.

For the simplicity, we suppose X = (0,0)". We suppose that B, cy, ¢, i1, 12 and v are
known, and we derive the CLS estimators of the parameters s, v and s based on a discrete
time (low frequency) observations (Xp)req1,...n}, 7 € {1,2,...}. In the irreducible and critical
case, i.e, when k>0 and s =+ xk =0, under some moment conditions, we describe the
asymptotic behavior of these CLS estimators as n — oo, provided that 3 # (0,0)" or v #0,
see Theorem 3.1. We point out that the limit distributions are non-normal in general. In the
present paper we do not investigate the asymptotic behavior of CLS estimators of s, v and
x in the subcritical and supercritical cases, it could be the topic of separate papers.

Xu [25] considered a 2-type diffusion CBI process (without jump part), i.e., when p; =
0, 7€ {1,2}, and v =0 in (1.2). Based on discrete time (low frequency) observations
(Xk)keq1,.n3, n € {1,2,...}, Xu [25] derived CLS estimators and weighted CLS estimators
of (ﬁ,é,cl,cg). Provided that B € (0,00)?, the diagonal entries of B are negative, the
off-diagonal entries of B are positive, the determinant of B is positive and ¢; > 0, i € {1,2}
(which yields that the process X is irreducible and subcritical, see Xu [25, Theorem 2.2] and
Definitions 2.7 and 2.8), it was shown that these CLS estimators are asymptotically normal,
see Theorem 4.6 in Xu [25].

Finally, we give an overview of the paper. In Section 2, for completeness and better read-
ability, from Barczy et al. [5] and [7], we recall some notions and statements for multi-type
CBI processes such as the form of their infinitesimal generator, Laplace transform, a formula
for their first moment, the definition of subcritical, critical and supercritical irreducible CBI
processes, see Definitions 2.7 and 2.8. We recall a result due to Barczy and Pap [7, Theorem 4.1]
stating that, under some fourth order moment assumptions, a sequence of scaled random step
functions (™' X |p4))i=0, n > 1, formed from a critical, irreducible multi-type CBI process
X converges weakly towards a squared Bessel process supported by a ray determined by the
Perron vector of a matrix related to the branching mechanism of X.

In Section 3, first we derive formulas of CLS estimators of the transformed parameters
e’ and €’", and then of the parameters 7 and k. The reason for this parameter
transformation is to reduce the minimization in the CLS method to a linear problem. Then
we formulate our main result about the asymptotic behavior of CLS estimators of s, ~ and
k in the irreducible and critical case, see Theorem 3.1. These results will be derived from the
corresponding statements for the transformed parameters e’** and e”", see Theorem 3.5.

In Section 4, we give a decomposition of the process X and of the CLS estimators of
the transformed parameters e’ and €' % as well, related to the left eigenvectors of B
belonging to the eigenvalues v+ x and v — kK, see formulas (4.5) and (4.6). By the help of

these decompositions, Theorem 3.5 will follow from Theorems 4.1, 4.2 and 4.3.

Sections 5, 6 and 7 are devoted to the proofs of Theorems 4.1, 4.2 and 4.3, respectively. The
proofs are heavily based on a careful analysis of the asymptotic behavior of some martingale
differences related to the process X and the decompositions given in Section 4, and delicate



moment estimations for the process X and some auxiliary processes.

In Appendix A we recall a representation of multi-type CBI processes as pathwise unique
strong solutions of certain SDEs with jumps based on Barczy et al. [5]. In Appendix B we recall
some results about the asymptotic behaviour of moments of irreducible and critical multi-type
CBI processes based on Barczy, Li and Pap [6], and then, presenting new results as well, the
asymptotic behaviour of the moments of some auxiliary processes is also investigated. Appendix
C is devoted to study of the existence of the CLSE of the transformed parameters e’ and
e’ %, In Appendix D, we present a version of the continuous mapping theorem. In Appendix
E, we recall a useful result about convergence of random step processes towards a diffusion
process due to Ispany and Pap [15, Corollary 2.2].

In some cases the proofs are omitted or condensed, however in these cases we always refer
to our ArXiv preprint Barczy et al. [8] for a detailed discussion.

2  Multi-type CBI processes

Let Z,, N, R, R, and R,, denote the set of non-negative integers, positive integers, real
numbers, non-negative real numbers and positive real numbers, respectively. For z,y € R,
we will use the notations = Ay := min{z,y} and z% := max{0,z}. By |z| and |A]|,
we denote the Euclidean norm of a vector € R? and the induced matrix norm of a matrix
A € R™? respectively. The natural basis in R? will be denoted by ey, ..., e;. The null
vector and the null matrix will be denoted by 0. By CZ(R%,R) we denote the set of twice
continuously differentiable real-valued functions on Ri with compact support. Convergence

in distribution and in probability will be denoted by L, and i>, respectively. Almost sure

a.s.

equality will be denoted by =.

2.1 Definition. A matriz A = (a;;)ijeq1,...ap € R4 s called essentially non-negative if
a;; € Ry whenever i,j € {1,...,d} with i j, thatis, if A has non-negative off-diagonal

entries. The set of essentially non-negative d x d matrices will be denoted by R?:)d.

2.2 Definition. A tuple (d,c,B3,B,v,p) is called a set of admissible parameters if

dxd
= (bi,j)i,je{l,...,d} € R(:) p



(vi) p = (u1,...,pq), where, foreach i € {1,...,d}, p; is a Borel measure on Uy satisfying

/ud {(1 A=)+ Z (1A Zj)] pi(dz) < oo

Je{l,...d)\{i}

2.3 Remark. Our Definition 2.2 of the set of admissible parameters is a special case of Defini-
tion 2.6 in Duffie et al. [9], which is suitable for all affine processes, see Barczy et al. [5, Remark
2.3]. O

2.4 Theorem. Let (d,c,3,B,v,pn) be a set of admissible parameters. Then there exists a
unique transition semigroup (P;)ier, acting on the Banach space (endowed with the supremum
norm) of real-valued bounded Borel-measurable functions on the state space ]Rﬁlr such that its
infinitesimal generator is

Zq nfi(e)+ 8+ Be. f@) + [ (fle+2) @) vidz)
(2.1)

+sz/ (f(:z: +z)— f(z) — fl(x)(1 /\zz)) 1i(dz)

for f € CYRL,R) and x € RY, where f| and f/;, i € {1,...,d}, denote the first

0,87

and second order partial derivatives of f with respect to its i-th variable, respectively, and
fl(x) == (fi(x),..., fi(x))". Moreover, the Laplace transform of the transition semigroup
(P))ier, has a representation

/de<>‘y>lDt(£cdy)—e (@o(tN)=fo w(v(sN) ds zeRY, XeRL, teR,,
R

where, for any A € RL, the continuously differentiable function Ry 3 t — v(t,A) =
(v1(t, ), .., va(t, A)) T € RL is the unique locally bounded solution to the system of differential
equations

(2.2) it A) = —gi(w(t,N),  w(0,N) =N, i {l,....d}

with
Ug

for XeR% and i€ {1,...,d},
Y(A) = (B, A) +/ (1—e™N)p(dz), AeRL
Ug
2.5 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [9] with m = d,

n = 0 and zero killing rate. The unique existence of a locally bounded solution to the system
of differential equations (2.2) is proved by Li [20, page 45]. O



2.6 Definition. A Markov process with state space Ri and with transition semi-

group (P)ier, gwen in Theorem 2.4 is called a multi-type CBI process with parameters
(d,e,B,B,v,p). The function RL 3 X (01(A),...,0a(X)"T € R? is called its branching
mechanism, and the function Ri S A= YP(A) € Ry s called its immigration mechanism.

Note that the branching mechanism depends only on the parameters ¢, B and p, while
the immigration mechanism depends only on the parameters 3 and v.

Let (X¢)ier, be a multi-type CBI process with parameters (d,c,8, B,v, ) such that
the moment conditions

(2.3) / 12121y v(dz) < oo, / 12| Lgz1y pi(dz) < oo, i€ {l,...,d}
Z/[d ud

hold with ¢ =1. Then, by formula (3.4) in Barczy et al. [5],

(2.4) E(X,| X, =x) =Bz + /t e“BBdu, xeRY, teR,,
0

where
(2.5) B = (bij)ijeqt,ap,  biji=Dbi +/u (2i = 0ij) " py(dz),

4
(2.6) B:=8+ / zv(dz),

U
with 0;;:=1 if i =7, and d;;:=0 if i #j. Note that B € R?j)d and B € R?, since
(2.7) [ Jelvidz) < oo, /M (2 — 60;)" y(dz) < 00, i,je{l,....d},
4 4

see Barczy et al. [5, Section 2]. Omne can give probabilistic interpretations of the modified
parameters B and 3, namely, eEej =EY.|Yy =¢;), je{l,...,d}, and B =
E(Z.1|Zy=0), where (Y;)icr, and (Z;)icr, are multi-type CBI processes with parameters
(d,c,0,B,0,u) and (d,0,83,0,v,0), respectively, see formula (2.4). The processes (Y¢)ier,
and (Z¢)ier, can be considered as pure branching (without immigration) and pure immigration
(without branching) processes, respectively. Consequently, eB  and B may be called the
branching mean matrix and the immigration mean vector, respectively.

Next we recall a classification of multi-type CBI processes. For a matrix A € R
o(A) will denote the spectrum of A, that is, the set of the eigenvalues of A. Then
r(A) := maxyes(4) |A| is the spectral radius of A. Moreover, we will use the notation

s(A) = /\Ierﬁﬁ) Re()).

A matrix A € R™? is called reducible if there exist a permutation matrix P € R¥? and an
integer » with 1 <r <d—1 such that

PTAP = [Al A2]

0 A;
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where A; € R™", Az € RU-x(d=) A, ¢ R and 0 € RE*" ig a null matrix. A
matrix A € R¥? is called irreducible if it is not reducible, see, e.g., Horn and Johnson [10,
Definitions 6.2.21 and 6.2.22]. We do emphasize that no 1-by-1 matrix is reducible.

2.7 Definition. Let (X;)icr, be a multi-type CBI process with parameters (d,c, 3, B,v, p)
such that the moment conditions (2.3) hold with q=1. Then (X;)ier, is called irreducible
if B s irreducible.

2.8 Definition. Let (X)icr, be a multi-type CBI process with parameters (d,c,3,B,v, )
such that E(||Xo||) < oo and the moment conditions (2.3) hold with ¢ = 1. Suppose that
(Xt)ter, s irreducible. Then (Xi)wer, s called

suberitical if s(B)<0
critical if s(B)=0,
supercritical if s(B) >0

For motivations of Definitions 2.7 and 2.8, see Barczy et al. [7, Section 3].
Next we will recall a convergence result for irreducible and critical multi-type CBI processes.

A function f : R, — R?% is called cadlag if it is right continuous with left limits. Let
D(R,,R?) and C(R,,R?%) denote the space of all R%valued cadlag and continuous functions
on R, respectively. Let D, (R, R?) denote the Borel o-field in D(R,,R%) for the metric
characterized by Jacod and Shiryaev [16, VI.1.15] (with this metric D(R,,R?) is a complete
and separable metric space). For R?%-valued stochastic processes (Y;)icr, and (y,ﬁ”))teR s
n e N, with cadlag paths we write Y™ 2, Y as n — oo if the distribution of Y™ on
the space (D(R,,R?), D, (R, ,R?)) converges weakly to the distribution of ) on the space
(D(R, RY), Do (R4, RY)) as n — co. Concerning the notation — we note that if ¢ and
&, n € N, are random elements with values in a metric space (F,p), then we also denote by
&n BN ¢ the weak convergence of the distributions of &, on the space (E,B(E)) towards
the distribution of ¢ on the space (F,B(F)) as n — oo, where B(E) denotes the Borel
o-algebra on E induced by the given metric p.

The proof of the following convergence theorem can be found in Barczy and Pap [7, Theorem
4.1 and Lemma A.3].

2.9 Theorem. Let (X,)icr, be a multi-type CBI process with parameters (d,c,3, B, v, )
such that E(||Xo||*) < oo and the moment conditions (2.3) hold with q = 4. Suppose that
(X ¢)ier, s trreducible and critical. Then

n _ D
(2.8) (Xg ))te]R+ = (n 1XLntJ)tER+ — (Xt)te]R+ = (yturight)teR+ as n — oo

in D(Ry,R?Y), where g € R, s the right Perron vector of B (corresponding to the
eigenvalue 1), (Vi)ier, is the pathwise unique strong solution of the SDE

(2.9) dY; = (wess, E) dt + \/<6ulefta Ut ) ;T AW, te Ry, Yo =0,
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where Uiy, € R‘_Lr is the left Perron vector of B (corresponding to the eigenvalue 1),
(W))ier, is a standard Brownian motion and

d
(2.10) C = Z ek,urlght Ck S RdXd
k=1
with
(2.11) Cj. := 2crere; +/ zz" py(dz) € R ke{l,...,d}.
Ug

The moment conditions (2.3) with ¢ = 4 in Theorem 2.9 are used only for checking the
conditional Lindeberg condition, namely, condition (ii) of Theorem E.1. For a more detailed
discussion, see Barczy and Pap [7, Remark 4.2]. Note also that Theorem 2.9 is in accordance
with Theorem 3.1 in Ispany and Pap [15].

2.10 Remark. The SDE (2.9) has a pathwise unique strong solution (yt(y))teR . for all initial
values yé” =y € R, and if the initial value y is nonnegative, then yf” is nonnegative for
all t € Ry with probability one, since (e, B> € R, see, e.g., Ikeda and Watanabe [12,
Chapter IV, Example 8.2]. O

2.11 Remark. Note that for the definition of Cj, k € {1,...,d} and C, the moment
conditions (2.3) are needed only with ¢ = 2. Moreover, (Cucf,Urrr) = 0 if and only if
c =0 and p = 0, when the pathwise unique strong solution of (2.9) is the deterministic
function ); = (e, ,é) t, t € R,. Indeed,

ISH

_uleftu'ufleft = €k, Uright Cr €k, Uleft
(€ ) ( )| 2ck( )2+

k=1 Ua

(2, wen)? Mk(dz)) .

Further, C in (2.9) can be replaced by

(2.12) C =

M-

<ei> uright>vi = var(Yl | YO = uright)a

=1

where (Y;)ier, is a multi-type CBI process with parameters (d,c,0,B,0, ) such that
the moment conditions (2.3) hold with ¢ = 2, see Proposition B.3. Indeed, by the spectral
mapping theorem, wg is a left eigenvector of eSB, s € Ry, belonging to the eigenvalue 1,
hence <éu1eft7 o) = (CUegy, Wier). In fact, (Y,)er . is a multi-type CBI process without
immigration such that its branching mechanism is the same as that of (X;);cr,. Note that
for each i € {1,...,d}, V,; = Z] (eJe;)V; = Var(Y|Y, = ¢). Clearly, C and C
depend only on the branching mechanism. a



3 Main results

Let (Xi)icr, be a 2-type CBI process with parameters (2,¢,3,B,v,pu) such that the
moment conditions (2.3) hold with ¢ =1. We call the process (Xi)ier, doubly symmetric
if b11 = b22 =:v€R and 1)1 2= bz 1=:k € Ry, where B= (bz’])i,je{l’z} is defined in (2.5),
that is, if B takes the form

(3.1) B- [7 F"]

K

with some v € R and xk € R,. For the sake of simplicity, we suppose X, = 0. In the
sequel we also assume that 3 7& 0 or v# 0 (ie., the immigration mechanism is non-zero),
equivalently, B #0 (Where B is defined in (2.6)), otherwise X; = 0 for all t € Ry,
following from (2.4). Clearly B is irreducible if and only if k€ R,,, since P' BP =B for
both permutation matrices P € R?*%. Hence (X)er, Iisirreducible if and only if x € Ry,
see Definition 2.7. The eigenvalues of B are v—k and v-+k, thus s:= S(E) = v-+k, which
is called criticality parameter, and (X)cr, is critical if and only if s =0, see Definition 2.8.

For k€ Zy, let Fp = 0(Xo,X1,...,X). Since (Xp)rez, Iis a time-homogeneous
Markov process, by (2.4),

(3.2) E(Xs|Fio1) = B(Xy| Xpo1) =eBXi 1+ 8, keN,
where

1 ~ ~
(3.3) I¢; ::/0 e’BBds e RY.

Note that B =E(X;| X, =0), see (2.4). Note also that B depends both on the branching
and immigration mechanisms, although 3 depends only on the immigration mechanism. Let
us introduce the sequence

(3.4) My =X, —E(Xy|Fiot) = X —eBX, 1 —B, keN,

of martingale differences with respect to the filtration (Fy)rez, . By (3.4), the process (Xy)rez,
satisfies the recursion

(3.5) X,=eBX, 1 +B+M,, kel

By the so-called Putzer’s spectral formula, see, e.g., Putzer [23], we have

g eIt 1 N =Rt 1 1 —1 i |cosh(kt) sinh(k?) L eR
e’ = =e ) :
2 11 2 -1 1 sinh(kt) cosh(kt) "

Consequently,

B = [a /8] with  «a :=e” cosh(k), f = €7 sinh(k).

9



Considering the eigenvalues p:=a+ and 6 :=a— [ of eB, we have o= (p+6)/2 and
B = (0—9)/2, thus the recursion (3.5) can be written in the form

o+0 o0—9

X, =
0—0 o0+90

1 _
5 Xk—1+Mk+/87 k‘GN

-~

For each n € N, a CLS estimator (p,,d,) of (9,d) based on a sample X,..., X, can be
obtained by minimizing the sum of squares

2
1

E— —

X. -
: o1 - B

k=1

with respect to (o,d) over R? and it has the form

_ Y op (Wiete, X — B) (Wiegr, X i—1) 5. Y re i (Viees X1 — B) (Viett, X 1)
Zzzl <uleft7 -Xk—1>2 ’ " ZZ:1<’Ulefta Xk—1>2

on the set H, N ﬁ]n, where

(3.6)  0n:

1 1

. 2
Wlepy -= € R%,

2 e
S R++7 Viett = [

Hn = {w c0: Z(uleft,Xk_l(w»Q > O}, Hn = {w e N Z<vleft7Xk—1(W)>2 > O},
k=1 k=1

see Ispany et al. [13, Lemma A.1]. Here wjf and v are left eigenvectors of B belonging
to the eigenvalues v+ k and ~ — k, respectively, hence they are left eigenvectors of B
belonging to the eigenvalues o = e’ and § = 7%, respectively. In a natural way, one can
extend the CLS estimators o, and S\n to the set H, and ﬁIn, respectively. By Lemma C.3,

P(H,) —» 1 and P(H,) — 1 as n — oo under appropriate assumptions.

Let us introduce the function h:R?* — R, by
h(v, k) == (7%, e7™") = (p,d), (v,k) € R2

Note that h is bijective having inverse

1 e.0) = (los(@) jloe (2)) = (m) (@0) R

~

Theorem 3.5 will imply that the CLSE (9,,6,) of (p,0) is weakly consistent (in the critical
case), hence (0,,d,) falls into the set RZ, for sufficiently large n € N with probability
converging to one. Hence one can introduce a natural estimator of (v,x) by applying the

inverse of h to the CLSE of (p,d), that is,

= —1 —1 =
(Yn, Kn) (2 0g(0n0n), 9 0og (5 >) ) n €N,

n

10



on the set {w e N: (@\n(w),gn(w)) € R, }. We also obtain

[COSh(H) sinh(/{)] X, , 3

2
n

(3.7) (Vn, Rn) = arg min, . cge Z
k=1

sinh(k) cosh(k)

for sufficiently large n € N with probability converging to one, hence (%, 7%”) is the CLSE
of (v,k) for sufficiently large n € N with probability converging to one. In a similar way,

Sp 1= log /Q\m n €N,

is the CLSE of the criticality parameter s =+ + x on the set {w € Q: g,(w) € Ry} with
probability converging to one. We would like to stress the point that the estimators (%, En)
and 5, exist only for sufficiently large n € N with probability converging to 1. However, as
all our results are asymptotic, this will not cause a problem.

3.1 Theorem. Let (X,)icr, be a 2-type CBI process with parameters (2,c,B,B,v,u) such
that Xy = 0, the moment conditions (2.3) hold with ¢ =8, B8#0 or v#0, and (3.1)
holds with some v € R and k € Ry, such that s =~ + k=0 (hence it is irreducible and
critical). Then the probability of the existence of the estimator s, converges to 1 as n — 0o
and

1 ~ ~
(3.8) ns, -2 Jo Y d<yt1 — (B1+ B2)t)
Jo VEdt

where (Vy)ier, is the pathwise unique strong solution of the SDE (2.9).
If ¢=0 and p =0, then

as n — oo,

(3.9) n3%, 2, N(O, m /uQ(Zl + 2)? z/(dz)) as m — oo.

If e+, Ju, (21— 22)* i(dz) > 0, then the probability of the evistence of the estimators
Yn and K, convergesto 1 as n — oo and

1/2(x _ vaw [ 1
(3.10) [n O 7)] N %\/ e2(k=7) — IM [ ] as n — 0o,

n'2(R, — k) fol Yidt | -1

where (Vf\\jt)tggg+ is a standard Wiener process, independent from (Wt)t€R+.

If e+ 322, Ju, (21 — 22)? pi(dz) = 0 and (B — B2)? + Ju, (21 — 2)?v(d2) > 0, then

the probability of the existence of the estimators 7, and K, converges to 1 as n — oo, and

n'/2(7, — . e2(r—7) _ ,
(311) [nl/QE% _Z;] — N (0, m 5 (21 — 22) I/(dz)) [ 1 ] as n — o9,

where

(3.12) M = ﬁ /MQ(Z1 — z)?v(dz) + (MY



Under the assumptions of Theorem 3.1, we have the following remarks.

3.2 Remark. If (3 — ()2 + Ju, (21 — 22)? v(dz) > 0, then M > 0. O

3.3 Remark. If [lc>+X27 ) [, (21— 22)% mi(dz) = 0 and (B~ B2)*+ [, (21— 22)* v(dz) = 0,
then, by Lemma C.2, X, = X2 forall k€N, hence there is no unique CLS estimator for
9, thus (7,,K,), n € N, are not defined. O

3.4 Remark. For each n € N, consider the random step process
XM =0 Xy, tER,.

Theorem 2.9 implies convergence

(3.13) xm 2y x.— Vyight as n — 0o,

where the process (Y;)ier, is the pathwise unique strong solution of the SDE (2.9) with initial

value Y, =0, and
1 1
Uright = 2 1 .

Note that convergence (3.13) holds even if (Cug, i) = 0, which is equivalent to ¢ = 0
and p = 0 (see Remark 2.11), when the pathwise unique strong solution of (2.9) is the
deterministic function )Y; = <'U,1eft,,§> t, t € Ry, further, by (3.8), ns, BN 0, and hence
ns, P50 as n— oo a

Theorem 3.1 will follow from the following statement.

3.5 Theorem. Under the assumptions of Theorem 3.1, the probability of the existence of a
unique CLS estimator 0, converges to 1 as n — oo and

1 ~ ~
(3.14) n(G,— 1) 2 b Vd = (B + %))
Jy VEdt

as mn — OQ.

If ¢=0 and pu =0, then

(3.15) (G, — 1) iwv(o, _3

m/%(zw@)?y(dz)) 4 - oo,

If |c|*+ Zzzl fu2(zl — 29)? pi(dz) > 0, then the probability of the existence of a unique

CLS estimator 0, convergesto 1 as n — oo and

. .
~ dw,

(3.16) n'2(5, — o) V1= & as n — oo,
fol Yydt

12



where (Vf\\jt)tggg+ is a standard Wiener process, independent from (W,)ier, -

If |le?+ 322, Ju, (21 = 22)? pi(dz) = 0 and (B — B2)? + Ju, (21 — 2)?v(d2) > 0, then
the probability of the existence of a unique CLS estimator 0, converges to 1 as n — 0o, and
(3.17) n'2(5, — 6) 2N (0 1_—52/ (21 — 20)? v(d2) as n — oo

"2M log(671) Ju,
with

_ m /L{Q(z1 — ) v(dz) + (15;(:5%2))2'

Proof of Theorem 3.1. We can use the so-called delta method (see, e.g., Theorem 11.2.14
in Lehmann and Romano [19]). Indeed, s, = ¢(0,) —g(1) on the set {w € Q: p,(w) € Ry}
with the function g¢(z) :=log(x), = € R4, where ¢/(1) =1, hence (3.14) and (3.15) imply
(3.8) and (3.9), respectively.

In a similar way, (3.16) and (3.17) imply

(3.18) 1/2( — Ve f}yjt)th as m — oo
0 t

and

R —2A _
(3.19) n'2(A, — A) 2 N (0 © =

AN u2(21 22)2y(dz)) as n — 0o,

respectively, for A, := log(5,) on the set {w € Q : 6,(w) € Riy} for n € N, and
A = log(d) = v — Kk, since g(6) = log(6) = A and ¢(0) = 1/§ = e®.  We have
o= 5n+2A2)/2, Rn=5,—An)/2, y=(s+A)/2 and k= (s —A)/2, thus

/f)\/n -7 o /S\n -8

Rn — K 2
on the set {w € Q: (o, (w),g (w )) € R, }. Wehave s =0 by criticality, hence (3.8) or (3.9)
1/22

1
-1

A, — A
2

1
1

yields n'/2(s, — s) = n'/%3, %50 as n — oo, and hence, by Slutsky’s lemma, (3.18) and
(3.19) imply (3.10) and (3.11), respectively. O

4 Decomposition of the process

Let us introduce the sequence
U == (Wi, X k) = Xi1 + Xk 2, keZ,,
where X, =: (Xx1, Xg2)". One can observe that U, >0 for all k€ Z,, and, by (3.5),

(41) Uk = kal + <uleft7/é> + <uleft>Mk>> ke Na
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since (e, eB X 1) = ul @B X1 = ul X1 = Up_1 and  (upeq, B) = fol (Wyeft, eSBB> ds =
f01<U]eft, B) ds = (Wt ,@), because w18 a left eigenvector of B , s € R, belonging to
the eigenvalue o = 1. Hence (U)krez, is a nonnegative unstable AR(1) process with positive
drift (e, B) and with heteroscedastic innovation ({wjeg, M) )ren. Note that the solution
of the recursion (4.1) is

k
(4.2) Uy = Z(Uleft,Mj +B), keN.

j=1
Moreover, let

Vi .= (Vtett, Xi) = Xp1 — Xko, keZ,.
By (3.5), we have

(4.3) Vi =0V + g('vleft, B> + <'Uleft7 Mk>7 ke N,
where
~ 1=9
" log(61)’
since <'vleftzve§Xk_1> = vgﬁef’Xﬁ_l = 6v X1 1 =06V, and (Vet, B) = fol <'Ulef:5, 65§B> ds =
f01 5% (Viegs, B) ds = %(vleﬁ, B), because wig is a left eigenvector of eB, s € Ry,

belonging to the eigenvalue ¢°. Thus (Vi)rez, is astable AR(1) process with drift g<'vleft, I6))
and with heteroscedastic innovation ({(Vef, My))ken, since y+k =0, y€R and k€ R,
yield § =7 * =e 2 € (0,1). Note that the solution of the recursion (4.3) is

k
(44) Vi. = Z 5k_j<vleft, Mj + gﬁ>, k € N.
=1
Observe that
(45) Xk71 = (Uk + Vk)/Q, X]C’Q = (Uk — Vk)/Q, ke Z+.

By (3.6), for each n € N, we have
_ Y iy (Wiege, M) Up_q 55 Y pet (Vtee, M) Vs
k-1 Ui >kt Vil

on the sets H, and ﬁn, respectively.

(4.6) 6, — 1

Theorem 3.5 will follow from the following statements by the continuous mapping theorem
and by Slutsky’s lemma.

4.1 Theorem. Under the assumptions of Theorem 3.1, we have

_ : i
nUR Jo Vi dt
- n?ViEy D (1 =%)"Y CVrets, Vietr) fol Y dt
2 — ) - as n — oo.
b= | 1 (e, M) Us— Jo Yed(V, = (wier, B) 1)
n P o MV ]| (- )72 Co, ) fy 910

14



In case of <6'Uleft, Vi) = 0 the second and fourth coordinates of the limit vector is 0 in
Theorem 4.1, thus other scaling factors should be chosen for these coordinates, described in the

following theorem.

4.2 Theorem. Suppose that the assumptions of Theorem 3.1 hold. If <6'U]eft, Viegs) = 0, then

& Vo Ulett, Vie 8 (Viets, B3)\
n—1zvk2_ll>< 0Vleft 1ft>+<(1ftﬂ>> M as om0,
k=1

1 — 62 1—-6
1
. nUL, Jo Vi dt
D ~
2 (e, M) Uy | — fol Ve d(YVe — (Wiete, B) 1) as n — o0,
k=1 n71/2<’Ulefta Mk>Vk_1 <V0'Uleft7 'Uleft>1/2M1/2 Wl

where Vo s defined in Proposition B.3.

In case of <6u18ft,u16ft> = 0 the second coordinate of the limit vector of the second
convergence is 0 in Theorem 4.2, since (Y,;)icr, is the deterministic function Y, = (wier, B)t,
t € Ry (see Remark 2.11), hence another scaling factor should be chosen for this coordinate,

as given in the following theorem.

4.3 Theorem. Suppose that the assumptions of Theorem 3.1 hold. If <6'u10ft’ Uiery) = 0, then

n 3\2
_ P (u
n?’g U,§_1—>% as n — oo,
k=1

n V e e 6 € ’
nt kaz—l SN (Voiets, Vtett) + ( (o ft’ﬂ>) =M as n — o0,
k=1

1—02 1—9
" (g, M)V Uy—
12<1& 0 Ui i>/\f2(0,2) as m — 0o
—1 L7 / (Vtest, M) Vi1
with
. %<V0uleft; uleft><uleft7/é>2 ﬁ<vo’vlefm uleft><uleft7B><vleftaé>
ﬁ <V0u1eft7 ’Uleft> <u1eft7 B> <’Uleft7 E) <VO'Uleftu ’Uleft>M

Proof of Theorem 3.5. First note that <év]eft, Vierr) = 0 if and only if HCH2—{—Z?:1 fMQ(zl -
22)~2 pi(dz) = 0. Indeed, by the spectral mapping theorem, wvig is a left eigenvector of
e’B. s € Ry, belonging to the eigenvalue §° and wge is a right eigenvector of e*B,

s € R, belonging to the eigenvalue 1, hence <6"v]eft7'vleft> = Wﬁil) (CViegy, Vieg).  Thus

(évle&, Vi) = 0 if and only if (Cvieg, Vier) = 0. Recalling

2
<6vleft7 vleft> = Z<ek7 uright> <Ckvleft7 vleft>7

k=1

15



one can observe that (Cwig,vieg) = 0 if and only if (CyUies, Vi) = 2cr +
Jui, (et 2)? i (dz) = 0 for each &k € {1,2}, which is equivalent to ¢ = 0 and
Ju, (21 = 22)? pi(dz) = 0 for each k € {1,2}.

Further note that <6’U]eft, uery) = 0 if and only if ¢ =0 and p = 0. Indeed, by Remark
2.11, we have <6u1eft,u16ft> = (Ciets, Urer), and  (Cuupeg, wier) = 0 if and only if ¢ =0
and p = 0. Hence, <6u1€ft,u1eft> =0 or (Cg, Uer) =0 implies <6U1eft,'vleft> =0 and
<6'U]eft, 'U]eft> =0 as well.

The statements about the existence of unique CLS estimators o, and gn under the given
conditions follow from Lemma C.3.

In order to derive the statements, we can use the continuous mapping theorem and Slutsky’s
lemma. Theorem 4.1 and (4.6) imply (3.14) and (3.16). Indeed, since 3 # 0, by the SDE
(2.9), we have P(Y, =0, ¢ € [0,1]) = 0, which implies IP(fO YZdt > 0) = 1. By Remark
210, P()y 2 0,t € Ry) =1, and hence P( fo Yedt > 0) = 1. Moreover, as we have already
proved, the assumption Hc||2 + ZZ 1fu2 21 — 29)2 pi(dz) > 0 implies (Cvg, Viege) > 0.
Theorem 4.3 and (4.6) imply (3.15), since f1 + B2 = (wen, B) # 0, and the assumption
<éu1eft, Uerr) = 0 yields ¢ =0 and p = 0, consequently C, =0, ¢ € {1,2}, and hence
(VoUiefi, Wiogy) = fu2<z1 + 29)?v(dz). Theorem 4 2 and (4.6) imply (3.17), since § € (0, 1),
M 7é 0 and <V0'Uleft,'Uleft = _62 fu2 21 — (dZ) O

2 log

5 Proof of Theorem 4.1

Consider the sequence of stochastic processes

M Lnt]
2= Wi | =Sz
,Pgn) k=1
with
n~ M, nt
Z,(C") = | n2MU,_1 | = | n 72U, | @ My,
n32M Vi n=32V,_,

for t € R, and k,n € N, where ® denotes Kronecker product of matrices. Theorem 4.1
follows from Lemma C.1 and the following theorem (this will be explained after Theorem 5.1).

5.1 Theorem. Under the assumptions of Theorem 3.1, we have
(5.1) zm 2,z as n — oo,

where the process (Z)ier, with values in (R?) is the pathwise unique strong solution of the

16



SDE

d
JY1, teR,,

t

(5.2) dZ: =7(t, 24)

with initial value Zo =0, where (W;)ier, and (Vvt)teﬂh are independent 2-dimensional
standard Wiener processes, and ~y : Ry x (R?)3 — (R?**?)3%2 s defined by

~ ~1/2
(<u’left7 I + tﬁ>+>1/2 C / °
~ ~1/2
v(t,x) = | (e, @1 +18)T)32C / °
. 1/2 3¢
0 (%) <uleft7 T+ t’6> C :

for teRy and x = (x|, x),z])" € (R?)3.

(Note that the statement of Theorem 5.1 holds even if <6”Uleft,v]eft> = 0, when the last
2-dimensional coordinate process of the pathwise unique strong solution (Z;);cr, is 0.)

The SDE (5.2) has the form

~ ~1/2
M, ((uleftaMt+tﬂ>+)1/2C dW;
(5.3) dZ,= | AN, | = (e, My +1B) )22 C aw, |, teRr,.
~111 £t ,Vleft 1/2 ~ ~1/2
P, ({Ctsnd) ™ (i, My +18) T AW,

One can prove that the first 2-dimensional equation of the SDE (5.3) has a pathwise unique
strong solution (MﬁyO))teR+ with arbitrary initial value M(()yO) = y, € R% Indeed, it is
equivalent to the existence of a pathwise unique strong solution of the SDE

dS; = (wiesr, B) dt + (S;)*/? ulzfté'lm dw,,

(5.4) teRy,

dQ, = ~TBdt + (§7)? (I, - )" aw,

with initial value (Séy(’), (()yO)) = (('U;]eft, Yo), (L2 — H)yo) € R x R?, where I, denotes the
2-dimensional unit matrix and II := urightugft, since we have the correspondences

St(yO) _ ul—gft( Eyo) 4 tB)7 ngo) — ngo) _ St(yO)uright

Eyo) — ngo) + St(yO)urighta

see the proof of Ispany and Pap [15, Theorem 3.1]. By Remark 2.10, S, may be replaced
by S; for all t € Ry in the first equation of (5.4) provided that (wps,y,) € Ry, hence
(Wyeg, My + t,@* may be replaced by (wjes, M + tB) for all ¢ € Ry in (5.3). Thus the
SDE (5.2) has a pathwise unique strong solution with initial value Z, = 0, and we have

~ ~1/2
Mt fot<uleft7 MS + 56>1/j C dWs
Z; = Nt = fg(uleftv M, + 3/8> dM, , teR,.
Cv ] 1/2 ~ =1/2
Pt (%) fot <u1efta MS + Sﬂ> C dWS
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By the method of the proof of X' 2. X in Theorem 3.1 in Barczy et al. [1], applying
Lemma D.2, one can easily derive

(5.5) [X(n)] N [i’] , as n — 0o,

where

XY =0 X g, X = (e, My + 1B8) U,  tER;,  neN
Now, with the process
(5.6) Vi = (Wiege, X)) = (wiere, My +t8),  tE€R,,

we have
Xt = yturighta S R-ﬁ-?

since (Wiegr, Uright) = 1. By It0’s formula and the first 2-dimensional equation of the SDE (5.3)
we obtain L2
AV = (e, B) dt + (Y)Y ul,C AW,  teR,.

~ ~1/2 ~1/2 ~ ~
If <C’U,1€ft,’u,1€ft> = HugftC ||2 =0 then ulTeftC = 0, hence dyt = <’U,16ft,,8>dt, t € R+,

implying that the process (j)/t)teR+ satisfies the SDE (2.9). If <éu1eft,u16ft> # 0 then the

process
_ ~1/2
VNV L <C ulcftawt> teR
t-— = ) +
(C Uleft uleft) 1/2

is a (one-dimensional) standard Wiener process, hence the process (V))ier . satisfies the SDE
(2.9). Consequently, Y =) (due to pathwise uniqueness), and hence X = X. Next, by
Lemma D.3, convergence (5.5) with Up_1 = (Wefy, Xx—1) and Lemma C.1 imply

_ 1 ) _
nSU, i Jo <uleft1a X)) dt
i n_2vk’2—1 A % fo <uleft7 Xt) dt
1 n2 (Wiefr, M 1)Uy fol Vi d{wier, M) ’
—3/2 ~ ) 1/2 ~1/2 ~
n=?/ (Viest, M) Vi _< <Cvicitg;f'lcft>> f()l Y, d(vege, C / Wt>_

as n — co. This limiting random vector can be written in the form as given in Theorem 4.1,

since (Wiete, Xv) = Vi, (Wiert; M) = (Wiess, Xy) — (Wiee, B) t = Vi — (wiee, B) ¢ (using (5.6)),
~1/2 ~ ~ —
and (Ve C / W,) = (CUiety, Vi) /> W, for all t € R, with a (one-dimensional) standard

Wiener process (W,)cr, -

Proof of Theorem 5.1. In order to show convergence 2™ L.z , we apply Theorem E.1
with the special choices U = Z, U,in) = Z,E:n)7 n,k €N, (f,in))kez+ := (Fi)kez, and the
function ~ which is defined in Theorem 5.1. Note that the discussion after Theorem 5.1 shows
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that the SDE (5.2) admits a pathwise unique strong solution (Z7);cr, for all initial values
ZF =z € (R?)3. Applying Cauchy—Schwarz inequality and Corollary B.5, one can check that
E(|UM|?) < 0o for all n,k € N.

Now we show that conditions (i) and (ii) of Theorem E.1 hold. The conditional variance
Var(Z,(Cn) | Fi—1) has the form

n=2 n U1 n=52V,_,
n U 7f4U;3,1 n77/2Uk_1Vk—1 ® Vi,
n2V . nTTPUL Vi n3V2

for neN, ke {l,...,n}, with Vs, = Var(My|Fi_1), and (s, Z)(s, 27 has
the form

(e, M + 58) (e, MT) + 53)2 0
(e, M + 58)?  (wree, M™ + 58)3 0 ®C
0 0 —<Cvfft(’;gleft> (Uefs, Mé") + SB>2

for s € Ry, where we used that (wef, Mg") + sf-})* = (Wieft, Mg") + sB), seRy, neN.
Indeed, by (3.4), we get

ns — |nsj ~

~ 1
(5.7) (Wiosi, M + 58) = EUWJ + (wiet, B) € Ry

for s € Ry, n €N, since ul,e? = ul, implies (e, ePX; 1) = v ePX 1 =
T _
Upeg X -1 = (Uietr, Xp—1)-

In order to check condition (i) of Theorem E.1, we need to prove that for each 7' > 0, as

n — 00,
1 [nt] t o v
(5.8) sup ||— Z Vi, — / (Wiese, M 4 58) C ds|| — 0,
te[0,7 n? 1 0
1 [nt] t o .
(5.9) sup || — Z U1V, — / (Uef, Mg”) +58)2 Cds|| — 0,
tefo, 7] || T 1 0
1 [nt] t o b
(5.10) sup || = > Up Vi, — / (Wege, M + 58)> C ds|| — 0,
tefo, 7] || T —1 0
= 5 (CVretr, Vierr) [ () L e A P
(511) tSBI;} ﬁ Z sz—lka — 1_—52 <uleft7 MS + S,6> Cds|| — 0,
elo, T 0
1 [nt] .
5.12 sup ||—= ViciVa, || — O,
(5.12) tefo,1] || 7%/ ; LY M
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Lnt)

(513) sup Z Uk_l\/k_lka i) 0.
1

te[0,7]

/2

First we show (5.8). By (5.7), fo West, M + 58) ds has the form

Es L%l Uk + nt_n#ULntJ nt] + (nt = [nt))" (e, B).

n? 2n2
k=1

Using Proposition B.3, formula (4.5) and C = (V1 + V3)/2, we obtain

1 1
VMk. = Var(Mk | ./T"k_l) = iUk_l(Vl + VQ) + EVk_l(Vl — VQ) + V()
(5.14) '
= Uk_lC -+ 5‘/}6_1(‘/1 - V2) + VO'

Thus, in order to show (5.8), it suffices to prove

[nT]
(5.15) n=? Z |Vl o, n~? sup Upyy 50,
te[0,T
(5.16) n~? sup [[nt] + (nt— [nt])*] =0,
te[0,7]

as n — oo. Using (B.3) with (¢4,4,7) = (2,0,1) and (B.4) with (¢,4,7) = (2,1,0), we have
(5.15). Clearly, (5.16) follows from |nt — [nt]| <1, n €N, ¢t € R;, thus we conclude (5.8).

The proofs of (5.9) and (5.10) can be carried out similarly, for a detailed discussion, see
Barczy et al. [8].

Next we turn to prove (5.11). First we show that

Cv v
2 lefta left
E VkAVMk_ E Uk 1

k=1

(5.17) n=> sup

[nt] |_nt |
t€[0,T] '

as n— oo forall T'>0. By (5.14),

|nt] |nt] [nt] [nt]
Z V2 \Var, =Y UiaV2,C + 5 Y VELVI= Vo) + ) V2V,

k=1 k=1 k=1
Using (B.3) with (¢,4,7) = (6,0,3) and (¢,4,7) = (4,0,2), we have
[nT | [nT |
’BZ|V;€|3—>O 3X:Vk—>0 as n — 0o,

hence (5.17) will follow from

[nt] [nt]

_ (CVrefys Vietr)
5.18 n~% sup Up V2, — 220N 2 0,
( ) velo1] ; F=1Ve-17 7 52 Z L
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as n — oo forall T'> 0. By the method of the proof of Lemma C.1 (see also Ispany et al. [13,
page 16 of arXiv version|), applying Proposition B.4 with ¢ = 3, we obtain a decomposition
of ZWJ Up—1Vi2 ;, namely,

[t [t

Z Uk- 1Vk 1= 7 52 Z [kalvk?—l - E(Uk,1Vk2_1 ‘}—k—Z)]
k=2
LntJ
(CUtefy; Vet 52
+ 1 _t 52 t Z Uk 2 ULntJ 1VLntJ 1 +0(n)

[ nt] |nt] [nt] [nt]

+ lin. comb. of Z Ui_oVi_a, ZVkQ_Q, Z Ui_o and ZVk_g.
k=2 =2 k=2 k=2

Note that Proposition B.4 with ¢ = 3 is needed above in order to express products
E(Mg—1i, Mg—1,i,My—14, | Fx—2), i1,i2,93 € {1,2}, as a first order polynomial of Xj_o,
and hence, by (4.5), as a linear combination of U2, Vi_o and 1. Using (B.5) with
(¢,i,7) = (8,1,2) we have
[nt]
n~? sup Z (U1 V2, — E(Up-1 Vg | Fia)] 0, as n — 0.

t€[0,7] | =5

In order to show (5.18), it suffices to prove

[nT ] [nT]
(5.19) Y UV =0, a1V 50,

k=1 =

[nT) . [nT) .
(5.20) n Y Uy —0, a7y Vil —0,

k=1 k=1
(5.21) n~ sup ULntJVLntj L0, n=%? sup Ulne) =0,
te[0,T7] t€[0,T

as n — oo. Using (B.3) with (¢,4,5) = (2,1,1), ({,4,5) = (4,0,2), ({i,7) = (2,1,0)
and (¢,4,7) = (2,0,1), we have (5.19) and (5.20). By (B.4) with (¢,4,j) = (4,1,2) and
(¢,i,5) = (3,1,0), we have (5.21). Thus we conclude (5.17). By (5.14) and (B.3) with

(6,i,5) = (2,1,1) and (£,i,j) = (2,1,0), we get

| nt] | nt]

ZUk \Var, — ZUk1 Hiw

as n— oo forall T"> 0. Asa last step, using (5.9), we obtain (5.11). Convergences (5.12)
and (5.13) can be proved similarly (see also the same considerations in Ispany et al. [13, pages
17-20 of arXiv version]).

(5.22) n3 sup
te[0,T]

21



Finally, we check condition (ii) of Theorem E.1, that is, the conditional Lindeberg condition

LnT |
n P
(5.23) Z E (||Z§€ )||2]1{HZ,(C")II>9} |]:k_1) — 0, as n — 0o
k=1

_ (n)
forall # >0 and 7 > 0. We have E (||Z |21 1125150} | Fie1) < O2E (|1 2,7 )* | Fier)
and
1Z711* <3 (n™* + 07U, + 0 Vik ) | M,

Hence, for all # >0 and T > 0, we have

[nT]
ZE(HZ,(C")HQJI{”Z?HW}) — 0, as n — oo,
k=1

since  B(|M[*) = O(?), E(IM]'U;,) < \/E(||Mk”8>E(Ul§—1> = O(k%) and
E(||Mg|*VE ) \/E | M|[®)E(VE ) = O(k*) by Corollary B.5. This yields (5.23). O

We call the attention that our moment conditions (2.3) with ¢ = 8 are used for applying
Corollaries B.5 and B.6.

6 Proof of Theorem 4.2

The proof of the second convergence in Theorem 4.2 is similar to the proof of Theorem 4.1.
Consider the sequence of stochastic processes

Mtn) [nt n~ My
ZMW = (N | =>"2Z" with Z] = n=2M Uy
Ptn) =t n= Y2 (e, M) Vi1

for t€ Ry and k,n € N.
6.1 Theorem. Suppose that the assumptions of Theorem 3.1 hold. If <évleft, Vies) = 0, then
(6.1) zm 2, z as m — oo,

where the process (Z;)ier, with values in R* xR?* X R s the pathwise unique strong solution

of the SDE

dW,

(6.2) dZ, =(t, Z,) [d ] . teR,,

t
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with initial value Zo =0, where (W;)er, and (Vﬁ\jt)teRJr are independent standard Wiener
processes of dimension 2 and 1, respectively, and 7 : Ry x (R?* x R2 x R) — R>*3 s defined by

~1/2

((Wieft, 1 +tB>+)1/2C 0
7(75733) = (<U1eft,$1 _|_t/é>+)3/2 6’1/2 0
0 (V oUleft, Vsets) /2 ML/

for te Ry and = = (z],z,,73)" € R? x R? x R.

As in the case of the SDE (5.2), the SDE (6.2) has a pathwise unique strong solution with
initial value Zy = 0, for which we have

M, ryireaw,
Zt: Nt = f(’fydeS 3 t€R+
Py (VoVies, Uleft>1/2M1/2VA\jt

One can again easily derive
xM X
(6.3) [ ] N [ ] as n — 00,

where
Xgn) = n_lXLntJ, Xt = yturighh te ]R‘f" neN.

Next, by Lemma D.3, convergence (6.3) and Lemma C.2 imply

" n3UE fol (Wiegr, X¢)* dt
D
Z n= (e, Mp)Up—1 | — o Ve d{uien, M) as n — 00.
= n_1/2<v1eft7 M )Vi (Vovies:, 'Uleft>1/2M1/2]7V/1

Note that this convergence holds even in case M = 0. The limiting random vector can
be written in the form as given in Theorem 4.2, since (Ujeg, X¢) = Yy and  (Upeps, My) =
yt - <'U,1€ft,,8t> for all t e R+.

One can prove Theorem 6.1 similarly to Theorem 5.1, for a detailed discussion, see Barczy
et al. [8].

7 Proof of Theorem 4.3

The first convergence in Theorem 4.3 follows from the following approximation.
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7.1 Lemma. Suppose that the assumptions of Theorem 3.1 hold. If <éu16ft,u16ft> =0, then
for each T >0,

[nt] 3
~ 3] p
7.1 sup |— Uz, — ’U;lef,,BQ_’ — 0, as n — 00.
(r.) o |5 3V~ (B

Proof. We have

[nt] 3 [nt]
1 ~ ot 1 ~
D UR = (e B 5| < D[R — (e B (K~ 1)?]
k=1 k=1
1 3
=+ <u1eft7/6>2’ﬁ Z(k —-1)° - 3P
k=1
where
1l £
sup |— k—1)?2—-—=| =0, as n — oo,
t€[0,T] n? kz:;( ) 3
hence, in order to show (7.1), it suffices to prove
| o) N )
(7.2) . Z‘U,? — <’U;]eft,ﬂ>2k2‘ — 0, as n — 00.
k=1

Recursion (4.1) yields~E(Uk) = E(Uk-1) + (wiert, 3), k € N, with intital value E(U,) = 0,
hence E(Uy) = (wer, B)k, k € N. For the sequence
(7.3) Uy = U, —E(Uy) = Uy — (wiere, BYk, k€N,

by (4.1), we get a recursion U, = U, + (Wes, M), k € N, with intital value Uy = 0.
Applying Doob’s maximal inequality (see, e.g., Revuz and Yor [24, Chapter II, Theorem 1.7])
for the martingale U, =Y ;_ (Wi, M), n €N,

|nt] 2 [nT) 2 [nT)
E| sup Z(ulefta My)| | <4E Z(ulefta My)| | =4 Z E ((wiere, M 1,)*) = O(n),
te[0,T]| . k=1 k=1
where we applied Corollary B.5. Consequently,
(7.4) n' max  |U, — (W, B)k| =n""  max |Up 0 as n — oo.
ke{l,...|[nT]} ke{l,...,|nT]}
We have

|UZ — k2<uleft,B>2’ < U, — k(’uleft,gﬂz + 27€<U1eft,B>|Uk — k<u1eft>B>’7

~ ~ 2
w7t max UF = R, B < (07! max Uk~ ke, B)])

ke{l,...,|nT]} ke{l,...,|nT
2|nT | ~ =\ P
Tl2 <uleft) /8> ke{ing?“fz,rj} |Uk - k<uleft7ﬂ>| — Oa



as n — oo. Thus,

[T

[T 22| P
Tl3 Z ’Uk ulef‘w /8> ‘ n3 keql,.. LnTJ}‘Uk <ulefta /6> ‘ — 07
as n — oo, thus we conclude (7.2), and hence (7.1). O

The second convergence in Theorem 4.3 follows from Lemma C.2, since assumption
(Cugef, Urerr) = 0 implies (Cvpegi, Vies) = 0 (see the beginning of the proof of Theorem
3.5). For the last convergence in Theorem 4.3 we need the following approximation.

7.2 Lemma. Suppose that the assumptions of Theorem 3.1 hold. If <éU]eft,U]eft> =0, then
for each T >0,

1 [nt] - th
e Z UVi — <uleftaﬁ><'vleftw6>m

sup — 0 as n — o0.

te[0,T)

Proof. First we show, by the method of the proof of Lemma 7.1, convergence

[nt)

1 ~ 2
(7.5) sup |— Z U — (wett, B) 5 :
k=1

— 0 as n — oo
tefo,7]| T 2

for each T > 0. We have

[nt]

—ZUk 1 — uleft7 Z}Uk 1 ’UfleftnB)(k?—l)‘

’ [nt]

[nt)

=1 t°
o B) |5 S~ 1)~

2
k=1
where
1 [nt] t2
sup |— » (k—1)——=|—0, as n — 0o,
refo,7] | 1 kz:; 2
hence, in order to show (7.5), it suffices to prove
1 [nT|
(7.6) Z‘Uk — uleft,ﬁ k‘ — 0, as n — 00.

Using (7.4), we obtain

[nT] I_nTJ .
— Z‘Uk — (Wiest, B k‘ < ma ‘Uk - <uleft>/6>k — 0,

n? ke(l,.. nTJ}

as n — oo, thus we conclude (7.6), and hence (7.5).
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In order to prove the statement of the lemma, we derive a decomposition of ZWJ U,Vi.
Using recursions (4.1) and (4.3), we obtain

E(UpVi | Fro1) = E[(qu + (Wiesy, My, + E>) (5Vk71 + (Vtete, My, + gé» ‘ -7'—1@71}

= 0Uk_1Vi—1 + g(’vlefm B)Uk—l + 0 (Wpett, B>Vk—1 + g<u1eft7 B><vleft7 B) + (Vo Uieft, Vieft) s

since, by <éu1eft7u19ft> =0 and C = (V14 Vs3)/2, we conclude (Ve wiers) = 0,
i €{1,2}, thus by (5.14),

E(<u1eft7 Mk>(’01eft, Mk> |]:.k71) = ulth E<MkM;— ’fkfl)'vleft = <V0uleft; ’Uleft>~

Consequently,

[nt] [nt] [nt]
Z UV = > [UVi = E(UVi | Fer)] + Y E(UeVi | Ficr)
h=1 h=1
[nt] [nt] B ey
[UaVi = E(UxVi | Faet)] +6 > Ur—1Vier + 6 (01, 8) D Ui
k=1 k=1 k=1
[nt] N
+ 0 (Wietr, B Z Vit + 0(tiet, B) (vier, B) [nt] + (Voters, vien) [t
k=1

and we obtain

[nt| [nt| ~ ~. |nt]

0 0 (Vleft
Z UV = Z [Uka — E(UxVi | -7'—1471)} T 5ULntJVLntj + % E Uk—1
=1 k=1

LntJ = =
ulefta ulefta B) (Viets; B) + (V oUiets, Vietr)
Z Vi1 + 1—s [nt].
Using (B.8) with (¢,4,j) = (4,1,1) we obtain

[nt]
(Ui, — E(UgVie | Fio1)]

k=1

n> sup
t€[0,T]

P
— 0 as n — 00.

Using (B.7) with (£,4,5) = (3,1,1) we obtain n~=?sup,co.) [Unt)Vine)| 50 as n — .
The assumption <éu16ft,u16ft> = 0 implies <é'U]eft,'Uleft> = 0, hence, by Barczy et al. [8,

formula (C.2)], we obtain
Lt

n=?2 sup Vi_1 LN 0.
t€[0,T]| .=
Consequently,
[nt nt|
- J <vleft,ﬁ L
sup ZUka— 1— ZUk 1 — 0
t€[0,7]| %=,
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as n — oo. Using (B.7) with (¢,4,7) = (2,1,0) we obtain n=?sup,co 7 Ujn) 250 as
n — oo. Thus, by (7.5), we conclude the statement of the lemma. a

The proof of Theorem 4.3 is similar to the proof of Theorems 4.1 and 4.2. Consider the
sequence of stochastic processes

NPT =312 (wyeg, M) Uy
Zﬁ") = (n) ZZ with Z,(Cn) = " ) 2<u1 o M) Uiy
P n 2 (Viege, M) Vi

for t € Ry and k,n € N. Theorem 4.3 follows from Lemmas 7.1 and C.2, and the following
theorem.

7.3 Theorem. If <éu1eft7u1eft> =0 then
(7.7) zm 2y z as m — oo,

where the process (Zi)ier, with values in R* is the pathwise unique strong solution of the

SDE
(7.8) dZ, =~(t)dW,,  teR,,

with initial value Z9 =0, where (i/vvt)teR+ 15 a 2-dimensional standard Wiener process, and
v : Ry — R?*2 s defined by

- - ~ a1/2
<V0U1eft uleft><uleft B>2 2 5<V0uleft7'vleft><uéeft7ﬁ><vleftyﬁ)t /
’ ) 1—
30 = | kPl
(V. eft,Vle eft eft,0) t
(Vouiest,v1 f°>1<f$ £6,8) (Viett,3) <V0’Uleft> ’Uleft> M

for teR,.

The SDE (7.8) has a pathwise unique strong solution with initial value Z, = 0, for which

we have
_ - - < 912
oV eft,Vle eft . efts
2 _ ™ / (Vo ) (i, B) 7 Aerstmsaifulna i) 0
t = = - ~ - s
P, 0 5(V0u1efmvleft)1<it(15eft75) (Viett,8) s <V0'Uleft7 'Uleft> M
for t e Ry.

The proof of Theorem 7.3 can be found in Barczy et al. [8].

Appendices

A SDE for multi-type CBI processes

For handling M, k € N, we need a representation of multi-type CBI processes as pathwise
unique strong solutions of certain SDEs with jumps. In what follows we recall some notations
and results from Barczy et al. [5].
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Let R := U;.lzo R;, where R;, j€{0,1,...,d}, are disjoint sets given by
Ro = Uy x {(0,0)}* C RL x (RL x R,)%,
and
R; ={0} x Hj1 x - x Hja CRL x RL xR, je{l,...,d},
where
L L{dxul le:j,
T 0,00y if i
(Recall that U; =R.;.) Let m be the uniquely defined measure on V :=R%Z x (RL x Ry)?
such that m(V\R) =0 and its restrictions on R;, j € {0,1,...,d}, are
(A.1) m|r,(dr) = v(dr), m|g,(dz,du) = p;(dz)du, je{l,...,d},

where we identify Ry with U; and Ry, ..., Rq with Uy xU; in a natural way. Using again
this identification, let f:RYxV = R%, and ¢g:R*xV — R%, be defined by

F@,7) = {Zﬂ{nza}l{u@j}’ if = (v1,...,24)" €RY, r=(2z,u) €Ry, je{L,...,d},
9 * O’

otherwise,

r, if £€eRY reR,,
g(a:,r) = Z]l{HzH}l}]l{ung}a if = (xl,...,xd)T ERd, r= (Z,U) ER]', J € {1,...,d},
0, otherwise.
Consider the disjoint decomposition R = V, UV;, where V), := U;l:l Rjo and Vi :=RoU

(Uj.l:1 R;1) are disjoint decompositions with Ry := {0} X Hj1p X - X Hjap, j € {1,...,d},
k€ {0,1}, and

{(0,0)} if i, (zely: |zl =1} if k=1.

Note that f(z,7)=0 if r €V, g(x,r) =0 if r €),, hence e/ f(x,r)g(x,r)e; =0 for
all (z,7) eRIxV and 4,5 € {1,...,d}.

U x Uy i 0=, €Uy ||zl <1} if k=0,
Hiin ::{ ak x Uy i i = Uy = {{z Lzl <1} i

Consider the following objects:

(E1) a probability space (2, F,P);

(E2) a d-dimensional standard Brownian motion (W)cr, ;

(E3) a stationary Poisson point process p on V with characteristic measure m;
(E4) a random vector & with values in Ri, independent of W and p.
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A.1 Remark. Note that if objects (E1)—(E4) are given, then &, W and p are automatically
mutually independent according to Remark 3.4 in Barczy et al. [4]. For a short review on point
measures and point processes needed for this paper, see, e.g., Barczy et al. [4, Section 2]. O

Provided that the objects (E1)~(E4) are given, let (F""?),ce, denote the augmented
filtration generated by &, W and p, see Barczy et al. [4].

Let us consider the d-dimensional SDE

t d t
Xt:XOJr/ (B+ DX,) ds—l—Zei/ V26 XS AW,
0 i=1 70
/ F(X,,r) N(ds,dr) + / / X, ,r)N(ds,dr), teRy,
Vo V1

where X; = (X¢1,...,Xeq)", D= (dij)ijeq1,..ay given by

.....

(A.2)

dij = bi —/ zily)z =13 p5(d2),

Ug

N(ds,dr) is the counting measure of p on R, xV, and N(ds,dr):= N(ds,dr)—dsm(dr).

A.2 Definition. Suppose that the objects (E1)~(E4) are given. An R%-valued strong solution
of the SDE (A.2) on (2, F,P) and with respect to the standard Brownian motion W, the
stationary Poisson point process p and initial value &, is an Ri—valued (]:f’W’p)tERJr—adapted
cadlag process (Xi)ier, such that P(Xo=§) =1,

t t

1@(/ 1 (X o) |2 dsm(dr) < oo) 1, 1@(/ 19(X o, 7)| N(ds, dr) < oo) 1
0 Vo 0 V1

for all t € Ry, and equation (A.2) holds P-a.s.

Further, note that the integrals fot(ﬁ + DX ,)ds and fot V26 X5 AW, 1 e {1,... . d},
exist, since X is cadlag. For the following result, see Theorem 4.6 in Barczy et al. [5].

A.3 Theorem. Let (d,c,3,B,v,u) be a set of admissible parameters such that the moment
conditions (2.3) hold with q = 1. Suppose that objects (E1)—(E4) are given. If E(||€]|) < oo,
then there is a pathwise unique R%-valued strong solution to the SDE (A.2) with initial value
&, and the solution is a multi-type CBI process with parameters (d,c,3, B v, u).

We note that the SDE (A.2) can be written in other forms, see Barczy et al. [5, Section 5]
for d e {1,2} or (1.2) for d=2.

Further, one can rewrite the SDE (A.2) in a form which does not contain integrals with
respect to non-compensated Poisson random measures, and then one can perform a linear
transformation in order to remove randomness from the drift as follows, see Lemma 4.1 in
Barczy et al. [6]. This form is very useful for handling My, ke N.
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A.4 Lemma. Let (d,c,3,B,v,pn) be a set of admissible parameters such that the moment
conditions (2.3) hold with q = 1. Suppose that objects (E1)—(E4) are given with E(||€]]) < oco.
Let (X)ier, be a pathwise unique R%-valued strong solution to the SDE (A.2) with initial
value &. Then

_ t _ d t _ t _ B
e BX, = X+ / e PBds+ ) / e *Beyy /20, X, 0 AW, + / / e *Bhn(X,_,r) N(ds,dr)
0 =1 Y0 0o Jy

for all t € Ry, where the function h:RYxV — R? is defined by h:= f+ g, hence

X, —et=9BX +/ (t= “B,BdquZ/ (t=Be,\/2¢,X 0 AW,

t ~ ~
+ / / WBh (X, _ ) N(du,dr)
s JVY

forall s,t € Ry, with s <t. Consequently,

d k ~ k _ -
M,=>" / e®=WBe, /26, X, AW, o + / / e®-WBh(X,_ r) N(du,dr)
=1 Jk-1 k—1JV
for all k e N.

Proof. The last statement follows from (3.4), since fkk—l e—0B 3 dy = fol (=B 3y = B.
O

Note that the formulas for (X;)icr, and (Mp)reny in Lemma A.4 are generalizations of
formulas (3.1) and (3.3) in Xu [25], the first displayed formula in the proof of Lemma 2.1 in
Huang et al. [11], and formulas (1.5) and (1.7) in Li and Ma [21], respectively.

A.5 Lemma. Let (X;)icr, be a 2-type CBI process with parameters (2,¢,3,B,v, ) such
that Xo=0, B#0 or v#0, and (3.1) holds with some v € R and k€ R,y such that
s=v+ k=0 (hence it is irreducible and critical). Suppose that the moment conditions (2.3)
hold with q = 2.

If, in addition, <C’U]eft,v]eft =0, then (Vieg, M) = (Viett, My), k €N, with

up —/ / rNds ,dr), ke N.
k-1 JRo

If, in addition, <é’U/]eft, Uier) = 0, then (Wier, M) = (e, ), k € N.

The sequence (M )ren consists of independent and identically distributed random vectors.

Proof. The assumption (Cwieg, vier) = 0 implies ¢, = 0 for each ¢ € {1,2} (see the
beginning of the proof of Theorem 3.5), thus

k ~ ~
(Vgete, M) = / /<'vlefta e*=9BR(X, 7)) N(ds,dr) = (Vier, M3,) + Cen + Cro
k—1JV
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with
/ / Vleft; € >]]-{u<XS J}N(ds dr), keN, je{l,2}.
k—1JR,

We have e(h—9)B 'vleft = e RE=9) g, since v is a left eigenvector of olk=s)B belonging
to the eigenvalue e(’=®=5) " hence

k
= / / elr=r)(k=s) (Viete, 2) Liucx,_ ;3 N(ds,dr), keN, je{l 2}
k1

We have Ckg = ]kj Ik 1,55 ke N with It] : fO f’R <’Uleft, >]]‘{U<Xs—,j} N(ds,d’r),
t € Ry. The process (Iy;)icr, is a martingale, since

(/ / |67 g <U1eft7 >]]-{u<XS_’]-}|2dS,U/j(dZ) du)
k=1 Juy Juy

:/ e2(1=r) S)E(Xs’j)ds ‘(’UleftazHQ,uj(dz)
k—1

Uz

k
<ol [ FOIEIEX,)ds [ el us(dz) < oc
k-1

Uz
see Tkeda and Watanabe [12, Chapter II, page 62], formula (2.11) in Barczy et al. [5] and
moment condition (2.3) with ¢ = 2. Consequently, for each k¥ € N and j € {1,2}, we have

Moreover, the assumption <6’vleft,vleft> = 0 implies fu2 (Vtets, 2)% pe(dz) = 0 for each
¢ € {1,2} (see the beginning of the proof of Theorem 3.5), thus

Ck] (/ / / 2y=r S) vlefta > ﬂ{u<X }dS :U“](dz) du)
k—1JUs JU;

_ / Q203 (X, ) ds / (Vire, 2)? j15(dz) = 0
k—1

Uz
a.s.

by Ikeda and Watanabe [12, Chapter II, Proposition 2.2]. Consequently, (; = 0, and we
obtain (Viesr, M i) = (Viee, 1), k € N.
In a similar way, <6’uleft, Upere) = 0 implies (Wi, M) = (Uier, M), k € N.

The Poisson point process p admits independent increments, hence m,, k € N, are
independent.

For each k € N, the Laplace transform of the random vector m, has the form

E(e=®m)) = exp{— /k : /u 2 (1 - e—<"ve"“"‘”§’“>) ds V(r)}
= exp{ / /M2 0.l By )du u(’r)} = R(e~@m))

for all @ € R%, see, i.e., Kyprianou [18, page 44], hence 7, k € N, are identically distributed.
O
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B On moments of multi-type CBI processes

In the proof of Theorem 3.1, good bounds for moments of the random vectors and variables
(My)kez, s (Xiwez,, (Ur)kez, and (Vi)kez, are extensively used. The following estimates
are proved in Barczy and Pap [7, Lemmas B.2 and B.3].

B.1 Lemma. Let (X)ier, be a multi-type CBI process with parameters (d,c,3,B,v, )
such that E(||X||?) < oo and the moment conditions (2.3) hold with some q € N. Suppose
that (Xi)wer, is irreducible and critical. Then

E(]|X[|)

B.1 sup ———— < o0
(B-1) teRE)_ (1+1)

In particular, E(||X||7) = O(t?) as t — oo in the sense that limsup, .t 1E(|| X ||?) < oo.

B.2 Lemma. Let (Xi)ier, be a multi-type CBI process with parameters (d,c,3,B,v, )
such that E(||X]|?) < oo and the moment conditions (2.3) hold, where q = 2p with some
p € N. Suppose that (Xy)ier, s irreducible and critical. Then, for the martingale differences
M, =X, -E(X,|X,1), neN, wehae E(|M,]|**) = O(n?) as n — oo that is,
Supcsy P E([[ M) < oo.

We have Var(My, | Fy—1) = Var(Xy | Xi—1) and Var(X,| X-1 =) = Var(X, | X¢ = x)
for all @ € Ri, since (Xy)ier, is a time-homogeneous Markov process. Hence Lemma 4.4 in
Barczy et al. [6] implies the following formula for Var(My, | Fi_1).

B.3 Proposition. Let (X;)icr, be a multi-type CBI process with parameters (d, c, 3, B,v, p)
such that E(||Xo|*) < oo and the moment conditions (2.3) hold with q = 2. Then for all

k€N, we have
d

Var(My, | Fr-1) = Z(ejxk—ﬁvi + Vo,
i=1
where

d 1 _ _ T
V= Z/o (el=WBe, e,)e"BC "B du, ie{l,...,d},

(=1

1 _ d 1 1-u  _ _ _
V= / "B (/ zzTy(dz)) B’y + Z/ (/ ("B 3, e)) dv) e“BC’ge“BTdu.
0 Uy = Jo \Jo

Note that V= Var(X,| X, =0).

B.4 Proposition. Let (X;)icr, be a multi-type CBI process with parameters (d,c, 3, B,v, p)
such that E(||X]|?) < oo and the moment conditions (2.3) hold with some ¢q € N.  Then
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forall je{1,...,q} and iy,...7; € {1,...,d}, there exists a polynomial P;
having degree at most |j/2|, such that

(B.2) E (Mg, -+ My, | Fiet) = P, (Xie1),  keEN,
where My =: (My1,...,Mra)". The coefficients of the polynomial Pj;, . i; depends on d,
C, /87 B; V, U1, - - - Hd-

The proof of Proposition B.4 can be found in Barczy et al. [8].

B.5 Corollary. Let (X;)ier, be a 2-type CBI process with parameters (2,c,3, B,v, ) such
that Xo=0, B#0 or v#0, and (3.1) holds with some v € R and k€ Ry, such that
s=v+k=0 (hence it is irreducible and critical). Suppose that the moment conditions (2.3)
hold with some q € N. Then

E(| X'y =O(k"),  E(IMy|¥)=0("), E(U)=0() EV¥)=O0(K)

for i,5 € Z, with i <q and 25 <q.
If, in addition, <évleft,vleft> =0, then

E(|(viere, Mi)[') = O(1),  E(V”) = 0O(1)

for i,5 € Zy with 1 <q and 27 <q.
If, in addition, <6”U/]eft,'U/]eft> =0, then

E(|(were, Mi)|") = O(1)
for i€ Z, with 1 <q.
The proof of Corollary B.5 can be found in Barczy et al. [8].

B.6 Corollary. Let (X,)icr, be a 2-type CBI process with parameters (2,¢,3, B, v, ) such
that Xo=0 B#0 or v#0, and (3.1) holds with some v €R and k € Ry, such that
s=v+k=0 (hence it is irreducible and critical). Suppose that the moment conditions (2.3)
hold with some ¢ € N. Then

(i) for all i,j € Zy with max{i,j} < |£/2], and for all 6 >i+1+1, we have
(B.3) n_QZ|U2ij| =0 as n — oo,
k=1

(ii) for all 1,5 € Z, with max{i,j} <, forall T >0, and for all 0 > i+ % + #, we

have

(B.4) n~’ sup |UfnthL];1tj| 0 as n — oo,
te(0,7)
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(iii) for all i,j € Zy with max{i,j} < [(/4], for all T >0, and forall 0 >i+1+1
we have

[nt]
(B.5) n~? sup Z[U;v,g —B(UV] | Frot)] =50 as n — oo.

t€[0,T]| .1

If, in addition, <é’vleft,'vleft> =0, then

(iv) for all i,j € Z, with max{i,j} < [¢/2]|, and for all 6 >i+1, we have

(B.6) n_GZ]U,inj] =0 as n — oo,

k=1
(v) for all i,j € Zy with max{i,j} < ¢, forall T >0, and for all 0 > i+%, we have

(B.7) n~? t:{lép |ULntJ ] | =50 as n — oo,

(vi) for all i,j € Zy with max{i,j} < |¢/4], for all T >0, and forall 0 > i+ 3, we
have
Lnt)

(B.8) n~? sup Z
t€[0,T]| .=

[U;‘/}g — E(U;V}g |]:;€_1)]‘ 20 as n — 0o,

(vil) for all j € Zy with j < |€/2], forall T >0, and forall 0> %, we have

Lnt]

(B.9) n~? sup
t€[0,77] ;

V! —EWV] | Fu1)] 50 as n — oo.

The proof of Corollary B.6 can be found in Barczy et al. [8].

C CLS estimators

For the existence of CLS estimators we need the following approximations.

C.1 Lemma. Suppose that the assumptions of Theorem 3.1 hold. For each T >0, we have

|nt] L”tJ

CUlft Ulft
n~% sup ka’ — 19—7628 ZUk 1 0, as n — 0o.

t€[0,7]| %=,

The proof of Lemma C.1 can be found in Barczy et al. [8].
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C.2 Lemma. Suppose that the assumptions of Theorem 3.1 hold. If <6"vleft7'vleft> =0, then

for each T >0,
nt]

1
NV Mt
n

k=1

P
sup — 0 as m — 0o,

t€[0,T]
where M is defined in (3.12).

Moreover, M =0 if and only if (B, — Pa)? + Ju, (21 = 22)?v(dz) = 0, which is equivalent
to Xga = Xpo forall ke N.

The proof of Lemma C.2 can be found in Barczy et al. [§].

C.3 Lemma. If (Xi)er, is a 2-type CBI process with parameters (2,c,3,B,v,u) such
that (3.1) holds with some v € R and k € Ry, such that s = v+ kK =0 (hence it is
irreducible and critical), E(||Xo||) < 0o, and the moment conditions (2.3) hold with q = 1,
then P(H,) — 1 as n — oo, and hence, the probability of the existence of a unique CLS
estimator o, converges to 1 as n — oo, and this CLS estimator has the form given in (3.6)
on the event H,,.

If, in addition, ||c|*+3.7, Ju, (21— 22)% pi(dz) >0 or (51—52)2+fu2(21—22)2 v(dz) >0,
then P(ﬁn) — 1 as n — oo, and hence the probability of the existence of unique CLS estimator
gn converges to 1 as n — oo. The CLS estimator gn has the form given in (3.6) on the
event H,.

The proof of Lemma C.3 can be found in Barczy et al. [§].

D A version of the continuous mapping theorem

The following version of continuous mapping theorem can be found for example in Kallenberg
[17, Theorem 3.27].

D.1 Lemma. Let (S,dg) and (T,dr) be metric spaces and (&,)nen, € be random elements
with values in S such that &, i>§ as n—o0. Let f: 5 —=T and f,:S—T, neN, be
measurable mappings and C € B(S) such that P(§ € C) =1 and limy, o dr(fn(sn), f(s)) =0
if limy oo ds(Sn,s) =0 and s € C. Then f,(&,) N f(&) as n— .

For the case S =D(R,,RY) and T =R? (or T = D(R,,RY)), where d, q € N, we
formulate a consequence of Lemma D.1.

For functions f and f,, n € N, in D(R,,RY), we write f, LN (fa)nen
converges to f locally uniformly, that is, if supycop [|f2(t) — f()[| = 0 as n — oo for all
T > 0. For measurable mappings ® : D(R,,RY) - R? (or ®:D(R,,RY) — D(R,R?)) and
®, : D(R;,RY) — R? (or @, : D(R;,RY) — D(Ry,R?)), n €N, we will denote by Cy (s,)

neN
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the set of all functions f € C(R,,R?) such that ®,(f,) — ®(f) (or ®,(fn) SNELN d(f))
whenever f, LN f with f, e D(R.,R?), ne€N.

We will use the following version of the continuous mapping theorem several times, see, e.g.,
Barczy et al. [2, Lemma 4.2] and Ispany and Pap [14, Lemma 3.1].

D.2 Lemma. Let d,q € N, and (U)ier, and (UE"))teR+, n €N, be Re-valued stochastic
processes with cadlag paths such that U™ PoU. TLet D DR, RY) — R? (or & :
D(R;,RY) — D(R,,RY)) and &, : D(R,,R?) — RY (or &, : DR, RY) — DR, ,RY)),
n € N, be measurable mappings such that there exists C C Co (a,),.y with C € Do (R, RY)

and PU € C)=1. Then &,U™) 25 dU).

€N

In order to apply Lemma D.2, we will use the following statement several times, see Barczy
et al. [3, Lemma B.3].

D.3 Lemma. Let d,p,q € N, h: R* = R? be a continuous function and K : [0,1] x R?*! — RP
be a function such that for all R > 0 there exists Cgr > 0 such that

(D.1) 1K (s, 2) = K(t,y)|| < Cr ([t —s| + |z = yl])

forall s,t €0,1] and z,y € R* with ||z]| < R and |y|| < R. Moreover, let us define the
mappings ®,®, : D(R,,RY) — R neN, by

2,(f) = (h(f(l)),%gf( (Er(5)0 (7))
() = (). [ Ko s s

for all f € D(Ry,RY).  Then the mappings ® and ®,, n € N, are measurable, and
CCID’(CI:'")HEN = C(R+7Rd) E Dm<R+,Rd)

E Convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process, see
Ispany and Pap [14]. This result is used for the proof of convergence (5.1).

E.1 Theorem. Let ~: R x R — R¥>" be a continuous function. Assume that uniqueness
in the sense of probability law holds for the SDE

(E.1) dU, = ~(t,Uy) AWy, teRy,

with initial value Uy = ug for all uy € R, where (Wi)ier, is an r-dimensional standard
Wiener process. Let (Uy)ier, be a solution of (E.1) with initial value Uy =0 € R<.
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For each n € N, let e ren be a sequence of d-dimensional martingale differences with
k
respect to a filtration (]—",g"))%h, that is, E(Ufg") ].7-",571)1) =0, neN, keN. Let

u” = Uy, teR, neN

Suppose that E (||U,(€n)|]2) < oo forall n,k €N. Suppose that for each T >0,

Int]
@) sop |5 Var (U 1A% = (o2 (s s |
€lo, —
Lo ey .
(i) kZlE(HUk | {IIU(")H>9}‘}_1¢ 1) —>0 for all 6 >0,

where —— denotes convergence in probability. Then U™ LU as n— oco.

Note that in (i) of Theorem E.1, ||| denotes a matrix norm, while in (ii) it denotes a
vector norm.
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