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ABSTRACT

In every mathematicd (e.g., satistical) procedure and theorem used in calibration, several con-
ditions need to be fulfill ed. What can analysts and chemometricians do, however, if the conditions are
only nealy fulfilled? One can exped that small changes in the @mnditions yield only small changesin
theresults. This article shows how to tred two types of model error caused by assuming an incorred
error distribution or relationship (i.e., linea). The procedures applied are based on robust statistics

and fuzzy theory, respedively.

INTRODUCTION

In calibration, it isimportant to determine the parameters of the cdibration function by means of
certain parameter estimators. But where can these estimators be derived from? It must first be defined
what the cdi bration function means, i.e., what the shape of the function is. In practice, alinear oneis
often chosen for simplicity. We must then consider the error distribution. In general it may be as-

sumed that the independent variable (concentration) is predse, i.e, it is free from any measurement
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error (or a least itserror is negligible as compared with that in the response). Accordingly we have to
asaume an error digribution only in the dependent variable (response). Finaly, we @n give a model
for the calibration procedure with calibration function C(.):

n=Ckxp)+ ¢ (1)
where d is the measurement error in the response, p isthe parameter vedor and nj isarandom variable

related to the response.

In this paper we distinguish two types of model error:

» those aused by a differencefrom the assumed error distribution,

» those aused by a differencefrom the assumed classof the alibration function (i.e., from its
lineaity).

In the foll owing sedions we show how certain parameter estimators can be derived to tred the above

model errors. As solution of the @mbination of two mode errors a robust fuzzy method was intro-

duced for artificiall and real 23 data.

MODEL ERROR CAUSED BY DIFFERENCE FROM THE ASSUMED ERROR DISTRIBUTION

We assume here that the cdibration function is exact, but that the measurements from the ana-
Iytical instrument can be obtained only contaminated with random errors. Several parameter estima-
tors have been derived so far to yield parameters with different properties. Some of them were investi-
gated with a Monte Carlo method by Horvéth, et al.# We can group all parameter estimators into ane
of 3 classes depending on their derivation:

»  Derivation based on geometrical concepts.
»  Derivation based on functionals appli ed to digtribution functions.
*  Derivation based on test statigtics.

Geometrical concepts

All these procedures are based on the minimization of vedor norms. The most frequently used vector

norm isthe Euclidean one and least squares estimation may be derived from it. However, it belongsin

1
a more general norm family, in particular Lp = [ilepk Minimization of L, leadsto a linea



MODELL ERROR IN CALIBRATION 217

programming problem®8. In the @se of L,, the well-known least squares method can be obtained”. Lo,
plays an important role in the statistics of extremes8 and in the minimax® problems. L,, minimization
is again a linea programming task. For the work reported here, the following distance measure is

defined®: P:{|‘| [sz+>q2]}5, where € is defined by the following rearsve formula

2
- 1
8(2k+1) = 32( , % 2)2/2( , 2)2 . € is a type of dispersion of the data like standard
Ew X E X

deviation. The name of the estimator obtained by minimizing P is the most frequent valuel®. The last

norm is derived from the L exchanging summation for the median operator: M p— [med{x, ‘ p}F .

The literature deds only with p = 2, and the derived procedure is the least median of squares!l.

Functionals applied to distribution functions

In most practical cases, it can be assumed that any estimation depends only on the empirical dis-
tribution of the data, i.e, the estimator can be regarded as a functional (asdgning a red number to
each member of a dassof functions) on the empiricd distribution function F,,. However, the estimator
T is usualy derived from some theoreticd probability distribution F, denoted by T(F). T(F,) is a
natural nonparametric estimator, but its properties can be deduced by studying the behavior of T(G)
for G in the neighborhood of F. This problem concerns the first type of model error, i.e., thereis a
model to describe the mnnedion between the responses and concentrations (this is the cdibration
function), including the error distribution of the measurements, but the latter may not be exact. We
may assume adidribution function F instead o G. The definition of the qualitative robustness3 for
estimates follows: the estimation is robugt if the distribution of estimates is a uniformly continuous
functional of the mother distribution, i.e., near-lying distributions of estimates belong to near-lying
mother distributions (the Rdhaov distance between G and F is snall). However, the robustnessof the
estimators will be measured quentitatively in two different ways. The overall sensitivity of an estima-
tor is measured by its breakdown point®13.14 (this is often described as quantitative robustness,

which isroughy the small est fraction of outliersin the colledion that cen take the estimator over all
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bounds. It describes the overall behavior of an estimator under large perturbations. The influence
function®® (the infinitesimal robustness is defined to measure robustnesslocally. It describes how the
estimator alters under infinitesimal perturbations at some single point. It is e that arobust estima-
tor cen treat the first-mentioned model error if it has ahigh breskdown point and a bounded, continu-
ous influencefunction.

Clanceyl6 pointed out in his comprehensive study that only 10-15% of the distributions could be
regarded as normal, and 4550 % of them were symmetricd. That is why we should be interested in
several different kinds of error distribution. We now must find procedures that use some asaimed
distributions to yield estimators. We have to mention the method d momentst’, though the solution
given by it is not always unique. Additionally the higher moments are increasingly more sensitive to
experimental error because of the large exponents. For this reason, the method of moments is not
robust, and it is therefore not recommended for the estimation of parameters. Frequently used regres-
sion procedures can be obtained using the principle of maximum likelihood (ML)17. Huber® general-
ized the method d ML by replacing - Inf (fistheidentical probability density function of independ-
ent observations) by a differentiable function p. The estimators defined by this way are M-estimators
and they can be robust. Previously we asaimed that we knew the type of the error distribution exactly.
However, it frequently occurs that we @nnot know it, and the unknown distribution function most be
substituted by some given one. If a given dstribution of density function f(x) is substituted by some
other distribution of density g(x), the relative information or |-divergence!8.1920.10 is defined by the
expresson

Ig(f):If(x)Iogzg(())gdx. @

The I-divergence can be used in the following practical way. Substitution of the actua but unknown

distribution f by g of known analytical form minimizes the loss of information (i.e., the |-divergence

I4(f)). The pair of location (T) and scatter (S) values of g will be accepted as characteristics of f.
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Test Statigics

Minimizing the well -known x2-statistic gives the least squares estimatorl’. R-estimators®21 can
be ohtained by the general scores datistic. Based on the rank correlation tau (i.e., Kendall's tau2223)
the following parameter estimation can be derived for the linea relationshipy = a x + b. We can

consider the set of N distinct pairs: ﬁj = u, X; > % . Themedian of ordered b, can be cho-

sen to estimate b. For estimation of a one can calculate the median of ordered y; - b x. Thisis the

theoretical background o the algorithm has appeaed previousy24. The U-statistic was introduced by

Hoeffding?> and Siegel?6 robustified it, replacing the overall mean for the nested medians
0= medianm{e(xal,...,xa )} The median operator in turn reduces the number of subscripts by 1

beginning with a,, and finally reaching a;.

MODEL ERROR CAUSED BY DIFFERENCE FROM THE ASSUMED LINEARITY OF THE

CALIBRATION FUNCTION

In widespread measuring model's, noise is considered to contaminate the true values, for example
in Equation 1, and therefore the predicted parameters and the evaluated values are disturbed by errors.
Alternatively some of the apparent measurement errors are due to the shortcomings of the applied
model (e.g., calibration function). In this case we assume that we can measure predsely, but we are
not sure whether the applied modd is proper or not. We must choose a model, and the one seleded is
often very simple to ensure easy managesability. In fact, it is impossble to consider al the relation-
ships practicdly; we must negled some of them. The estimation errors, i.e., the distance between
measurement and its prediction, therefore exist because of the inappropriatenessof the theory describ-
ing the system. This error can be interpreted as the difference between the unknown, true model and
the applied ane, i.e,, the deviations are closdly related to the fuzzinessof the system parameters rather
than to olservation errors. This problem is no longer a stochastic one, because the system has no
random properties, and thus the solution can be obtained by using fuzzy theory. The assumption of

lineaity is very frequent in analytical chemistry. Hence we present an approach to tred the discrep-



220 RAJKO

ancy from the assumed lineaity following Tanaka, et al.27 In analytical chemistry we must often use
alinea or lineaized model for cali bration. However, the anditions for this are rarely fulfill ed. Thus,
we asaume lineaity, knowing that this can not be guite @rred, so this dedsion will be influenced by

human estimation. This problem can be solved by using fuzzy functions F(y). In these functions, the
parameters are fuzzy numbers?8, i.e, Y = f (x, A) . Now F(y) is the set of all fuzzy subsets on Y .

For the fuzzy linear function Y = ,Zixl +...+ ;5\]- Xp+...+ prp in consequence of the triangular

fuzzy number A, the membership function of Y isasfollows

Hy (y) =

DD@DD@DDDED
> 1>
I I
o o
< <
N I
o o

3

where ‘;(‘ = Qxl Xn‘)‘ and 0@ and Cdenote the vedors of center values and spreals for al

parameters, respedively. The estimated fuzzy linea model should then cover al the data points y;

with a cetain threshold H chosen by the dedsion-maker, i.e., o (Y;) =2 H forali=12, .., nrelat-

ing to the given non-fuzzy, i.e., predse data y;. These inequalities can be rewritten by using the mem-
bership function o (Yy): (1- H)Q‘x‘ —‘y—xtg‘ >0, x# 0. It seams anatural requirement to
choose parameters with which the sum of spreads ¢; will became the small est; in other words, the so-

lution must be the least vague fuzzy linea function relating to the observations and the well -chosen H

It turned out, however, that the fuzzy regresson described above was not robust enough That is

why we used an iterative procedure to improve the robustness Membership values for data y; can be
calculated with the clculated parameters aj and their widths ¢j. Using these membership values, one

can construct the fuzzy output data (y;,e), where g is a width which is not in inverse ratio to the
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membership values of y;. It may be surprising, but Fig. 2 in Ref. 29 reveals that the higher member-
ship value of y; belongs to the wider g. Thus, in the first sep we @lculated with the nonfuzzy data
(i.e, al g equal 0) and after that with the fuzzy output, obtaining & from the results of the previous
step. Thisiterative procedure is repeated until more than half of the measurements have membership
values of H or more.

Finding the parameters for fuzzy regresson problem with fuzzy outputs becomes the foll owing
linea programming task2®:

(4)

Minimize s= Jp c,

Subjectto (1- H)szzlcj‘x”‘ +xXa > y,+(1-H)e,
(H —1)2;):1Cj‘xij‘ +Xa <y +(H-De,
¢ =0,
foralli =1,2,...,n.

EXPERIMENTAL RESULTS

Real calibration data from Inductively Coupled Plasma Atomic Emisgon Spedrometry (ICP-
AEYS), ohtained for subsurface- and drinking water environmental analysis, were investigated by using
the foll owing methods: Least Sum of Squares (LS), Least Sum of Absolute Residuals (LSA)S, Least
Maximum Absolute Residuals (LMA)®, Iteratively Reweighted Least Sum of Squares with Tuning
Congtants 6 and 9 (IRLS6 and IRLS9)30, Most Frequent Value (MFV)10, Single Median (SM)23.24,
Repeated Median (RM)25, Least Median of Squares (LMS)1112, Data are listed in Table 1 and the
resultsaregivenin Table 2.

Overdl, it may be stated that these data were seeded from several calibration data sets to dem-
onstrate the dfects of outli ers and the usefulnessof robust procedures. Outliers existed because of oc-
casiona errors of unknown origin in instrumentation or sample preparation.

It is well-known that an |CP spedrometer can produce linea readings over six orders of magni-

tude in concentration. Because of this, its data representsthe best example of thefirst type of mode
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Concentration (ppm)

0
0

0.25
0.25

0.5
0.5
1
1

406

TABLE 1. Calibration Data Measured by ICP-AES.

Signds for Elements (arbitrary units)

Mo Cr
8.19 -234
1605 -194
1719 2109
1806 213.7
4204
4145 4232
8107 8432
8182 8406

Co Pb
-1.83 1346
-2.45 6.4

2613 112
2601 1192
4308 217
4314 2077
8603 4196
85906 4287

RAJKO
Ni (221.6nm)  Ni (231.6 nm)
6.4 2833
747 30.56
2237 2208
2156 2186
4379 4102
4307 407.9
8973 8283
886.8 826.1

TABLE 2. Estimated Parameters Obtained by the Methods Mentioned in the Text for the Datain

Methods ag

LS -3.07
LSA 819
LMA -6.29
IRLS6 11.1

IRLS9O -1.88
MFV  9.36
SM 5.25
RM 201
LMS 121

Mo
i
8145
8025
8021
8023
8136
8039
808.4
8135
8025

Cr

<o)
-11.9
-2.4
-12.8

il
8585
8456
864.0
-11.7 8580
-11.8 8583

1.31 8408
-9.15 854.6
-1.55 8445

2.4 8396

* measured at wavelength 221.6 nm
** measured at wavelength 231.6 nm

Table 1.

Co

2 i

17.2 8461
1.3 8590
217 8621
-1.458621
157 8472
-1.96 8621
0.39 8602
2.25 8577
-1.34 8620

Pb
2
9.84
135
8.7
100
9.91
103
9.65
104
118

il
4130
407.1
4127
4129
4129
4121
4129
4108
407.1

2]
0.47
2.67

-3.37
0.85
0.63
6.4
51
6.2
8.98

Ni*

il
886.3
8841
8898
8858
886.1
8804
8800
87092
8486

Ni**

2
219
190
198
222
220
229
26.7
289
294

il
7987
807.1
7977
7991
7988
8013
7827
7652
7611

error, where the linea reationship is adequate, but the assumed error distribution can fail, and some

outliers can ocaur within measurements. For the data shown, the best results were given by LMS.

MFV aso yielded appropriate results for the measurements of Mo, Cr, Pb, Co and Ni (221.6 nm). The

calibration lines cdculated by RM was acceptable for Cr, Pb and Ni measured at bath wavelengths,

and by IRLS6 for Mo and Co. SM was goad for Pb and Ni (231.6 nm) and LSA for only Mo. IRLS9

and LS gave nealy the sameresults. LMA gave very biased parameters, in fact it was the most sens-

tiveto the outliers.
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TABLE 3. Results of Fuzzy Linea Regresson and its Computation by Our Modification.

Data Set3
No. 2. No. 5. No. 8.
a0 * Co 0.0+ 0.0 0.019 + 0.000 0.0+ 0.0
a; £ c; 0.00447 £ 0.00043  0.00400 + 0.00010 0.0100+ 0.0014
Ly, 1.000 0.100 1.000
Ly, 0.373 0.100 0.308
L iteration  py, 0.100 0.614 0.100
by, 0.100 0.100 0.481
Hyg 0.197 0.923™ 0.573
Hyg 0.697
y, 0.100
3 *Cy 0.0+ 0.0 0.0+ 0.0
a; £ ¢; 0.00408 + 0.00776 0.0870 + 0.0016
Ly, 1.000 1.000
Ly, 0.985 0.861
2.iteration  py, 0.901 0.843
Ly, 1.000 0.876
Hyg 0.995° 0.884
Ly 0.947
y, 1.000
¢y 0.0+ 0.0
atq 0.0104+ 0.0106
by, 1.000
Hy, 0.962
3.iteration  Hy, 0.944
by, 0.977
Ly, 0.985
Hyg 0.951
Ly, 0.899°

* The stop criterion was fulfill ed when more than half of the measurements had amembership value
of 0.9 (= H) or more.
** The stop criterion was fulfill ed when more than half of the measurements had a membership value
of 0.1 (= H) or more.
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Table 4. Properties of the Parameter Estmators Investigated

Methods Derivations Breakdown Robustness Remmendations
points
LMA min L, 0% not robust at all not recommended at all
LS minL, 0% not robust at all reommended only for large
data
(30-50 measurements)
LSA min L, 0% sensitive to leverage recommended anly with good
points® experimental design
IRLS9  M-estimator 20% dlightly robust reommended only for large
data
(15-30 measurements)
IRLS6 M-estimator 25% robust [
MRV M-estimator 25% robust E recommended
SM bassedonrank  30% robust £ tousein
correlation [ calibration
RM based on modi- 50% very robust E even for small data
fied U-gtatistic (8-15 measurements)
LMS min M, 50% very robust E

* highly influentia data points caused by non balanced design

Some @i bration data from atomic absorption spedrometry was recently investigated by Hu, et
al.3 We caried out fuzzy linea cdibration for threeseleded data sets investigated by them: those for
data sets 2, 5 and 8 These were of interest because they were measured with grossoutlier, no autliers
and with model error, respedively. The results are shown in Table 3. The modified fuzzy linea re-

gresson method worked well in al threeof these examples.

DISCUSSON

This article intended to demongtrate the problem of two types of model error, which in our
opinion isacentra point of the parameter estimation and therefore the chemical calibration.

Table 4 shows the properties of the parameter estimators reported here to make dea their effec
tive use in cdibration based on theoreticd and practical considerations.

It should be noted that the first type of moded error exists because of the lack of knomMedge about
the exact distribution of the measurement error. Nevertheless not even complete knowledge @n help

in the cse of the small calibration data sets!? often used in practice When the number of measure-
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ments is small, the empirical digribution can differ completely from that theoretically expeded. It
may even be asymmetric, though symmetry may be assumed for large data. Thus, outliers can occur
much more frequently than expeded. If an estimator has a bounded, continuous influence function, it
is robust. However, we must argue with the view31 that one shoud choase the biweight procedure3?
instead of the median, just because the former has better properties in its influence function than the
latter has for spedal, artificially compiled data. In fact, a robust procedure needs a high breakdown
point too, because nea this point the result may be rather biased (seeFig. 2 on page 42in Ref. 32); it
should not be forgotten that the bias tends to infinity on collapsing. In addition, the influence function
depends on the actual error distribution too, while the breakdown points are distribution-freefor most
of the cases. Outliers can ocacur more than one at a time, it is true that their ratio is not lessthan 10
20%, in general. All the same, it is safer to use an estimator which has ahigher breakdown point.

If one has more information abaut the type of the error distribution for the instrument used, then
it is posshble to use functionals applied to them. The principle of maximum likelihood and its gener-
alization can give d@ther nonrobust or robust estimators. However, it can often ocaur that the estimated
scale is biased and/or nonrobust, making it more difficult to oltain a proper location. The minimiza:
tion of I-divergence can yield robust scales. Additionally, its base wmncept, that the practical distribu-
tion is not known exactly, and is instead substituted by a theoretical one, is closer to practice in
chemicd cdibration. Unfortunately, there is no posshility to create mnfidence interval for the edti-
mated parameters. However, this problem is general in robust statistics, a result of the difficulty of
describing the digtribution of the outliers. Work addressng this question will appea soon33, Walters
and Rizzuto34 investigated nonrobust (inverse and classcal) estimators to compare them based on the
confidenceinterval.

In dedding when to use robust procedures a quality coefficient (QC)3° can help. This quality co-

efficient is defined as QC = 100%/2 Eué/n —1), where Y, is the measurement, §; is
= Yi

the prediction by LS line and n is the number of data points, without the zero points. A critical value
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is given in advance to considering the predsion of the analytical method. If the QC value is larger
than the criticd value, the hypothesis that there ae no autliers will be rgeded and robust procedures
will be used. For the ICP data athreshold value of 10 % was used. The QC values were found 69.2 %,
23.7 %, 496.4 %, 22.9 %, 49.8 % and 13.8 % for measurements according to the elements Mo, Cr,
Co, Pband Ni (221,6 nm and 231.6 nm), respedively. In the @ase of Co the QC value was rather high.
It turned out, that there were grossoutliers a concentration 0.25 ppm and the LS line was rather far
from the sgnal measured at concentration O ppm.

The second type of model error isa bit more difficult. We gave asolution when the lineaity was
asaumed foll owed by concepts of Tanaka et al., and the robustnessof the method was improved. The
second type of model error generally arises when an approximately linea segment of nonlinear re-
sponse function is used. This isthe case in the given examples of AAS measurements, and we ill us-
trated how to trea the failing lineaity. Recently a pleasant solution appeaed for diagnosing the
lineaity of calibration lines by Vankeaberghen, et al.36 We think, however, that the fuzzy linea
regresson procedure with our modification needs no limitation of number of data points and it cen
also work in multivariate @ase. More than one iteration cycle means that the assumption of lineaity
should be rgeded; however, the ohtained parameters can be used for evaluation because of the
robust property of the estimation.

We should also mention that real problem can emergein automatic analyses. In this case thereis
not always the chance to control the cdibration graphs visudly, one by one, either to reagnize
outliers or to ched lineaity. Algorithms must automaticaly tred failures caused by either of model
errors. The diagnostic can be arried out as described before. Of course, after a suitable period, the
analyst must chedk whether discrepancies occurred in cdibration and he or she must corred the

analytical conditionsto try to avoid outliers next time.
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