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ABSTRACT

In every mathematical (e.g., statistical) procedure and theorem used in calibration, several con-

ditions need to be fulfill ed. What can analysts and chemometricians do, however, if the conditions are

only nearly fulfill ed? One can expect that small changes in the conditions yield only small changes in

the results. This article shows how to treat two types of model error caused by assuming an incorrect

error distribution or relationship (i.e., linear). The procedures applied are based on robust statistics

and fuzzy theory, respectively.

INTRODUCTION

In calibration, it is important to determine the parameters of the calibration function by means of

certain parameter estimators. But where can these estimators be derived from? It must first be defined

what the calibration function means, i.e., what the shape of the function is. In practice, a linear one is

often chosen for simplicity. We must then consider the error distribution. In general i t may be as-

sumed that the independent variable (concentration) is precise, i.e., it is free from any measurement
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error (or at least its error is negligible as compared with that in the response). Accordingly we have to

assume an error distribution only in the dependent variable (response). Finall y, we can give a model

for the calibration procedure with calibration function C(.):

η = C(x,p) + δ (1)

where δ is the measurement error in the response, p is the parameter vector and η is a random variable

related to the response.

In this paper we distinguish  two types of model error:

• those caused by a difference from the assumed error distribution,

• those caused by a difference from the assumed class of the calibration function (i.e., from its

linearity).

In the following sections we show how certain parameter estimators can be derived to treat the above

model errors. As solution of the combination of two model errors a robust fuzzy method was intro-

duced for artificial1 and real2,3 data.

MODEL ERROR CAUSED BY DIFFERENCE FROM THE ASSUMED ERROR DISTRIBUTION

We assume here that the calibration function is exact, but that the measurements from the ana-

lytical instrument can be obtained only contaminated with random errors. Several parameter estima-

tors have been derived so far to yield parameters with different properties. Some of them were investi-

gated with a Monte Carlo method by Horváth, et al.4 We can group all parameter estimators into one

of  3 classes depending on their derivation:

• Derivation based on geometrical concepts.

• Derivation based on functionals applied to distribution functions.

• Derivation based on test statistics.

Geometrical concepts

All these procedures are based on the minimization of vector norms. The most frequently used vector

norm is the Euclidean one and least squares estimation may be derived from it. However, it belongs in

a more general norm family, in particular [ ]pp

inp xL
1

1 ∑= . Minimization of  L1 leads to a linear
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programming problem5,6. In the case of L2, the well -known least squares method can be obtained7. L∞

plays an important role in the statistics of extremes8 and in the minimax9 problems. L∞ minimization

is again a linear programming task. For the work reported here, the following distance measure is

defined6: [ ]{ } n
ixP 2

1
22∏ += ε , where ε is defined by the following recursive formula:
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ε . ε is a type of dispersion of the data li ke standard

deviation. The name of the estimator obtained by minimizing P is the most frequent value10. The last

norm is derived from the Lp exchanging summation for the median operator: { }[ ]pp

ip xmedM
1

= .

The literature deals only with p = 2, and the derived procedure is the least median of squares11.

Functionals applied to distribution functions

In most practical cases, it can be assumed that any estimation depends only on the empirical dis-

tribution of the data, i.e., the estimator can be regarded as a functional (assigning a real number to

each member of a class of functions) on the empirical distribution function Fn. However, the estimator

T is usually derived from some theoretical probabilit y distribution F, denoted by T(F). T(Fn) is a

natural nonparametric estimator, but its properties can be deduced by studying the behavior of T(G)

for G in the neighborhood of F. This problem concerns the first type of model error, i.e., there is a

model to describe the connection between the responses and concentrations (this is the calibration

function), including the error distribution of the measurements, but the latter may not be exact. We

may assume a distribution function F instead of G. The definition of the qualitative robustness13 for

estimates follows: the estimation is robust if the distribution of estimates is a uniformly continuous

functional of the mother distribution, i.e., near-lying distributions of estimates belong to near-lying

mother distributions (the Prohorov distance between G and F is small). However, the robustness of the

estimators will be measured quantitatively in two different ways. The overall sensitivity of an estima-

tor is measured by its breakdown point9,13,14  (this is often described as quantitative robustness),

which is roughly the smallest fraction of outliers in the collection that can take the estimator over all
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bounds. It describes the overall behavior of an estimator under large perturbations. The influence

function15 (the infinitesimal robustness) is defined to measure robustness locall y. It describes how the

estimator alters under infinitesimal perturbations at some single point. It is seen that a robust estima-

tor can treat the first-mentioned model error if it has a high breakdown point and a bounded, continu-

ous influence function.

Clancey16 pointed out in his comprehensive study that only 10-15 % of the distributions could be

regarded as normal, and 45-50 % of them were symmetrical. That is why we should be interested in

several different kinds of error distribution. We now must find procedures that use some assumed

distributions to yield estimators. We have to mention the method of moments17, though the solution

given by it is not always unique. Additionally the higher moments are increasingly more sensitive to

experimental error because of the large exponents. For this reason, the method of moments is not

robust, and it is therefore not recommended for the estimation of parameters. Frequently used regres-

sion procedures can be obtained using the principle of maximum likelihood (ML)17. Huber9 general-

ized the method of ML by replacing  - ln f  (f is the identical probabilit y density function of independ-

ent observations) by a differentiable function ρ. The estimators defined by this way are M-estimators

and they can be robust. Previously we assumed that we knew the type of the error distribution exactly.

However, it frequently occurs that we cannot know it, and the unknown distribution function most be

substituted by some given one. If a given distribution of density function f(x) is substituted by some

other distribution of density g(x), the relative information or I-divergence18,19,20,10  is defined by the

expression

∫
∞

∞−

= dx
xg

xf
xffIg )(

)(
log)()( 2 . (2)

The I-divergence can be used in the following practical way. Substitution of the actual but unknown

distribution f by g of known analytical form minimizes the loss of information (i.e., the I-divergence

Ig(f)). The pair of location (T) and scatter (S) values of g will be accepted as characteristics of f.
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Test statistics

Minimizing the well -known χ2-statistic gives the least squares estimator17. R-estimators9,21 can

be obtained by the general scores statistic. Based on the rank correlation tau (i.e., Kendall's tau22,23)

the following parameter estimation can be derived for the linear relationship y = a x + b. We can

consider the set of N distinct pairs: ij
ij

ij
ij xx

xx

yy
b >

−
−

=    ,ˆ . The median of ordered 
ijb̂  can be cho-

sen to estimate b. For estimation of a one can calculate the median of ordered yi - b xi. This is the

theoretical background of the algorithm has appeared previously24. The U-statistic was introduced by

Hoeffding25 and Siegel26 robustified it, replacing the overall mean for the nested medians:

{ }),,(ˆ
1 m

xxmedianm
ααθθ �= . The median operator in turn reduces the number of subscripts by 1

beginning with αm and finall y reaching α1.

MODEL ERROR CAUSED BY DIFFERENCE FROM THE ASSUMED LINEARITY OF THE

CALIBRATION FUNCTION

In widespread measuring models, noise is considered to contaminate the true values, for example

in Equation 1, and therefore the predicted parameters and the evaluated values are disturbed by errors.

Alternatively some of the apparent measurement errors are due to the shortcomings of the applied

model (e.g., calibration function). In this case we assume that we can measure precisely, but we are

not sure whether the applied model is proper or not. We must choose a model, and the one selected is

often very simple to ensure easy manageabilit y. In fact, it is impossible to consider all the relation-

ships practicall y; we must neglect some of them. The estimation errors, i.e., the distance between

measurement and its prediction, therefore exist because of the inappropriateness of the theory describ-

ing the system. This error can be interpreted as the difference between the unknown, true model and

the applied one, i.e., the deviations are closely related to the fuzziness of the system parameters rather

than to observation errors. This problem is no longer a stochastic one, because the system has no

random properties, and thus the solution can be obtained by using fuzzy theory. The assumption of

linearity is very frequent in analytical chemistry. Hence we present an approach to treat the discrep-
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ancy from the assumed linearity following Tanaka, et al.27 In analytical chemistry we must often use

a linear or linearized model for calibration. However, the conditions for this are rarely fulfill ed. Thus,

we assume linearity, knowing that this can not be quite correct, so this decision will be influenced by

human estimation. This problem can be solved by using fuzzy functions F(y). In these functions, the

parameters are fuzzy numbers28, i.e., )~,(~ AxfY = . Now F(y) is the set of all fuzzy subsets on Y~ .

For the fuzzy linear function ppjj xAxAxAY ~~~~
11 ++++= ��  in consequence of the triangular

fuzzy number A~ , the membership function of Y~  is as follows






î










≠=

==

≠
−

−

=

0,0,0

0,0,1

0,1

)(~

yx

yx

x
xc

xy

y

t

t

Y

α

µ

(3)

where ( )tnxxx ,,1
�= , and α  and c denote the vectors of center values and spreads for all

parameters, respectively. The estimated fuzzy linear model should then cover all the data points yi

with a certain threshold H chosen by the decision-maker, i.e., HyiY ≥)(~µ  for all i=1,2, ... , n relat-

ing to the given non-fuzzy, i.e., precise data yi. These inequali ties can be rewritten by using the mem-

bership function )(~ yYµ : 0,0)1( ≠≥−−− xxyxcH tt α . It seems a natural requirement to

choose parameters with which the sum of spreads cj  wil l became the smallest; in other words, the so-

lution must be the least vague fuzzy linear function relating to the observations and the well -chosen H

It turned out, however, that the fuzzy regression described above was not robust enough. That is

why we used an iterative procedure to improve the robustness. Membership values for data yi can be

calculated with the calculated parameters αj and their widths cj. Using these membership values, one

can construct the fuzzy output data (yi,ei), where ei is a width which is not in inverse ratio to the
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membership values of yi. It may be surprising, but Fig. 2 in  Ref. 29 reveals that the higher member-

ship value of yi belongs to the wider ei. Thus, in the first step we calculated with the nonfuzzy data

(i.e., all ei equal 0) and after that with the fuzzy output, obtaining ei from the results of the previous

step. This iterative procedure is repeated until more than half of the measurements have membership

values of H or more.

Finding the parameters for fuzzy regression problem with fuzzy outputs becomes the following

linear programming task29:
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EXPERIMENTAL RESULTS

Real calibration data from Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-

AES), obtained for subsurface- and drinking water environmental analysis, were investigated by using

the following methods: Least Sum of Squares (LS), Least Sum of Absolute Residuals (LSA)6, Least

Maximum Absolute Residuals (LMA)6, Iteratively Reweighted Least Sum of Squares with Tuning

Constants 6 and 9 (IRLS6 and IRLS9)30, Most Frequent Value (MFV)10, Single Median (SM)23,24,

Repeated Median (RM)26, Least Median of Squares (LMS)11,12. Data are listed in Table 1 and the

results are given in  Table 2.

Overall, it may be stated that these data were selected from several calibration data sets to dem-

onstrate the effects of outliers and the usefulness of robust procedures. Outliers existed because of oc-

casional errors of unknown origin in instrumentation or sample preparation.

It is well -known that an ICP spectrometer can produce linear readings over six orders of magni-

tude in concentration.  Because of this, its data represents the best example of the first  type  of  model
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TABLE 1. Calibration Data Measured by ICP-AES.

Signals for Elements (arbitrary units)

Concentration (ppm) Mo Cr Co Pb Ni (221.6 nm) Ni (231.6 nm)
0 8.19 -23.4 -1.83 13.46 6.4 28.33
0 16.05  -19.4 -2.45 6.4 7.47 30.56
0.25 171.9  210.9 261.3 112 223.7 220.8
0.25 180.6  213.7 260.1 119.2 215.6 218.6
0.5 406   420.4 430.8 217 437.9 410.2
0.5 414.5 423.2 431.4 207.7 430.7 407.9
1 810.7 843.2 860.3 419.6 897.3 828.3
1 818.2 840.6 859.6 428.7 886.8 826.1

TABLE 2. Estimated Parameters Obtained by the Methods Mentioned in the Text for the Data in
Table 1.

Mo Cr Co Pb Ni* Ni**
Methods a0 a1 a0 a1 a0 a1 a0 a1 a0 a1 a0 a1
LS -3.07 814.5 -11.9 858.5 17.2 846.1 9.84 413.0 0.47 886.3 21.9 798.7
LSA 8.19 802.5 -2.4 845.6 1.3 859.0 13.5 407.1 2.67 884.1 19.0 807.1
LMA -6.29 802.1 -12.8 864.0 21.7 862.1 8.7 412.7 -3.37 889.8 19.8 797.7
IRLS6 11.1 802.3 -11.7 858.0 -1.45 862.1 10.0 412.9 0.85 885.8 22.2 799.1
IRLS9 -1.88 813.6 -11.8 858.3 15.7 847.2 9.91 412.9 0.63 886.1 22.0 798.8
MFV 9.36 803.9 1.31 840.8 -1.96 862.1 10.3 412.1 6.4 880.4 22.9 801.3
SM 5.25 808.4 -9.15 854.6 0.39 860.2 9.65 412.9 5.1 880.0 26.7 782.7
RM 2.01 813.5 -1.55 844.5 2.25 857.7 10.4 410.8 6.2 870.92 28.9 765.2
LMS 12.1 802.5 2.4 839.6 -1.34 862.0 11.8 407.1 8.98 848.6 29.4 761.1

* measured at wavelength 221.6 nm
** measured at wavelength 231.6 nm

error, where the linear relationship is adequate, but the assumed error distribution can fail, and some

outliers can occur within measurements. For the data shown, the best results were given by LMS.

MFV also yielded appropriate results for the measurements of Mo, Cr, Pb, Co and Ni (221.6 nm). The

calibration lines calculated by RM was acceptable for Cr, Pb and Ni measured at both wavelengths,

and by IRLS6 for Mo and Co. SM was good for Pb and Ni (231.6 nm) and LSA for only Mo. IRLS9

and LS gave nearly the same results. LMA gave very biased parameters, in fact it was the most sensi-

tive to the outliers.



MODELL ERROR IN CALIBRATION 223

TABLE 3. Results of Fuzzy Linear Regression and its Computation by Our Modification.

Data Set3

No. 2. No. 5. No. 8.

a0 ± c0 0.0 ± 0.0 0.019 ± 0.000 0.0 ± 0.0
a1 ± c1 0.00447 ± 0.00043 0.00400 ± 0.00010 0.0100 ± 0.0014

µY1
1.000 0.100 1.000

µY2
0.373 0.100 0.308

1. iteration µY3
0.100 0.614 0.100

µY4
0.100 0.100 0.481

µY5
0.197 0.923** 0.573

µY6
0.697

µY7
0.100

a0 ± c0 0.0 ± 0.0 0.0 ± 0.0
a1 ± c1 0.00408 ± 0.00776 0.0870 ± 0.0016

µY1
1.000 1.000

µY2
0.985 0.861

2. iteration µY3
0.901 0.843

µY4
1.000 0.876

µY5
0.995* 0.884

µY6
0.947

µY7
1.000

a0 ± c0 0.0 ± 0.0
a1 ± c1 0.0104 ± 0.0106

µY1
1.000

µY2
0.962

3. iteration µY3
0.944

µY4
0.977

µY5
0.985

µY6
0.951

µY7
0.899*

  * The stop criterion was fulfill ed when more than half of the measurements had a membership value
of 0.9 (= H) or more.
** The stop criterion was fulfill ed when more than half of the measurements had a membership value
of 0.1 (= H) or more.
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Table 4. Properties of the Parameter Estmators Investigated

Methods Derivations  Breakdown Robustness Recommendations
     points

LMA min L∞ 0 % not robust at all not recommended at all

LS min L2 0 % not robust at all recommended only for large
data

 (30-50 measurements)

LSA min L1 0 % sensitive to leverage recommended only with good
 points*  experimental design

IRLS9 M-estimator 20 % slightly robust recommended only for large
data

 (15-30 measurements)

IRLS6 M-estimator 25 % robust

MFV M-estimator 25 % robust recommended

SM based on rank 30 % robust to use in
 correlation calibration

RM based on modi- 50 % very robust even for small data
 fied U-statistic (8-15 measurements)

LMS min M2  50 % very robust

* highly influential data points caused by non balanced design

Some calibration data from atomic absorption spectrometry was recently investigated by Hu, et

al.3 We carried out fuzzy linear calibration for three selected data sets investigated by them: those for

data sets 2, 5 and 8. These were of interest because they were measured with gross outlier, no outliers

and with model error, respectively. The results are shown in Table 3. The modified fuzzy linear re-

gression method worked well in all three of these examples.

DISCUSSION

This article intended to demonstrate the problem of two types of model error, which in our

opinion is a central point of the parameter estimation and therefore the chemical calibration.

Table 4 shows the properties of the parameter estimators reported here to make clear their effec-

tive use in calibration based on theoretical and practical considerations.

It should be noted that the first type of model error exists because of the lack of knowledge about

the exact distribution of the measurement error. Nevertheless, not even complete knowledge can help

in the case of the small calibration data sets12 often used in practice. When the number of measure-
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ments is small, the empirical distribution can differ completely  from  that  theoretically  expected.  It

may even be asymmetric, though symmetry may be assumed for large data. Thus, outliers can occur

much more frequently than expected. If an estimator has a bounded, continuous influence function, it

is robust. However, we must argue with the view31 that one should choose the biweight procedure30

instead of the median, just because the former has better properties in its influence function than the

latter has for special, artificially compiled data. In fact, a robust procedure needs a high breakdown

point too, because near this point the result may be rather biased (see Fig. 2 on page 42 in Ref. 32); it

should not be forgotten that the bias tends to infinity on collapsing. In addition, the influence function

depends on the actual error distribution too, while the breakdown points are distribution-free for most

of the cases. Outliers can occur more than one at a time, it is true that their ratio is not less than 10-

20 %, in general. All the same, it is safer to use an estimator which has a higher breakdown point.

If one has more information about the type of the error distribution for the instrument used, then

it is possible to use functionals applied to them. The principle of maximum likelihood and its gener-

alization can give either nonrobust or robust estimators. However, it can often occur that the estimated

scale is biased and/or nonrobust, making it more diff icult to obtain a proper location. The minimiza-

tion of I-divergence can yield robust scales. Additionally, its base concept, that the practical distribu-

tion is not known exactly, and is instead substituted by a theoretical one, is closer to  practice in

chemical calibration. Unfortunately, there is no possibilit y to create confidence interval for the esti-

mated parameters. However, this problem is general in robust statistics, a result of the diff iculty of

describing the distribution of the outliers. Work addressing this question wil l appear soon33. Walters

and Rizzuto34 investigated nonrobust (inverse and classical) estimators to compare them based on the

confidence interval.

In deciding when to use robust procedures a quality coefficient (QC)35 can help. This quality co-

efficient is defined as ∑
=

−
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100 , where yi  is the measurement, iŷ  is

the prediction by LS line and n is the number of data points, without the zero points.  A critical value
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is given in advance to considering the precision of the analytical method.  If the QC value is larger

than the criti cal value, the hypothesis that there are no outliers wil l be rejected and robust procedures

will be used. For the ICP data a threshold value of 10 % was used. The QC values were found 69.2 %,

23.7 %, 496.4 %, 22.9 %, 49.8 % and 13.8 % for measurements according to the elements Mo, Cr,

Co, Pb and Ni (221,6 nm and 231.6 nm), respectively. In the case of Co the QC value was rather high.

It turned out, that there were gross outliers at concentration 0.25 ppm and the LS line was rather far

from the signal measured at concentration 0 ppm.

The second type of model error is a bit more diff icult. We gave a solution when the linearity was

assumed followed by concepts of Tanaka et al., and the robustness of the method was improved. The

second type of model error generally arises when an approximately linear segment of nonlinear re-

sponse function is used. This is the case in the given examples of AAS measurements, and we ill us-

trated how to treat the failing linearity. Recently a pleasant solution appeared for diagnosing the

linearity of calibration lines by Vankeerberghen, et al.36 We think, however, that the fuzzy linear

regression procedure with our modification needs no limitation of number of data points and it can

also work in multivariate case. More than one iteration cycle means that the assumption of linearity

should be rejected; however, the obtained  parameters can be used for evaluation because of the

robust property of the estimation.

We should also mention that real problem can emerge in automatic analyses. In this case there is

not always the chance to control the calibration graphs visually, one by one, either to recognize

outliers or to check linearity. Algorithms must automaticall y treat failures caused by either of model

errors. The diagnostic can be carried out as described before. Of course, after a suitable period, the

analyst must check whether discrepancies occurred in calibration and he or she must correct the

analytical conditions to try to avoid outliers next time.
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