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Abstract: Let fk(n) be the maximal number of edges of a simple graph on n vertices 
without k connected subgraph. W. Mader started to investigate the order of magnitude of 
this function. The first results on /fc(n) are due to W. Mader who proved that (3A; — 4)/2 • 
(n — (k — 1)) < fk(n) < (1 +  1/V2)(k  — 1 )(n — (k — 1)), assuming that n is large enough. 
He also conjectured that the lower bound is the right order of magnitude of /fe(n). Further 
improvement is due to Matula, who proved that fk(n) < 5/3(k — l)(n  — (k — 1)). In this 
paper we improve Matula’s upper bound by proving that /&(«) < (1 +  \/6 /4 )kn & 1.612A;n. 
The improvement is not a major breakthrough but we think that the problem deserves more 
attention. We also want to popularize other related-questions. We present applications of 
this results to Ramsey theory on connectivity and vertex partition of graphs with conditions 
on connectivity. These applications shed light on other connectivity related open problems.
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1 Introduction

Extremal graph theory is a major research direc
tion in graph theory with various applications (see 
combinatorial geometry for many excellent exam
ples).

We want to shed light on few extremal ques
tions related to graph connectivity. (For other 
problems in this direction see [5] and [6].) The 
most natural question (following Turan’s theo
rem’s lead) is: How many edges guarantee a k 
connected subgraph in a simple graph on n nodes? 
An equivalent formulation is: What is the max
imal number of edges in a simple graph on n 
vertices with no k connected subgraph? First 
W. Mader exhibited an example. Let k — 1 be 
a divisor of n. Our vertex set will be divided 
into n /(k  — 1) many k — 1 element sets. The in
duced subgraphs of these k — 1 element sets will be 
cliques with one exception when the correspond
ing subgraph is an empty graph. The additional 
edges are all the edges connecting the indepen
dent k — 1 set to the vertices of the cliques. Easy 
to check that the graph does not contain a k con
nected subgraph and it has (3k —4)/2 • (n — (A; — 1))

edges. In terms of the function introduced in the 
abstract it means that (3k — 4)/2 • (n — (k — 1)) < 
fk{n) at least for certain values of n. It is not 
so hard to construct graph with more edges than 
(3k — 4)/2 ■ (n — (k — 1)) and without k con
nected subgraph. All the known examples are 
small in terms of the number of vertices. For the 
author there is no example known with more than 
(3A: — 4)/2 • (n — (k — 1)) edges, without k con
nected subgraph and with more than (k — l)2/2 
vertices. It is plausible to conjecture [4] that 
(3k -  4)/2 • ( n -  (k — 1)) < /¿(n) for large enough 
n (with a lower bound condition on n, that is a 
function of k ). The conjecture is verified in the 
case of A; < 7 ([4]), but the general case is still 
open. To underline the difficulty we mention that 
various counterexamples exist for small values of 
n, with completely different structures. Even the 
large examples, showing the sharpness of the con
jecture, are showing diversity.

Next we state the current best upper bound on 
fk(n) due to D. Matula.

T heorem  1 (M atu la  [7]) Let G be a simple 
graph with |U(G0I ^  2(/s — 1) and |JE(Cr)| >

-  1 -



5/3 • (k — 1) (|V(Cr)| — (k — 1)) then G has a k 
connected subgraph.

Our main contribution is to improve the upper 
bound.

T heorem  2 Let k > 3. Let G be a simple graph 
assuming that

n = |F(G)| > ( k -  1) +  ^V&k2 -  18fc +  16 

and

\E{G)\> ( \V 6 k 2 - m  + 16 + k - ^  

• ( n - ( f c - l ) ) .

Then G has a k connected subgraph.

The order of magnitude of our bound is 

(1 +  \/6 /4 )kn fa 1.612kn.

Finally we mention few applications and related 
problems.

2 Notations
We use standard notation (for example see [3]). 
All graphs are supposed to be simple undirected 
graphs. V(G) denotes the vertex set of the graph 
G and E(G) denotes its edge set. C C V(G ) is 
a cutset of a connected graph G if after deleting 
the vertices in C the resulting graph (G — C) is 
not connected. G is k connected iff it has more 
than k vertices and it has no cutset of size smaller 
than k.

If G has more than k vertices and it is not k 
connected, then it must have a cutset C of size 
k — 1. In this case we think about G as a graph 
obtained by gluing together two graphs (Gi and 
G2) along G\c (the subgraph of G induced by C, 
consisting of the elements of C as vertices, and all 
the edges of G, connecting two elements of C as 
edges). Both G\ and G2 have at least k elements, 
and V(G\) fl V (G2) =  C.

If G has at least k vertices and it does not have 
a k connected subgraph then G itself is not k con
nected, so G can be thought as a graph built up 
from G1 and G2 by gluing them along a k — 1 el
ement set. In this case of course both G1 and G2 
do not have a k connected subgraph. Hence both

of them can be thought as a graph on k vertices 
or a graph obtained from two graphs by gluing 
them along a k — 1 element set. To summarize the 
ideas above G can be built up from graphs with 
k vertices by a gluing procedure: in each step of 
the procedure we glue two already built up graph 
along a set of size k — 1.

3 Proofs
First we prove a lemma which is only interesting 
for small graphs, but in that case the given bound 
is sharp. The lemma is present in [7] but we state 
it with proof for the sake of completeness.

Lemma 1 Let G be a simple graph on n(> k) 
vertices and

-|
\E(G)\ > -  (n2 +  (4k -  7)n + (4k -  2k2)) .

Then G has a k connected subgraph.

Proof. We prove the claim by induction on n.
If n = k+1, then the assumption on the number 

of edges gives us that \E(G)\ > ( l̂^1) — 1> hence 
G is a complete graph on A; +  1 vertices, itself a k 
connected graph.

Let us assume that we know the claim for 
graphs on fewer that n =  IV^G)! vertices. If G 
is k connected we are done. If not then G is ob
tained by gluing G\ and G'2 along a k — 1 ele
ment set, C. Let n\ =  |F (G i)| and n2 =  \ V(G2)\ 
((m -  (k -  1)) + (n2 -  (k -  1)) =  n -  (k -  1), 
k — 1 < n i ,n 2 < n). W.l.o.g. we assume that 
«i > n2, hence m  > (n + (k — 1)) ¡2 > k.

If the number of edges of G\ is more than

1/6 • (n2 + (4k — 7)«i +  (4k — 2k2)) ,

then the induction hypothesis can be applied and 
we are done.

If the number of edges of G1 is not more than

1/6 ■ (ni + (4k -  7)ni +  (4k -  2k2)) ,

then we can bound the number of edges in G by 
estimating the edges of G outside Gi by the num
ber of edges of the complete graph on V(G2) — C 
plus the number of edges of the complete bipartite 
graph between the color classes C and V (G2) — C:

\E(G)\< l  (nj + (4k -  7)nx + (4k -  2k2))
+ C2- {t 1)) + ( k - l ) ( n 2 - ( k - l ) ) .
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Using the assumption on the number of edges of 
G we get

|  (n2 +  (4k — 7)n +  (4k — 2k2)) <
< |  (n i +  (4fc -  7)ni +  (4k -  2k2))

+ {n*-{2k~V) + ( k - l ) ( n 2 - ( k - l ) ) .

After rearranging the inequality we obtain n2 > 
m  that contradicts our assumption. This com
pletes the proof of the lemma. |

The above lemma is sharp when k +  1 < 
n < 2k — 2, at least if n =  k — 1 +  2l then 
there exists simple graph on n vertices with 
1/6 • (n2 +  (4k — 7)n +  (4A; — 2A;2)) many edges 
and with no k connected subgraph:

We define G by describing its comple
ment. G will have components as follows: 
K i ,u K 2,2,K 4,4, .. and (A—1) — (2̂  — 2)
many isolated nodes. The number of edges of G 
can be calculated easily and it turns out to be the 
promised value. Now we are going to prove that 
G has no k connected subgraph.

The vertices not in the component of
G give us a cutset Co of size k — 1 in G. Hence 
any k connected subgraph of G must be inside 
this cutset with one component of G — Co- Either 
way the assumed k connected subgraph must lie 
in a graph G i that the complement of the graph 
with components: K i,i, K 2>2,7^4,4, • • •, K 2i-i 2i-i 
and (k — 1) — (2l — 2) +  2l~1 many isolated nodes. 
The vertices not in the K 2i~2j2t-2 component of 
G\ give us a cutset C\ of size k — 1. Hence any k 
connected subgraph of G must be inside this cut
set with one component of G\ — C\. Either way 
the assumed k connected subgraph must lie in a 
graph G2 that is the complement of the graph 
with components: ifi,]., 7̂ 2,2» K4,4,. • •, K 2i~3i2i-3 
and (k — 1) — (2l — 2) +  2/~1 +  2l~2 many iso
lated nodes. We can continue this procedure till 
we force the assumed k connected subgraph into 
a k element subset of V(G), where “there is no 
enough room”.

After the preliminary lemma we can prove the 
main theorem.

Theorem 3 Let k > 3. Let G be a simple graph 
assuming that

n = |U(G0| > (k -  1) +  l V $ k 2 -  18k +  16
Zi

and

\E{G)\>  ( jV 6 k2 -  18k  +  16 +  k -  | )
• (n -  (k -  1)).

Then G has a k connected subgraph.

Proof. We prove the theorem by induction on n.
1. case: (k — 1) +   ̂\/6/s2 — 18fc +  16 < n <

(k -  1) +  v e k ^ m + r n .
Then it is easy to check that

(j^Vfth2 — ISk +  16 + k - f j ( n - ( k - l ) ) >  

> 1 /6  (n2 +  (4A; — 7)n +  (Ak — 2A:2)) ,

hence the lemma is applicable, providing the 
claim.

2. case: (k — 1) +  \/6A;2 — 18k + 16 < n.
If G itself is k connected we are done.
If not then G is obtained from G\ and G2 by 

gluing them together along a k — 1 element set, C. 
Let n\ =  |V(Gi)| and n2 =  |U(G2)| ((ni -  (k -  
l)) + (n2-(A :-l)) =  n - ( k ~  1), k - 1 < n i ,n 2 < n). 
W.l.o.g. we assume that m  > n2, hencem  > 
( n + { k -  1)) ¡2 > {k -  1) +  ±VGk2 - 1 8 k  + W.

If the number of edges of G\ is more than

Q \/6 fc2 — 18k +  16 +  k — 0  (ni -  (k — 1)),

then we can apply the induction hypothesis and 
obtain a A; connected subgraph of G\.

If the number of edges of G\ is not more than

\/6/c2 — 18k +  16 +  k — ^  (ni — (k — 1)),

then we consider two subcases. _____________
1. subcase: n2 > {k — 1) +  \ s /^ k 2 — 18k +  16. 
As above we can assume that |U(Cr2)| < 

( \V&k2 — 18k + 16 +  k — (n2 — (k — 1)) and
we obtain an upper bound on the number of edges 
in G:

\E(G)\<  |U(Gi)| +  \E(G2)\
< (^j\/6k2 — 18k +  16 +  A: — | )

• (m -  (k -  1))
+ (j^VGk2 -  18k +  16 + k —

• (n2 -  ( k -  1))
= (¿v/6fc2 -1 8 /C +  16 +  A : - |)

■ (n — (k -  1)).
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This contradicts the conditions of our theorem.
2. subcase: n2 < (k — 1) +  ^V ^k2 — 18k +  16. 
Now we can bound the number of edges in G by 

estimating the edges of G outside G\ by the num
ber of edges of the complete graph on V  (G2) — C 
plus the number of edges of the complete bipartite 
graph between the color classes C and V(G2) — C. 
Hence

IE(G )\<  ( |V 6 k2 -  18k + 16 + k -  §)
•(m -  ( k -  1))

+ {n^ 2k- ^ )  + ( k - l ) ( n 2 - ( k - l ) ) .

Using the assumption on the number of edges of 
G we get

^\VQk2 — 18k + 16 +  k — §) (n — (k -  1))

< {^\/Qk2 — 18k +  16 +  k — (ni — (k — 1))

+ n i M >) + (k -  1) (n2 - ( k -  1)).

After rearranging the inequality we obtain that 
n 2 > (k — l) +  ^\/6A;2 — 18A: +  16, that contradicts 
our assumption. This completes the proof of the 
theorem. |

We needed the complicated formulas to make 
the induction to work. The following corollary 
makes the claim a little bit weaker but the order 
of our upper bound on fk(n) is more transparent.

Corollary 1 Let n be at least k + 1. Then

(3fe -  4)/2 • ( « - ( * -  1)) < f k(n) <
(1 +  \/6 /4 )kn rs 1.612kn.

Proof. The lower bound comes from [4], Easy 
to check that (1 +  \/6 /4 )kn is greater than the 
lemma’s bound on the number of edges if k T 1 < 
n < (k — 1) +  \\/%k2 — 18A; +  16 and it is greater 
than the theorem’s bound on the number of edges 
if (/c — 1) +  ^Vftk2 — 18& +  16 < n. I

4 Applications
We mention two simple applications of the above 
result. Both of them is just plugging our result 
into existing proofs.

The first application is vertex partition problem 
of E. Győri [1], He asked whether there exists 
a function f ( s , t )  such that the vertices of any

f (s , t )  connected graph can be partitioned into 
two sets S  and T  such a way that GIs is an s 
connected graph and G\t  is a t connected graph.

The question was answered affirmatively by 
C. Thomassen [9], M. Szegedy [8] and P. Hajnal
[2]. Further on f ( s , t ) denotes the minimal pos
sible value that is allowed. The proofs use the 
fk(n)  function. If one plugs our new bound into 
the best proof ([2] Theorem 4.3.) obtains the fol
lowing theorem.

C orollary  2 If s > 3, t > 2 and G is a (2 + 
V/6/2)(s + t) connected graph, then there exists 
an {5,7} partition of its vertex set such that G |s 
is s connected and G\t  is t connected.

The second application is Ramsey theory for 
connectivity. The classical Ramsey theorem says 
that there exists a function R c(k) that for arbi
trary c coloring of the edges of a complete graph 
on R c(k) vertices there must be monochromatic 
clique of size k. Determining the minimal value of 
R c(k) is one of the major open question of graph 
theory.

D. Matula asked what happens if we look for k 
connected monochromatic subgraph. The prob
lem turned out to be significantly simpler than 
the case of complete graphs. It is easy to see that 
there exists a function Fc(k) such that for arbi
trary c coloring of the edges of a complete graph 
on Fc(k) vertices there must be monochromatic 
clique of size k. Further on Fc(k) denotes the 
minimal possible value.

D. Matula gave upper and lower bounds (they 
are constant factor apart) for Fc(k). The upper 
bound uses the f k(n) function. Hence our im
proved bound immediately gives the following re
sult.

C orollary  3 Fc(k) < (2 +  v/6/2)c - k.

5 Open problems
The major question is W. Mader’s conjecture: Is 
it true that f k(n) =  (3k — 4)/2 • (n — (k — 1)) for 
large enough n?

One can also consider other classes of graph, 
like graphs without k connected minor. What is 
the maximal number of edges in a simple graph 
on n vertices without k connected minor?
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The two applications of our result also hide two 
nice conjectures.

C. Thomassen conjectures that

f (s , t )  = s + t + 1.

D. Matula conjectures that

Fc(k) = 2c ■ (k -  1) +  1.

The later two conjectures has relation to the 
fk(n) function through existing proof techniques. 
Settling Mader’s conjecture does not resolve the 
later two problems. Their complete solutions re
quire new ideas.
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