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Abstract

A functional equation involving pairs of means is considered. It is
shown that there are only constant solutions if continuous differentiabil-
ity is assumed, and there may be non-constant everywhere differentiable
solutions. Various other situations are considered, where less smoothness
is assumed on the unknown function.

1 Introduction

Throughout this paper let I ⊂ R be a non-void open interval. We call the
function M : I × I → I a mean if the condition

min {x, y} ≤ M(x, y) ≤ max {x, y} (1)

holds for all x, y ∈ I. If for all x, y ∈ I, x ̸= y the inequalities in (1) are sharp,
then M is called a strict mean. Two means M and N are called admissible, if

M(x, y) ̸= N(x, y) if x ̸= y.

Examples of admissible pairs:

• M(x, y) = x, N(x, y) = y, I ⊂ R,

• M(x, y) = px + 1(1 − p)y, N(x, y) = qx + (1 − q)y, with 0 ≤ p < q ≤ 1,
I ⊂ R,

• M(x, y) = min(x, y), N(x, y) = max(x, y), I ⊂ R,

• M(x, y) = (x+ y)/2, N(x, y) =
√
xy, I ⊂ R+.

The following problem on a functional equation is investigated (cf. [1], [2],
[3]):
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Problem 1 Let M,N : I2 → I be admissible means, and let the unknown
function f : I → R satisfy the functional equation

[f(x)− f(y)] [f (M(x, y))− f (N(x, y))] = 0 (2)

for all x, y ∈ I. Question: What can we say about the function f?

It is obvious, that the constant function f(x) = c for all x ∈ I (c ∈ R)
is a solution of (2). Hence we ask the following, mathematically more precise
questions:

(a) What regularity conditions of f assure that the only solutions of the equa-
tion (2) are the constant functions?

(b) For what means M,N are there non-constant solutions f?

Problem 1 is a special case of

Problem 2 Let Mj , Nj : I2 → I, 1 ≤ j ≤ m, be admissible pairs of means,
and let the unknown function f : I → R satisfy the functional equation

m∏
j=1

[f (Mj(x, y))− f (Nj(x, y))] = 0 (3)

for all x, y ∈ I. Question: What can we say about f?

Clearly, if m = 2 and M1(x, y) = x, N1(x, y) = y, then we obtain back our
original problem.

2 Differentiable solutions

In this section, we assume the differentiability of f .

Theorem 1 If the unknown function f in Problem 2 is continuously differen-
tiable on I, then f is constant.

Note that in this result no more additional property of the means Mj , Nj is
required.

Proof. Let [a, b] ⊂ I (a < b) be an arbitrary interval. In view of (3) with
x = a, y = b, for at least one j we must have f(Mj(a, b)) = f(Nj(a, b)).
Then the closed interval U := [a′, b′] - determined by Mj(a, b) and Nj(a, b) is a
subinterval of [a, b], and by Rolle’s theorem, there exists a ξ ∈ (a′, b′) ⊂ (a, b)
such that f ′ (ξ) = 0. This means that f ′ vanishes on a dense subset of I, so
from the continuity of f ′ we have f ′(x) = 0 for all x ∈ I. Hence f is constant
on I.
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Next, we show that in this theorem continuous differentiability cannot be
replaced by pointwise differentiability.

Theorem 2 There are an everywhere differentiable non-constant f and admis-
sible strict means M,N on R such that f(M(x, y)) = f(N(x, y)) for all x, y.

Of course, this implies that Problems 1 and 2 have non-constant differentiable
solutions for certain means, for if our pair (M,N) is among the means, then one
of the factors in (2) or (3) is identically 0.

Proof. The proof is along the note in [2]. Let f be an everywhere differentiable
real function which is not monotone on any interval. (Such functions have been
constructed by various authors, fist by A. Köpcke [5], [6]. For a relatively simple
existence proof using the category theorem see [8].) Since f is not monotone
on any interval, for every x < y there are x < X < Z < Y < y such that
f(Z) < f(X), f(Y ) or f(Z) > f(X), f(Y ). As a consequence (look at the
f(Z) + ε resp. f(Z) − ε level-set of f with some small ε > 0), there are
x < x′ < y′ < y (actually x′ ∈ (X,Z), y′ ∈ (Z, Y )) such that f(x′) = f(y′)
(we select one such x′, y′ for every x, y). Let now M(x, y) = x′, N(x, y) = y′

if x < y, and let M(x, y) = M(y, x), N(x, y) = N(y, x) in the opposite case
(and of course, M(x, x) = N(x, x) ≡ x). Then M,N are strict means, and
f(M(x, y)) = f(N(x, y)) by the construction.

3 Continuous solutions

In this section we assume less on f , namely we only assume its continuity.

Theorem 3 If M,N are continuous admissible means, then any continuous f
that satisfies (2) is constant.

For a related result see [3] by A. Járai, who proved that if M,N are con-
tinuous admissible means, then any (not necessarily continuous) f that satisfies
f(M(x, y)) ≡ f(N(x, y)) is constant.

Proof. First of all, let us remark that either M(x, y) < N(x, y) for all x < y or
N(x, y) < M(x, y) for all x < y. Indeed, if, say, M(x0, y0) < N(x0, y0) for some
x0 < y0, x0, y0 ∈ I, then the first case is true, since we can continuously move
from (x0, y0) to any (x, y), x < y, x, y ∈ I, by a moving point (x′, y′) such that
x′ < y′ is true at any moment, and during this motion we should always have
M(x′, y′) < N(x′, y′), otherwise the assumption M(x′, y′) ̸= N(x′, y′) would be
violated. Thus, we may assume that M(x, y) < N(x, y) for all x < y.

It is enough to prove that f is constant on any subinterval [a, b] of I. Suppose
to the contrary that this is not the case. Then the range of f over [a, b] is a
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non-degenerate interval, and let A be an element of this range which is different
from both f(a) and f(b), and which is not a local extremal value of f . (There
is such an A since the set of local extremal values of any function is countable,
see Problem 9 in Chapter 5 of [2]). Suppose, say, that f(a) < A. Then the set

{x ∈ [a, b] f(x) ≥ A}

is a non-empty closed set, let x0 be its smallest element. Clearly, f(x0) = A,
and a < x0 < b (by the choice of A). Furthermore, f(x) < A for all a ≤ x < x0.

Let δ > 0 be such that x0 − δ > a and x0 + δ < b.
We need to distinguish two cases.
Case I, N(x0 − δ, x0) = x0. Then set x = x0 − δ, y = x0, for which we have

f(x) < A = f(y), and since M(x, y) < N(x, y) = x0 also holds, we also have
f(M(x, y)) < A = f(N(x, y)). Thus, in this case (2) is violated.

Case II. N(x0−δ, x0) < x0. Note that f(x) < A (and hence f(x) ≤ A) to the
left of x0, hence this cannot be true in a right-neighborhood of x0 (otherwise A
would be a local maximum value, which is not the case), so there are arbitrarily
small 0 < ε < δ values such that f(x0 + ε) > A.

We claim that there is an η > 0 such that for every 0 < ε < η there
is a 0 < θ = θε < δ for which N(x0 − θ, x0 + ε) = x0. Indeed, since now
N(x0 − δ, x0) < x0, by continuity N(x0 − δ, x0 + ε) < x0 for all 0 < ε < η
with some 0 < η < δ. On the other hand, for all 0 < ε < δ we have x0 ≤
M(x0, x0 + ε) < N(x0, x0 + ε). Hence, by the intermediate value property of
the continuous function N(x0 − t, x0 + ε) over the interval t ∈ [0, δ], we must
have N(x0 − θ, x0 + ε) = x0 for some 0 < θ < δ.

To an 0 < ε < η with f(x0 + ε) > A select a θ = θε as above, and set
x = x0 − θ, y = x0 + ε. Then we have f(x) < A < f(y), and since M(x, y) <
N(x, y) = x0 is also true, we have again f(M(x, y)) < A = f(N(x, y)). Thus,
(2) is violated again, and this contradiction proves the claim that f must be
constant.

Remark 1 In this proof the continuity of M and N is needed only in each
variable separately.

4 Non-continuous solutions

Sometimes one can conclude the constancy of f without any smoothness as-
sumption on f . Let us consider, for example, the special case of equation (2)
when M(x, y) := x (x, y ∈ I), that is, the equation

[f(x)− f(y)] [f(x)− f (N(x, y))] = 0 (4)

for all x, y ∈ I (here x ̸= N(x, y) if x ̸= y).
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Proposition 4 If the mean N in (4) is symmetric (that is, N(x, y) = N(y, x)
holds for all x, y ∈ I), then all the solutions f : I → R of equation (4) is
constant.

The claim may not be true if N is non-symmetric. As an example, let N(x, y)
be a number in between x and y which is rational if x is rational and irrational
if x is irrational. Then, clearly, the characteristic function of the set of rationals
is a solution of (4).

Proof. Interchanging the variables x and y in equation (4) we get

[f(y)− f(x)] [f(y)− f (N(y, x))] = 0 (5)

for all x, y ∈ I. Because of the symmetry of N , it follows from (4) and (5) that

[f(x)− f(y)] [f(x)− f (N(x, y))− f(y) + f (N(y, x))] = [f(x)− f(y)]
2
= 0.

Thus f is constant on I.

Let us go back to equation (2). The simplest non-continuous solution would
be one which takes exactly 2 different values. Without loss of generality we
may assume that such a solution is the characteristic function of a non-empty
set A ⊂ I (A ̸= I) (note that if f is a solution, then so is cf+d for any constants
c, d). So let

f(x) := χA(x) =

{
1 if x ∈ A
0 if x ∈ Ā := I \A,

(6)

where A ̸= ∅ and Ā ̸= ∅. The characteristic function (6) is a solution of (2) if
and only if the pair

{
A, Ā

}
has the following property:

(P): If x ∈ A and y ∈ Ā or x ∈ Ā and y ∈ A, then both M(x, y) and N(x, y)
are in A or in Ā.

It is obvious that, if there exists a pair
{
A, Ā

}
(A ̸= ∅, Ā ̸= ∅, A ∩ Ā = ∅

and A ∪ Ā = I) with property (P), then the function f defined in (6) is a
non-constant solution of (2).

Proposition 5 If M and N are strict means in the equation (2), then there
exists a non-constant solution f : I → R of (2).

By considering M(x, y) = x, N(x, y) = y we can see that the strictness of M,N
cannot be dropped.

Proof. In this case the singleton A := {x0} (x0 ∈ I) is a set, for which the
pair

{
A, Ā

}
has property (P). Indeed, if x ∈ A and y ∈ Ā (or x ∈ Ā and y ∈ A),

then x = x0 and y ̸= x0 (or x ̸= x0 and y = x0) and since M and N are strict
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means, M(x, y) ̸= x0 and N(x, y) ̸= x0, so M(x, y) ∈ Ā and N(x, y) ∈ Ā. This
proves that f(x) := χA(x) is a non-constant solution of (2).

The problem to find further pairs
{
A, Ā

}
with property (P) for given means

M and N seems to be difficult. We can find a useful construction in case of the
special means M , N from [1].

Proposition 6 Let K ⊂ R be a proper subfield of R and A := I ∩K. Further-
more, let

M(x, y) := px+ (1− p)y

and
N(x, y) := qx+ (1− q)y (x, y ∈ I),

where p, q ∈ (0, 1) and p ̸= q are fixed. If p, q ∈ K ∩ (0, 1), then the pair
{
A, Ā

}
has property (P).

Proof. Now Ā = I \ A is nonempty, since K ̸= R. If x ∈ A and y ∈ Ā (or
x ∈ Ā and y ∈ A), then px + (1 − p)y and qx + (1 − q)y are not elements of
A, because otherwise y (or x) would also be an element of A. Hence, the pair{
A, Ā

}
has property (P) and f(x) := χA(x) (x ∈ I) is a non-constant solution

of the functional equation

[f(x)− f(y)] [f(px+ (1− p)y)− f(qx+ (1− q)y)] = 0 (x, y ∈ I). (7)

Corollary 7 If p, q ∈ K ∩ (0, 1) (p ̸= q), then the equation (7) has a solution
f : I → R with either of the properties below:

(i) f is non-measurable;

(ii) f equals zero almost everywhere and f is non-zero on a set of continuum
cardinality.

Proof. There exists a non-measurable proper subfield K of R ([1], [7]), hence
we get (i). In case of (ii) our result follows from the existence of measurable
proper subfields of R (necessarily with measure zero) which are of cardinality
continuum ([1], [7]).

It is worth mentioning the case

M(x, y) :=
x+ y

2
and N(x, y) :=

√
xy, (8)

6



where x, y ∈ I ⊂ (0,∞). Then (2) takes the form

[f(x)− f(y)]

[
f

(
x+ y

2

)
− f (

√
xy)

]
= 0 (x, y ∈ I). (9)

Proposition 8 If f : I → R is a continuous solution of (9), then f is constant
on I. There exist non-measurable solutions f : I → R of (9). There exists a
solution f : I → R of (9), such that it equals zero almost everywhere and f is
non-zero on a set of cardinality continuum.

Actually, in the second and third parts f can be {0, 1}-valued.

Proof. The first statement follows from Theorem 3.
To prove the second part let K ⊂ R be a proper non-measurable subfield.

Then, with the notations A := I∩K and Ā := I\A, the pair
{
A, Ā

}
has property

(P) with the means (8). Indeed, if, for example, x ∈ A and y ∈ Ā, then both
x+y
2 and

√
xy are in Ā. Hence, f(x) := χA(x) (x ∈ I) is non-measurable and it

is a solution of (9).
The third statement is valid, because there exists a measurable proper

subfield K ⊂ R with zero measure, which has cardinality continuum. Then
A := I ∩ K has the property that f(x) := χA(x) (x ∈ I) is a solution of
(9), it equals zero almost everywhere, and f is non-zero on a set of cardinality
continuum.
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[4] P. Komjáth and V. Totik, Problems and Theorems from Classical Set The-
ory, Problem Books in Mathematics, Springer, 2006.
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