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Abstract. Let G be a finite union of disjoint and bounded Jordan domains in the complex
plane, let I be a compact subset of G, and consider the set G* obtained from G by removing K;
ie.,, G* := G\ K. We refer to G as an archipelago and G* as an archipelago with lakes. Denote by
{Pn(G, 2)}72 o and {pn(G*, 2)} 22, the sequences of the Bergman polynomials associated with G' and
G™, respectively, that is, the orthonormal polynomials with respect to the area measure on G and
G*. The purpose of the paper is to show that p, (G, z) and p,(G*, z) have comparable asymptotic
properties, thereby demonstrating that the asymptotic properties of the Bergman polynomials for
G* are determined by the boundary of G. As a consequence we can analyze certain asymptotic
properties of pn(G*,z) by using the corresponding results for p, (G, z), which were obtained in a
recent work by B. Gustafsson, M. Putinar, and two of the present authors. The results lead to a
reconstruction algorithm for recovering the shape of an archipelago with lakes from a partial set of
its complex moments.
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1. Introduction. Let G := UL, G; be a finite union of bounded Jordan domains
Gj, j=1,...,m, in the complex plane C, with pairwise disjoint closures, let K be a
compact subset of G, and consider the set G* obtained from G by removing K, i.e.,
G* = G\ K. Set I'; := 0G; for the respective boundaries and let I' := U2 I'; denote
the boundary of G. For later use we introduce also the (unbounded) complement €2
of G with respect to C, i.e., Q := C \ G, see Figure 1. Note that ' = G = 9Q. We
call G an archipelago and G* an archipelago with lakes.

Let {pn(G, 2)}52 denote the sequence of Bergman polynomials associated with
G. This is defined as the unique sequence of polynomials

pn(Gaz) :'Yn(G)Zn +oy 'Yn(G) > 07 n = 071727"'7

that are orthonormal with respect to the inner product
(1) g)a = [ HEEEA)
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| :

Fia. 1.

where dA stands for the differential of the area measure. We use L?(G) to denote the

associated Lebesgue space with norm || f[|z2(¢) := (f, f)g2.
The corresponding monic polynomials p,, (G, 2) /v, (G) can be equivalently defined
by the extremal property

1

——n(G,-) = min [|2" 4+ |2
‘ Y (G) L@ At @
Thus,
(1.2) L _ min |[z"+ ||

: T (G) et L2(G)-

A related extremal problem leads to the sequence {\,(G,2)}5; of the so-called
Christoffel functions associated with the area measure on GG. These are defined, for
any z € C, by

(1.3) M(G, 2) i= inf{[| P||72(q), P € P, with P(2) =1},

where P,, stands for the space of complex polynomials of degree up to n. Using the
Cauchy—-Schwarz inequality it is easy to verify (see, e.g., [17, section 3]) that

1 n
1.4 — = G, 2)? C.
(14) G = L @A e
Clearly, A\, (G, z) is the inverse of the diagonal of the kernel polynomial

(15) KE(Z,C) = Zpk(Gv C)pk(sz)
k=0

We use L2(G) to denote the Bergman space associated with G and the inner
product (1.1), i.e.,

L2(G) == {f analytic in G and || || z2() < oo},
and note that L2(G) is a Hilbert space that possesses a reproducing kernel, which we
denote by K¢(z,¢). That is, Kg(z, ) is the unique function K¢ (z,() : G x G — C
such that Kq(-,¢) € L2(Q), for all ( € G, with the reproducing property

(1.6) FQ) =(fKa(-,¢)e VfeLiG).
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In particular, for any z € G,
(1.7) Ka(z,2) = HKG(VZ)H%Q(G) >0,

which, in view of the reproducing property and the Cauchy—Schwarz inequality, yields
the characterization

(1.8) = inf{[| |72, f € La(G) with f(z) = 1};

1
Ka(z,2)

cf. (1.3)—(1.5). Furthermore, due to the same property and the completeness of poly-
nomials in L2(G) (see, e.g., [7, Lemma 3.3]), the kernel Kg(z,() is given, for any
¢ € G, in terms of the Bergman polynomials by

(1.9) Ka(2,0) =Y (G, Opa(G,2),

n=0

locally uniformly with respect to z € G.
Consider now the Bergman spaces Lg(Gj), 7 =1,2,...,m, associated with the
components G,

L2(G;) == {f analytic in G; and ||| 12(q,) < oo},

and let K¢, (z,() denote their respective reproducing kernels. Then it is straight-
forward to verify using the uniqueness property of Kq(+, () the following relation:

- Kg(z,g) ifz,QeGj,jzl,...,m,
(1.10) Kqg(z,¢) = { ‘0 it z€ Gj, (€ Gy, j#Ek.
This relation leads to expressing K¢ (z,() in terms of conformal mappings ¢; :
Gj; = D, j=1,2,...,m. This is so because, as is well-known (see, e.g., [5, p. 33]),
for z,¢ € Gy,
@ (2)¢}(C)
KG]' (ng) = ’ ’

12
™ [1- ()05 (0]

For G* := G \ K, we likewise define (f, g)g~, the norm || f||z2(g+), the Bergman
space L2(G*) along with its reproducing kernel Kg+(z,¢) : G* x G* — C, and
associated orthonormal polynomials

(G 2) =7 (G)2" 4+ -+, % (G*) >0, n=0,1,2,...,

as well as the associated Christoffel functions A% (G, z) and polynomial kernel functions
K& (2,¢). It is important to note, however, that the analogue of (1.9) with G replaced
by G* does not hold because the polynomials {p,(G*,2)}52, are not complete in
L2(G™).

Since G* C @G, it is readily verified that the following two comparison principles
hold:

(1.11) M (G*,2) < A\ (G,z), ze€C,
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and
(1.12) Ka(z,2) < Kg«(z,2), z€G".

The paper is organized as follows. In the next three sections we prove that holes
inside the domains have little influence on the external asymptotics (a fact anticipated
in [10, section 3]). Then, in section 5, we use this to modify the recent domain recovery
algorithm from [7] to the case when one has no a priori knowledge about the holes.
Another modification allows us to recover even the holes. We devote the last section
to some comments on issues of stability of our algorithm.

2. Bergman polynomials on full domains versus domains with holes.
The following theorem shows that in many respect Bergman polynomials on G and
on G* behave similarly.

THEOREM 2.1. If G is a union of a finite family of bounded Jordan domains lying
a positive distance apart and G* = G\ K, where KK C G 1is compact, then, as n — 00,

(@) M (G*)/m(G) = 1,

(b) llpn(G*, ) = pn(G, )llL2(c) — 0,

(€) M(G*,2)/An(G, 2) — 1 uniformly on compact subsets of C\ G,

(d) pn(G*, 2)/pn(G,2) = 1 uniformly on compact subsets of C\ Con(G).

Here Con(G) denotes the convex hull of G.

Since outside G both A, (G*, z) and A\, (G, z) tend to zero locally uniformly (see
(2.10) below), while inside G both quantities tend to a positive finite limit (see the
next lemma), part (¢) of Theorem 2.1 is particularly useful in domain reconstruction
(see section 5), because it tells us that, in the algorithm considered, for reconstructing
the outer boundary I" one does not need to know in advance whether there are holes
inside G.

The proof of Theorem 2.1 is based on the following.

LEMMA 2.2. We have

(2.1) > Ipa(@*.2)
n=0

uniformly on compact subsets of G. In particular, p,(G*,z) — 0 uniformly on compact
subsets of G.

Proof. Let V be a compact subset of G. Choose a system ¢ C G* of closed broken
lines separating V' from 0G (meaning each V' N G, is separated from each 0G,), and
choose r > 0 such that the disk D,.(z) of radius r about z lies in G* for all z € 0. For
any N > 1 and fixed z € o we obtain from the subharmonicity in ¢ of

2

| P (t) an pn(G*, 1)

n=0

the estimate

N 2
<Z|pn(G*7z)|2> = [Pn (2 —/ [Py (t)dA()

n=0

1
2 L 1P PaA Zuon 2

IN

r2m
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Thus,

N
(22) S (G2 < —
n=0

on o; hence, again by subharmonicity, the same is true inside o (i.e., in every bounded
component of C\ 0). For N — oo we get

(2:3) Yo Ipa(@2))P <
n=0

on and inside o, but we still need to prove the uniform convergence on V' of the series
on the left-hand side.

Let o1 be another family of closed broken lines lying inside o separating V' and
o. If ¢ is the distance of o and o1, then for any N and any choice |e,| = 1 we have,
by Cauchy’s formula for the derivative of an analytic function for z,w € o1,

‘ .

ﬁ
3

‘ -

ﬁ
3

n(G ,U)) Z 5npn pn(G t)

max
- 27r52 teo

12 , N 1/2
L 1
2 * 2 _
< 27T52 IPGaZyX <§ |pn , )| ) <n§_0 |pn(G 7t)| ) < 262 r272°

where L is the length of o. So for w = z an appropriate choice of the €,’s gives

1
len 2)||p, (G*, 2)| < 252 o

n=0

for all z € o1. But then, if ds is arc-length on o;, we obtain on o

d N
E Z |pn(G*a )|2 L

n=0

L 1
0

)
2 272

<2Z|pn 2)|[p)(G*, 2)] <

which shows that on o7 the family

N o0
{z|pn<a*,z>|2}
n=0 N=0

is uniformly equicontinuous. Since it converges pointwise to a finite limit (see (2.3)),
we can conclude that the convergence in (2.3) is uniform on o7 and hence (by sub-
harmonicity) also on V' (which lies inside o7). O

Proof of Theorem 2.1. In view of (1.2) we have

L [ |G o) / /
1(G)? ~ Ja ’Vn(G* *
1 21K 1+ e2|K|

B 77L(G*)2 77L(G*)2 - 'Yn(G*)Q ’

(2.4)
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where
(2.5) en = |[pn(G*, )k = 0

by Lemma 2.2. (Here and below we use |K| to denote the area measure of £.) On
the other hand, (1.11) gives that v,(G*) > 7, (G), which together with the preceding
inequality shows

'Yn(G*)g 2
2.6 1< ——5 <1+4¢,|K|,
(2.6) TElE K|

and this proves (a).
Next we apply a standard parallelogram argument:

2

l pn(Ga ) _ pn(G*a ) l pn(Ga ) pn(G*a ) 2

e (’MKG) (G ) N (’MKG) TG ) i
L eGP L el
2 /G* 77L(G) A+ 2 /G* "Yn(G*) a4

By (1.2) the second term on the left is > 1/7,,(G*)?, the second term on the right is
1/(27,(G*)?), and, according to (2.4), the first term on the right is

.
< Z
=3/,

Therefore, we can conclude

/ (G, ) . pa(G*,)
G*

Y (G) Yn(G*)
and since (2.6) implies

2 1+&2|K|

T 29,(G)2 T 29, (GR)E

(G, )
Yn(G)

2 2
22 |K|
dA < —%——
- 77L(G*)2

'Yn(G*)‘ 2
1— <e;|K],
‘ @ | =M

we arrive at
2.7 [ 190G =pa(G" a4 = O,

as n — 0o. It is easy to see that the norms on G* and G for functions in L2(G) are
equivalent; indeed, if f € L2(G) and Iy is the union of m Jordan curves lying in G*
and containing K in its interior, then

11226 < NF1Z2) = 1 Z2aey + 1 1IT2 k)
and, by subharmonicity,

2 2 2 |IC| 2
112y < 1T max | F I < | maax | £(2) 2 < o1y

where R := dist(I'g, 0G*). Hence part (b) follows from (2.7).
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To prove (c), let z lie in C\ G. For an & > 0 select an M such that
(2:8) > G P <e, tek

(see Lemma 2.2). For the polynomial

Z;L:M pj(G*v Z)pj(G*a t)

Pnt = n ’
0= = (G 2P

n > M,

we have P,(z) =1 and

1
|Pa(t)PdA(t) = <= e
/* 2= [P (GF, 2) 2

For its square integral over U we have by Holder’s inequality

G* 2
/|P (1) 2dA(t) /Zg v 1Pi (G, 1)) JA() < — IKle

j=u1 [P (G*,2)[? T e Ipi(GrR))P

If we add together these last two integrals we obtain
1+ |Kle
N ZJ M |p.7( ’ )|

On the other hand, it is easy to see that outside G we always have

(2.10) > Ipi(G*,2))?
j=0

as n — 00, and actually this convergence to infinity is uniform on compact subsets
of Q:= C\ G. Indeed, if {F),} denotes a sequence of Fekete polynomials associated
with G, then it is known (see, e.g., [12, Chapter III, Theorems 1.8, 1.9]) that

(2.9) (G, 2) <

(2.11) IFlIZ" — cap(G) = cap(I'), n — oo,
where cap(G) denotes the logarithmic capacity of G. At the same time
(2.12) |E,(2)|Y" = cap(G) exp (ga(z,00)), n — oo,

uniformly on compact subsets of C \ G, where gqo(z,00) denotes the Green function
of 2 with pole at infinity. Thus,
Fu(t) [

(2.13) (G 2) < /

dA(t) = 0, n— og,

uniformly on compact subsets of . (Note that go(z,00) has positive lower bound
there.) Since 1/\,(G*, z) is the left-hand side of (2.10), the relation (2.10) follows.
Combining (2.9) and (2.10) we can write

1+ |Kle
> Ipi(G*

(2.14) = (14 0(1))(1 + [K[)An(G*, 2),

1+ |Kle

An G*,Z S)\n G,Z < n
(G%2) < M(G,2) ST 0 (G )P

= (1+0(1)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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and since this relation is uniform on compact subsets of €2, part (c) follows since ¢ > 0
was arbitrary.

Finally, we prove part (d). Notice first of all that for 7,5 < n the expression
(27 — 29t") /(2 — t) is a polynomial in ¢ of degree smaller than n, and therefore the
same is true of

pn(Ga Z)pn(G*a t) - pn(Gv t)pn(G*a Z)
z2—1

3

so this expression is orthogonal to p,, (G, t) on G with respect to area measure. Hence,

/ (G, 2)pn(G*, 1)pn (G, t) dA(t) = / Pu(G, )pn(G*, 2)pn (G, 1) dA(t)
G G ’

z—1 z—1

and then division gives

n G*;t —Pn G,t n G7t
o1s) polC2) | o (0GP (G0 (CT) g 7 1)
pn(G. 2) [, enl@DE g A(r)

Let now z be outside the convex hull of G and let zy be the closest point in the
convex hull to z. Then G lies in the half-plane {¢t|R{(z —t)/(z — z0)} > 1}, so for
teG

z—z20  W(z—1t)/(z—20)} |z — 202 |z — 20]?
e T etz =m)® = FotF = (7= + dam(@

This gives the following bound for the modulus of the denominator in (2.15):

P (G, 1)[? 1 /Z—Zo 2
Wni-h o)1 >
S dA(t)| > |z—zo|% S |pn (G, )|7dA(?)
|z — 20| / 2
> (G, t)|[“dA(t
~ (|z — 20| + diam(G))? J 4 IPn (G, )P dA()
|z — zo|

(]2 — 20| + diam(G))2"
On the other hand, in the numerator of (2.15) we have 1/|z — t| < 1/|z — 2], so we
obtain from the Cauchy—Schwarz inequality that

/ (pn (G*v t) - pn(Gv t))pn(Ga t) dA(t)
G

z—1

<

1/2
([ 1pa(60) = mic.oPase)
Collecting these estimates we can see that
pn(G*, 2) (|z = 20| + diam(G))
pn(G. 2) |z — 2o[?

Now invoking part _(b), we can see that the left-hand side is uniformly small on
compact subsets of C\ Con(G) since for dist(z,G) > § we have

|z — zo| + diam(G) - d + diam(G)
|z — zo] - 4] '

1
|z — 20|

2
Hpn(G*a ) - pn(Ga ')HLz(G)'

_1‘<
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This proves (d).! O

3. Smooth outer boundary. Next, we make Theorem 2.1 more precise when
the boundary T of G is C(p, «)-smooth, by which we mean that, for j = 1,...,m, if
74 is the arc-length parametrization of I';, then +; is p-times differentiable, and its
pth derivative belongs to the Lip «a.

Let || - ||z denote the supremum norm on the closure G of G.

THEOREM 3.1. If each of the boundary curves I'; is C(p, )-smooth for some
pe{l,2,...} and0 < a <1, then

(8) 1 (G*)/7a(G) = 1+ O(n~2r+2-2),

(b) Hpn(G*ﬂ ) - pn(Gﬂ )Ha = O(n_p+2_a)7

(€) M(G*,2)/M(G,2) = 14+ O(n=2PT3729) uniformly on compact subsets of

C\G,
(d) pn(G*,2)/pn(G,2) = 14+ O(n=PT1=%) uniformly on compact subsets of C \
Con(G).
If each T'; is analytic, then (a)—(d) are true with O(q™) on the right-hand sides for
some 0 < g < 1.

Note that now in (b) we have the supremum norm, so p,(G*, 2) — pn(G,z) = 0
uniformly on G if p > 1. Note also that nothing like (d) is possible in the convex hull
of G since p, (G, -) may have zeros there, which need not be zeros of p, (G*, ).

As background for the proof of Theorem 3.1, we shall first define m special holes
(lakes) whose union contains IC. For this purpose, let ¢; map G; conformally onto
the unit disk I, and select an 0 < r < 1 such that each of the holes K; := KNG}
is mapped by ¢; into the disk D, := {w : |w| < r}. Let D:={w:r<|w <1}
and define G := ;1(]15), G = U;”Zléj. Thus, the special holes K; := G; \ G; we
are considering are the preimages of the closed disk D, under @;. Clearly, the above
construction leads to the inclusions

(3.1) GCG CQ@.

We shall need to work with functions in the Bergman space L2(G) but with the
inner product

(3.2) 0 = /G (g dA(2),

and corresponding norm | - || 5. Let L2#(G) denote the space of functions in L2(G)
endowed with the inner product (3.2). It is easy to see that L2#(() is again a Hilbert
space, but note that it is different from L2(G). (The definition of the norm on the
two spaces is the same, but the latter space contains also functions that may not be
analytically continued throughout G, while the former space contains only analytic
functions in G.) In fact, in L2#(G), the polynomials {p, (G, )}32, form a complete
orthonormal system (they also form an orthonormal system in Lg(é)7 which, however,
is not complete). Consequently, the reproducing kernel of L2#(G) is

(3.3) E#(2,¢0) = > pi(G, Opr(G, 2).

k=0

IThe analysis used in the proof of part (d) was also found independently by B. Simanek (see
[13, Lemma 2.1 and Theorem 2.2]).
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Note that by Lemma 2.2 (with G* replaced by G) the series on the right-hand side
converges uniformly on compact subsets of G x G.

Analogously, we define the Hilbert space L2# (D) consisting of functions in L2 (D),
but with inner product

(3.4) (. 0)5 = / F(w)g(@)dA(w).

The following lemma provides a representation for the reproducing kernel K7 (z, ¢)
in terms of the reproducing kernel for the space L2# (D).
LEMMA 3.2. Let J(w,w) denote the reproducing kernel for L?># (D). Then,

(3'5) K#(Z,C) _ { WQ(C)(P}(Z)J(QOJ’(Z)’SDJ(O) if z,¢ € ij j=1,...,m

0 if z€ Gy, CeGy, j#k.
Furthermore,
o0 P2V
(3.6) J(w,w):;m, w,weD
and consequently, for z,¢ € G,
o0 2v
(3.7) K*(2,0) = #0w(2) -

=l —rp;(Oe;(2)]2

Proof. As with (1.10) it suffices to verify (3.5) for z,{ € G;, j =1,...,m. In fact,
for z,{ € G; the relation in (3.5) is quite standard; see, e.g., [3, section 1.3, Theorem
3]. To derive this relation, observe that since the Jacobian of the mapping w = ¢;(2)
is |¢)(2)|?, we have

2 2
L @R PG = [ 1Fw)Paw)

J
for any F € L2# (D). Hence, the mapping F' — F(p;)¢) is an isometry from L2#(ID)
into L2#(G;) := {fXG f € L2#(G)}. This mapping is actually onto L2#(G}), with
inverse f — f(p; )(goj by,
Next, from the reproducing property of J(w,w), it follows that for w € D,
F(w) = [F(w)J(w,w)dA(w), F € L*#(D).
)
If we make the change of variable w = ¢;(2), w = ¢;(¢), this takes the form

/p% T2 2OV, (2)PdA(z), ¢ e Gy,

which, after multiplication by (), gives for f(¢) := F(¢;(())#}(¢) that

(3.8) f(Q) = éf(Z)eD;(C)%(Z)J(%(Z),%‘(C))dA(Z), (eGy.

Thus ¢}(Q)¢)(2)J(¢;(2),¢;(¢)) is the reproducing kernel for the space LY (@),
which establishes (3.5).
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To obtain the formula for J(w,w), we note that the polynomials

. —1/2
<n+1(1—r2"+2)) w, n=01,...,

form a complete orthonormal system in the space L2# (D). Therefore, we obtain the
following representation:
o0

-1
J(w,w) = Z (nil (1 —7’2"+2)) wE" = Z ntl Z 2,200 nn

n=0

v +1 nv n—n
_Z ’ Zn r? _Z r2l’ww2

and the result (3.7) follows from (3.5). o

Proof of Theorem 3.1. With the above preparations we now turn to the proof
of part (a) in Theorem 3.1. First, we need a good polynomial approximation of
the kernel K#(-,¢) on G, for fixed ¢ € V, where V is a compact subset of Gj.
By the Kellogg—Warschawskii theorem (see, e.g., [9, Theorem 3.6]), our assumption
I'; € C(p, ) implies that ¢; belongs to the class CP** on T';. Thus, ¢; € CP~1te on
I'; and (3.7) shows that the kernel K#(-, () is a CP~!*®-smooth function on I'; and
the smoothness is uniform when ¢ lies in a compact subset V' of G;. Consequently

(see, e.g., [16, p. 34]), there are polynomials P, ; -(z) of degree v such that for ( € V'

Sup |K#(2,¢) = P jc(2)] < C(T;,V)

W, Z/EN,le,...,m,

where C'(I';, V) here and below denotes a positive constant, not necessarily the same
at each appearance, that depends on I'; and V' but is independent of v. Therefore,
the maximum modulus principle gives

1
(3.9) sug |K#(2,¢) = Pujc(2)] < C(Ty )ma cev.
zeGy

Note that this provides a good approximation to K#(z, () only for z € éj. How-
ever, K#(z,() is also defined for z € Gy, k # j. Actually, as we have seen in (3.5),
for such values K#(z,¢) = 0. Therefore, in order to obtain a good approximation
to K#(z,¢) for all z € G, we have to modify the polynomials {P, ;(2)}. To this
end, we note that since (3.9) implies that the {P, j ¢(2)} are bounded uniformly for
z € @, ¢ € V and v > 1, the Bernstein-Walsh lemma [18, p. 77] implies that there
is a constant 7 > 0 such that

(3.10) |P,jc(z)| <CT, V)", ze€ G.
Consider next the characteristic function
1 ifzedqy,
(3.11) Xa, (%) = { 0 if z€ Gy, k#7.

Since xg. has an analytic continuation to an open set containing G, it is known from
J

the theory of polynomial approximation (cf. [18, p. 75]) that there exist polynomials
H, /5 j(2) of degree at most n/2 such that

(312) sup |XG ( ) - Hn/27](z)| < C(Fv V)T]n
2€G

for some 0 < n < 1.
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For some small € > 0 we set

Q@n,j,c(2) = Pen jc(2)Hp2,5(2).

This is a polynomial in z of degree at most en + (n/2) < n, and (3.11)—(3.12), in
conjunction with (3.9)-(3.10), yield for large n

1

sup |[K#(2,¢) = Qnjc(2)] < C(Ty, V)W

zeéj

+ O, V)"

and

sup  [K#(2,0) = Qujc(2)] < OO, V)", CE€V C Gy,
z€G\G}

Thus, if we fix € > 0 so small that 77 < 1 is satisfied, we obtain for large enough n

1

(3.13) sup |[K#(2,¢) — Qnjc(2)| < C(T, V)W.

2€G
This is our desired estimate.

Since Qn j,¢c(2) is of degree smaller than n, using the reproducing property of the

kernel K#(z,¢) and the orthonormality of p, (G, z) with respect to the inner product
(3.2), we conclude that

pn(évg) = <pn(67 ')7K#('7<)>5
= <pn(67 ')7 K#('a C) - Qn7j,C>5'

Therefore, from the Cauchy—Schwarz inequality and (3.13), we obtain the following
uniform estimate for ( € V:

~ 1
Ipn (G, Q)| < C(Fvv)W7
where we recall that V' is a compact subset of G;. Since this is true for any j =
1,...,m, we have shown that

(3.14) Ipa(G, Q)] < C(T,V) (eV,

np—1+a’

where now V' is any compact subset of G.

Consequently, with V' = K := U, K; in (3.14), and G* and K replaced by G and
K in (2.4) and (2.5), from (2.6) we get

W (G) 1
(3.15) R 14+0 <7n2(1’—1+0‘))’

which in view of the fact

'Yn(G) < 'Yn(G*) < 77L(G)

yields part (a) of the theorem.
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To prove part (b), notice that (3.15) is (2.6) with g, = O(n P17%), and so the
argument leading from (2.6) to (2.7) yields

npflJra

(3.16) 19n(G,) — pu(G* ey = O (#) |

The L*-estimate in (3.16) holds also over G since, as was previously remarked, the
two norms || - || 2() and || - || 2(g+) are equivalent in L2(G). The uniform estimate in
part (b) then follows from the L?-estimate by using the inequality

[@nlle < CM)n)|@nllL2),

which is valid for all polynomials @, of degree at most n € N, where the constant
C(T") depends on T" only; see [16, p. 38].

In proving part (c) we may assume p + « > 3/2 (see Theorem 2.1(c)). It follows
from (3.14) that

3 Ipi(G, 2))? = 02322

k=n

uniformly on compact subsets of G, i.c., (2.8) holds (for G in place of G*) with
e = O(n=2PT372%)_ Copying the proof leading from (2.8) to (2.14) with this € we get

M (G, 2) < M(G,2) = (14 O(n~ 23729\, (G, 2)

(indeed, by that proof the o(1) in (2.14) is exponentially small). In view of G C G* C
G this then implies

(G5, 2) < Mn(G,2) = (14 O(n~ 23729\ (G, 2)

< (L4 0™ FE72)N, (G, 2),

which is part (¢) in the theorem.

Part (d) follows at once from the L?-estimate in (3.16), by working as in the proof
of (d) in Theorem 2.1.

Regarding the case when all the curves I'; are analytic, we have that the conformal
maps ; are analytic on G, and then so is the kernel K#(z, () for z € G, and all fixed
(e G. More precisely, if V' is a compact subset of G , then there is an open set G C U
such that for ¢ € V the kernel K(z,() is analytic for z € U. Then, from the proof
of the classical polynomial approximation theorem for analytic functions mentioned
previously, together with the formula for K#(z, (), it follows that thereisa 0 < ¢ < 1
and a constant C' independent of ¢ € V, such that in place of (3.9) we have

(3.17) sup |K#(2,) — Pu_1,c(2)| < Cq™, CeV.
z2€G;

Thus, instead of (3.14), we obtain

Pa(@:0) = } [ K# G mi@ 2 dA)

< C|G|1/2 n’

/é (K#(2,0) = Pa_1,5,¢(2))pn(G 2) dA(2)
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so the €, in (2.5) is O(¢"™), and then the proofs of (a)-(d) above give the same
statements with error O(g™) (for a possibly different 0 < ¢ < 1). O

Remark 3.1. Our theorems thus far have emphasized the similar asymptotic
behavior of the Bergman orthogonal polynomials for an archipelago without lakes and
the Bergman polynomials for an archipelago with lakes. Differences appear, however,
when one considers the asymptotic behaviors of the zeros of the two sequences of
polynomials. A future paper will be devoted to this topic.

4. Asymptotics behavior. Since area measure on the archipelago G belongs
to the class Reg of measures (cf. [14]), it readily follows from Theorem 2.1 that so
does area measure on G*. In particular,

1
4.1 lim 7, (G*)'/" = ——.
(4.1) nosso ! (&) cap(T")

In order to describe the nth root asymptotic behavior for the Bergman polyno-
mials p,(G*, z) in Q, we need the Green function go(z,00) of Q with pole at infinity.
We recall that go(z,00) is harmonic in Q \ {oco}, vanishes on the boundary T" of G,
and near oo satisfies

1 1
4.2 galz,00 zlogz+1og—+0<—>, z| = oo.
(12) (2100) =log|el + log s + O )
Our next result corresponds to Proposition 4.1 of [7] and follows in a similar manner.
PROPOSITION 4.1. The following assertions hold: .
(a) For every z € C\ Con(G) and for any z € Con(G) \ G not a limit point of
zeros of the pn,(G*,-)’s, we have
(4:3) lim [pa(G*, )| = exp{ga(z, o)}

The convergence is uniform on compact subsets of C\ Con(G).
(b) There holds

(4.4) lim sup |p, (G*, 2)|Y™ = exp{ga(z, o)}, z € Q,
n—oo
locally uniformly in €.

For our next result we assume that all the boundary curves I'; are analytic. Its
proof is a simple consequence of Theorem 4.1 of [7] in conjunction with Theorem 3.1
above.

PROPOSITION 4.2. Assume that every curve I';, j = 1,...,m, constituting I' is
analytic. Then there exist positive constants C1(I',KC) and C(I', KC) such that

/n+1 1
. < < .
(4 5) Cl (F7IC) — T 'Yn(G*) Cap(F)"Jrl — 02(F7IC)7 n e N

As the following example emphasizes, we cannot expect that the limit of the
sequence in (4.5) exists when m > 2.

Ezample 4.1 (see [7, Remark 7.1]). Consider the m-component lemniscate G :=
{z:]zm =1 <r™}, m>2,0<r <1, for which cap(I") = . Then, the sequence

n+1 1 neN
V. 7 4. (G)cap(I)n+1’ ’
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has exactly m limit points:

pmetem=2 el
Combining the result of Theorem 3.1 with that of Theorem 4.4 of [7], we arrive
at estimates for the Bergman polynomials {p(G*, z} in the exterior domain 2, where
we use dist(z, E) to denote the (Euclidean) distance of z from a set E.
THEOREM 4.3. With G as in Proposition 4.2, the following hold:
(a) There exists a positive constant C' such that

(4.6) lPn(G™, 2)] < vnexp{nga(z,00)}, 2¢G.

_c
dist(z,I")
(b) For every € > 0 there exists a constant Ce > 0 such that

(4.7) Ipn(G*,2)] > C.v/nexp{nga(z,00)}, dist(z,Con(G)) > e.

5. Reconstruction algorithm from moments. The present section contains
the description and analysis of a reconstruction algorithm for the archipelago with
lakes G* for the case when the lakes are themselves finite unions of disjoint Jordan
regions. The algorithm is motivated by the “reconstruction from moments” algorithm
of [7, section 5] and the estimates established in the previous sections. In [7] the
functional )\,1/ ? (G, z) was used as the main reconstruction tool for recovering the shape
of the archipelago G using area complex moment measurements. Here we describe
how to recover from Ay %(G*, z) both the shape of G and its lakes.

Assume that the following set of area complex moments is available:

Wij = / 27 dA(z), i,j=0,1,...,n.
(For a discussion of how these moments are related to the real moments

™ n ::/ 2™y dxdy

that arise in geometric tomography from measurements of the Radon transform, see
[7] and [11].)

Before describing our algorithm, we remark that several other techniques exist
for shape recovery from complex moments. For example, Elad, Milanfar, and Golub
[4] and Beckermann, Golub, and Labahn [2] analyze a method based on solving a
generalized Hankel eigenvalue problem to recover the vertices of a planar polygon.
This method differs from our algorithm in that it involves only the analytic moments
ti,0 and produces a polygonal region approximation, which seems not so appropri-
ate for the recovery of several pairwise disjoint nonpolygonal regions with lakes. In
Gustafsson et al. [6] a reconstruction method is presented that is based on the ex-
ponential transform. This approach is particularly suited for quadrature domains,
but as illustrated in their paper may yield nonsmooth approximations to regions with
smooth boundaries (such as an ellipse) and, for regions with corners, may display
distortions near the corners. In neither of these methods is there a discussion of the
recovery of finitely many disjoint domains with lakes.

More detailed comparisons with these and other recovering algorithms will be
investigated in a future paper. (See section 6 for a discussion related to the stability
of our algorithm.)
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Our algorithm consists of two phases.
RECONSTRUCTION ALGORITHM.
Phase A: Recovery of G.
I. Use the Arnoldi Gram—Schmidt (GS) process described below to compute po(G*, z),
p1(G*,2),...,pn(G, 2), from the given set of moments p; ; of G*, 4,5 =0,1,...,n.
II. Plot the zeros of p,(G*, z).

1L Form \/*(G*, 2).

IV. Plot the level curves of the function Ay 2(G*,x + iy) on a suitable rectangular
frame for (z,y) that surrounds the plotted zero set.? The outermost level curves
will provide an approximation to the boundary of G. Denote by G the region(s)
bounded by this approximation.

Phase B: Recovery of K.
I. Use the approximation G of GG to calculate the moments

Wi = /A 27 dA(z), i,j=0,1,...,n.
G

II. Compute the approximate moments u% ; for the lakes K by taking the difference
/7@ j— Mﬁ j

III. Repeat steps I-IV of Phase A with data u; ; in the place of 7 ; to produce an
approximation K to K.

Step I of Phase B is computationally demanding but can be carried out by ap-
proximating the outermost level curves by polygonal curves which will facilitate the
computation of the area moments of G. This aspect of the algorithm will be explored
in a future paper. Here, we shall illustrate our method by using the moments of G
instead of G.

We recall that the GS process (mentioned in step I) converts, in an iterative fash-
ion, a set of linearly independent functions in some inner product space into a set of
orthonormal polynomials {pg, p1,...,Pn—1,Pn}- By the Arnoldi GS we mean the ap-
plication of the GS process in the following way: At the k-step, where the orthonormal
polynomial py, is to be constructed, we use the polynomials {pg,p1,...,Pr—1,2Pk—1}
as input of the process. We refer to [15, section 7.4] for a discussion regarding the
stability properties of the Arnoldi GS. In particular, we note that the Arnoldi GS
does not suffer from the severe ill-conditioning associated with the conventional GS
as reported, for instance, by theoretical and numerical evidence in [8].

Remark 5.1. A well-known result of Fejér asserts that the zeros of orthogonal
polynomials with respect to a compactly supported measure are contained in the
convex hull of the support of the measure. Thus the frames chosen in Phases A and
B should at least contain such zeros. However, adjustments to the size of such frames
may be required, as may be indicated by the appearance of level lines for /\71/ % that
are not closed (see Figure 5).

The following theorem contains estimates for the asymptotic behavior of A2 (G*, 2),
thus providing the theoretical support of the reconstruction algorithm given above.

THEOREM 5.1. Under the general assumption that I consists of a finite union of
Jordan curves we have the following:

(a) There ezists a positive constant C such that

(5.1) A/2(G*, 2) > Cdist(2,T), z€G.

2See Remark 5.1.
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F1G. 3. Phase A: Level curves of Aéf(G*,m +14y), on {(z,y) : —2 < x <5,-2 <y <2}, with

G* as in Example 5.1.

(b) For every compact subset B of Q, there exists a positive constant C'(B) such
that

(5.2) A2(G* 2) < C(B) exp{—nga(z,)}, ze B.

The estimate in (5.1) is immediate from (2.2), while (5.2) follows from (2.11) and
(2.12).

Example 5.1. Recovery for the archipelago G = G1 U G, with G; denoting the
canonical pentagon with vertices at the fifth roots of unity, Go = {z : |z —7/2| < 2/3},
and lake IC the closed disc centered at 1/2 with radius 1/4. The boundaries of the
archipelago G* := G \ K are depicted in Figure 2.

In view of Remark 5.1, the zeros of the polynomial p,,(G*, z) will give an indication
of the position of G in the complex plane. Accordingly, in Figure 2 we show the zeros
for n = 40,60, and 80. This should be compared with Figure 8 in [7], which depicts
zeros of p, (G, 2).

In Figures 3 and 4 we show the application of the two phases of the algorithm
on a frame that was suggested by the position of the zeros in Figure 2. In order to
emphasize the importance of the information about zeros, we depict in Figure 5 the
application of Phase A, with an arbitrarily chosen frame.

Regarding the use of the square root )\,1/ ? rather than A itself, as indicated in
(5.1), the former quantity decays linearly to zero with the distance to the boundary
I' = 0G, while the latter has a more rapid decay which will affect the omission (due
to negligibility) of level curves that are closer to I'. This can be seen by comparing
Figure 6 with the more accurate Figure 3, where the Maple routine contourplot was
used to generate the level curves.

Ezample 5.2. Recovery for the archipelago of the three disks Gy = {z: [z + 1] <
1/2}, Ga = {2z : |2 = 2| < 1}, and G3 = {z : |z — 2] < 1/2} and lake K := U}_, K;,
where IC; are the closed disks K01 = {z: [z + 1] <1/3}, Ko ={z: |2 —2| <1/3}, and
Ks={z:]z—2i| <1/4}.
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F1G. 4. Phase B: Level curves of )\ééQ(I%,r +iy), on {(z,y) : —2 <z <5,-2 <y <2}, with
G* as in Ezample 5.1.

N |
-0.2: U 1 2

F1G. 5. Phase A: Level curves of )\éé2(G*,x + iy), for the inappropriately frame {(z,y) : 3 <
z <6,-2 <y <2}, with G* as in Example 5.1.

o

F1G. 6. Phase A: Level curves of A\go(G*,z + iy), on {(z,y) : —2 <z <5,-2 <y < 2}, with
G as in Example 5.1.

In Figure 7 we show the zeros p,(G*, z), for n = 80,90, and 100. This should
be compared with Figure 13 in [7], which depicts zeros of p, (G, z). In Figures 8 and
9 we show the application of the two phases of the algorithm on a frame that was
suggested by the position of zeros in Figure 7.

All the computations were carried out on a MacBook Pro 2.4-GHz Intel Core i7
using Maple 16.

6. Comments on stability. The examples presented in the preceding section
utilized exact measurements for the moments. Here we comment briefly on the effect
of noise corruption in the measurements. Ill-conditioning is known to be an inherent
problem in mappings that take moments to the support of the generating measure
(see, e.g., Beckermann, Golub, and Labahn [2]). A detailed analysis of this issue for
the recovery algorithm presented in the preceding section is far from trivial and will be
left for a future investigation. However, since the matter is clearly of great practical
importance, we provide below some illustrations of the sensitivity of our method to the
presence of white noise with mean zero and with several different standard deviations.
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FiG. 7. Zeros of the polynomials pn(G*, z) of Example 5.2 for n = 80,90, and 100.

5

1
_l J 2

F1G. 8. Phase A: Level curves of AlOO(G*,x +ay), on {(z,y) : -3 < x <4,-2 <y <3}, with
G* as in Ezample 5.2.

Y

Our examples are only for Phase A of the recovery. The first case we consider
is the union of the regular pentagon and disk (without lakes), which are now both
contained in the unit disk.

Example 6.1. Recovery from noisy data of the archipelago G = G1 U G2, with
(G1 denoting the canonical pentagon with vertices inscribed on the circle centered at
the origin and radius 1/4 and Gy = {z: |z — 0.7| < 1/6}.

The Gaussian noise is added in a relative sense; i.e., we replace the exact moments
pij by i ;= pij (14 Xi ;), where X; ; is generated by a Gaussian with mean p =0
and standard deviation o, with o taking the values 10~%, for k = 2,4,6,...,12.

For each fixed o, the recovery algorithm was repeated 10 times for the perturbed
moments fi; ; with i and j running from 0 up to 20. The computations were car-
ried out with 32-digit accuracy in Maple 16, using the RandomVariable tool with
parameter Normal (mu,sigma) in the Statistics package, which is suitable for gen-
erating Gaussian white noise. What we observed was that the Arnoldi GS part of the
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F1G. 9. Phase B: Level curves of A%g(ﬁ,x +ay), on {(z,y) : =3 < x < 4,-2 <y < 3}, with
G* as in Ezample 5.2.

-0.

F1G. 10. Level curves of A\7(G,x +1iy), on {(z,y) : —1.2 <2 < 1.0,-0.5 <y < 0.5}, 0 = 10~
(left) and no noise (right), with G as in Example 6.1.

FIG. 11. Level curves of AM11(G,z +iy), on {(z,y): —1.2 <2 < 1.0,-0.3 <y < 0.3}, 0 = 10~8
(left) and no noise (right), with G as in Ezample 6.1.

FIG. 12. Level curves of Me(G,z+iy), on {(z,y) : —1.2 <2 < 1.0,-0.3 <y < 0.3}, 0 = 10712
(left) and no noise (right), with G as in Ezample 6.1.

algorithm for the generation of orthogonal polynomials breaks down on average for a
certain polynomial degree Ny as listed in Table 1, yielding no approximation to the
archipelago. (This breakdown occurs because the perturbed moments Mé,j fail to be
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@

0.5

0

-0.5-

Fi1c. 13. Level curves of A\75(G, x +1iy), on {(z,y) : —2.6 <z < 3.2,-1.2 <y < 2.5}, generated
from moments perturbed by unit point masses at —1 and I, with G as in FExample 6.2.

TABLE 1
Median polynomial degree Ny, of Arnoldi GS breakdown for standard deviation o.

o Ny
10—2 5
10— 8
10—6 10
10-8 12
10-10 15
10— 12 16

part of a measure-defining infinite sequence of complex numbers; see the two criteria
in [1, Theorem 2.1].) However, when the algorithm is repeated with noisy data y; ;
with ¢ and j up to Ny — 1, it yields results that are only modestly distorted from the
results using exact moments up to N, —1. The situation is illustrated in Figures 10, 11,
and 12, where the left-hand graphs are typical of those produced from noisy data (as
defined in the caption) and should be compared with the right-hand figure computed
by the algorithm with exact moments. Notice that all graphs display a concentration
of level lines on the two bodies, with the remaining curves approximating the level
lines for the Green function with pole at infinity associated with the complement of
the union of the two bodies.

To summarize, our very preliminary examples suggest that the crucial issue with
regard to unstructured noisy data is the breakdown in the computation of the or-
thogonal polynomial sequence. Whenever such a sequence can be generated, our
algorithm yields useful approximations to the generating shapes. How accurate these
approximations are for a given number of moments is yet another area for future
investigation.

One advantage of our recovery scheme not to be found, for example, in the gen-
eralized Hankel eigenvalue approach based on Davis’s theorem (cf. [4]) is its lack of
sensitivity to structured perturbations of the form

Pij = Mg + Vi)

where the v; ;’s are moments arising from a compact set of logarithmic capacity zero,
or from a set of positive capacity lying in the polynomial convex hull of the archipelago.
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For example, if v;; := v is any fixed positive constant, which corresponds to
a point mass of v at z = 1, or any countable number of such point masses, then
the recovery algorithm yields results essentially identical to those obtained with ex-
act measurements of the moments. As a graphical illustration of such a structured
perturbation we present the next example.

Ezxample 6.2. Recovery from a structured perturbation of the moments for the
archipelago of the three disks G; = {z: |z + 2| < 1/2}, G2 = {2z : |z — 2| < 1/2}, and
Gs ={z:|z—2i| < 1/2}.

In Figure 13, the exact moments y; ; are perturbed by

Yig = (DT I, =V

which corresponds to adding the moments of point measures at z = —1 and z = I. No
breakdown now occurs in the recovery algorithm, enabling us to compute orthonormal
polynomials of large degree, resulting in an accurate approximation of the archipelago
as illustrated in Figure 13.
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