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Abstract

In this paper, we deal with a special case of the Minsum problem, 
the Process Network Synthesis (PNS) problem. We show that the k- 
sum version of the PNS problem is well-solvable, and thus, the PNS 
problem is such a particular case of the Minsum problem which is NP- 
complete while its fc-sum version is well-solvable for a fixed k.
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1. Minsum, Bottleneck and fc-sum Optimization 
Problems

Let E  be a finite set, F  be a family of subsets of E, and /  : F  ->■ SR 
be a function assigning a real number to each S  € F. Then, a general 
combinatorial optimization problem is to find an S* € F  with f(S* ) < f ( S ),
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for all S  G F.  In most combinatorial optimization problems, there is a weight 
function c : E  —»• Jt, and the object function f (S)  is defined in terms of these 
weights in different ways:

When f (S)  =  max{ce : e G 5}, then we obtain the M nm aior Bottleneck 
Optimization problem, (BOP) in short,

If f (S)  =  X)e£S cei then we get the Minsum problem, or (MSP) in short,

where ce always denotes the value of c(e) for the sake of simplicity. Since 
several NP-complete problems are known to be particular cases of (BOP) 
and (MSP), both problems are NP-hard. Efficient solution procedures are 
known when F  is specially structured, for example in the case of the As
signment problem.

For an S £ F, let us suppose that the elements of S  are written in 
a non-increasing order with respect to their weights. More precisely, S  =  
| s i , . . . , S | 5 | |  and cSi > cSi+l, for i =  l , . . . , | S j  -  1. Now, for any given 
integer k > 1 let /* (£) =  X)i=ic«iJ where p =  m in{|5 |,/c}. Then, the 
k-sum Optimization problem (SUM(fc) in short) is defined in the following 
way:

min {fk(S) : S  e F } .

When k =  1, the SUM(A:) problem is reduced to the (BOP) and when 
k > m ax{|S | : S  € F }, it is reduced to the (MSP). Thus, SUM(A;) simulta
neously generalizes both (BOP) and (MSP); and if either (BOP) or (MSP) 
is NP-complete, then so is SUM(fc).

In general, SUM(fc) problem was studied by Gupta and Punnen [7] and 
later by Punnen and Aneja [10], and it was shown that SUM(fc) can be 
solved by solving 0 (m )  Minsum problems (m =  \E\). Thus, if we have 
a polynomial-time algorithm to solve the Minsum problem, then we have a 
polynomial-time algorithm to solve the SUM(A:) problem for any k, (1 < k < 
m). In the case of the PNS problem, the Minsum problem is NP-complete 
(see [9]), and thus, the k-sum version of the PNS problem under an arbitrary 
k is NP-complete, too.

2. Basic definition of PNS problem

The introduction of the PNS problem and its combinatorial model can be 
found in the works [3], [4], [5], and [8]. Here, we recall only the necessary
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definitions.

Let M ^  0 be a finite set, the set of the materials. Furthermore, let 
M  O C p'(M ) x p'(M ) with M  fl O =  0 where p'(M ) denotes the set of 
all nonempty subsets of M . The elements of O are called operating units 
and for an operating unit (a, /3) £ O, a  and (3 are called the input-set and 
output-set of the operating unit, respectively. The pair (M, O) is called a 
process graph or P-graph in short. The set of its vertices is MUO, and the set 
of its arcs is A =  A\ U A? where A\ =  {(X, Y ) : Y  =  (a,/3) £ O & X  £ a}  
and A2 =  {(Y, X ) : Y  =  (a, ¡3) £ O h  X  £ ¡3). If X i, X 2 , ■••,Xn are vertices 
such that (Xx,X2 ), (X2 , X 3 ) , . . . ,  (X„_i ,Xn) are arcs of (M ,0 ), then the 
path consisting of these arcs is denoted by [ X \ , X n].

Let o C O b e  arbitrary, and let us define the functions below on the set o

m attn(o) — a, m atoxlt{6) =  /3,
(a,/3)eo (a,/3)eo

and

mat(o) =  m atin(o)

Let the process graphs (m, o) and (M, O) be given. Then, (m, o) is called 
a subgraph of (M, O), if m  C M  and o C O .

Now, we are ready to define the structural model of PNS. For this pur
pose, let M  be an arbitrarily fixed finite set, the set of the available materials. 
By structural model of PNS, we mean a system (P , R, O), where f l ^ P C J l f  
is the set of the desired products, R  C M  is the set of the raw materials, 
and O C p'(M ) x p'(M ) is the set of the available operating units. It is 
supposed that P  n R  =  0 and M  fl O =  0. In this case, the process graph 
(M, O ) represents the interconnections between the operating units of O, 
where M  =  U{a U f3 : (a,/3) £ O}.

Moreover, every feasible process network which produces the given set P  
of products from the given set R  of raw materials using operating units from 
O , corresponds to a subgraph of (M , 0 ). Therefore, by investigating the 
corresponding subgraphs of (M , 0 ), one can determine the feasible process 
networks. If we do not take into account further constraints such as material 
balance, then the subgraphs of (M, O) which can be assigned to the feasible 
process networks can be described by some combinatorial properties. These 
properties are established in [4] and they are presented by the following 
definition.
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The subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O) 
if (m, o) satisfies the following conditions:

(Al)  P  C m ,

(A2) VX £ m, X  £ R<& no (Y,X)  arc in the process graph (m, o),

(A3) VY0 £ o, 3 path \Yq, In] with Yn £ P,

(AA) VX £ m, 3 (et, P) £ o such that X  £ a(J/3.

Let us denote the set of solution-structures of M  =  (P, R, O) by S(P, R, O) 
or S(M).

P N S  problem  w ith  w eights

Let us consider such PNS problems in which every operating unit has 
a positive weight. We are to find a feasible process network with mini
mal weight where by weight of a process network we mean the sum of the 
weights of the operating units belonging to the process network under con
sideration. Each feasible process network in such a class of PNS problems 
is determined uniquely from the corresponding solution-structure and vice 
versa. Therefore, the problem can be formalized in the following way:

Let M  =  (P, R, O) be given; moreover, let w be a positive real-valued 
function defined on O, the weight function. Then, the basic model is as 
follows:

(1) min{y^ w(u) : (m,o) £ S ( P , R , 0 ) } .
u£o

In what follows, for the sake of simplicity, the elements of 5(M ) are called 
feasible solutions and by PNS problem we always mean a PNS problem with 
weights. It is known (see [2], and [9]) that problem (1) is NP-complete. 
Furthermore, it is easy to see that the set o determines the P-graph (m, o) 
uniquely, for every feasible solution (m,o).  Consequently, (1) is a particular 
case of the Minsum problem.

It is a basic observation that if (m, o) and (m1, o') are feasible solutions 
of M , then (m, o) U (m1, o') is also a feasible solution of M. This implies that 
¿>(M) has a greatest element called maximal structure provided that ¿>(M) ^  
0. Indeed, the maximal structure is the union of all the feasible solution
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in M. Obviously, the P-graph of an arbitrary PNS problem can contain 
unnecessary operating units and materials. On the basis of the maximal 
structure, we can disregard these unnecessary operating units and materials 
as follows. Let (M, O) denote the P-graph of the maximal structure. Then, 
the P-graph of the structural model M  =  ( P , R D  M , 0 )  is (O, M),  and 
since each feasible solution of M  is a subgraph of (M , 0 ), it is a feasible 
solution of M , and conversely. Consequently, S(M ) =  S(M).  On the other 
hand, M  does not contain any unnecessary operating unit and material. 
The structural model M  is called reduced structural model of PNS.

To determine the reduced structural model for a PNS problem, an ef
fective procedure is presented in [6], [5]; it can decide if <i?(M) is empty; if 
S'(M) is not empty, then the algorithm provides the corresponding maxi
mal structure in polynomial time. It is a simple observation [1], that if we 
take a subset of the operating units, then we have the input and output 
materials of these operating units. In other words, if we have an operating 
unit type vertex set o of the bipartite process graph (M, O ) , then the set o 
determines a subgraph (m, o) of (M, O) where m  =  mat(o), and the arcs of 
this subgraph are the same ones as the arcs between o and m  in (M, O). By 
our Algorithm for Maximal Structure Generation (AMSG), we can decide 
whether there is a feasible solution (m ',o') of M  in (m,o) or not.

3. Bottleneck PNS-problem

Let a reduced structural model of PNS problem M  =  (P , R , O) be given. 
We are to find such a feasible solution in which the weightest operating unit 
has the least weight. Formally, we are to solve

(2) min{max{u;(u) : u € o} : (m, o) € S'(M)}.

To solve (2), let O — { u i , . . . , u n}. Without loss of generality, it can 
be supposed that w(ui)  < w(u2) < . . .  < w(un). For every positive integer 
i(<  n ), let 0{ =  {u i , . . . ,Uj }  and M* =  mat(Oi). Furthermore, let Mj =  
(P, R, Oi). Then, the following statement is valid.

Lem ma 1. If for some integer 1 < i < n, has the maximal structure
and S(Mj_x) has no the maximal structure, then ui is included in every 
feasible solution in <S'(Mj).
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By the above statement, we can show that the optimal value of (2) is 
w(ui). Indeed, let us consider an arbitrary feasible solution (m', o') E S(M).  
If there is a j  > i with uj E o', then w(ut) < max (w(u) : u E o'}. Now, let 
us suppose that uj E  o' implies j  < i. If u, E o', then w(u{) =  max{w(u) : 
u E o'}. Finally, U{ o' is impossible, since (m ',o') is a feasible solution of 
M ,, and thus, by Lemma 1, ut E o'. Consequently,

w(ui) =  min{max{in(u) : t i S o } :  (m.o) E S^M)}.

Now, we can solve (2) by the following procedure.

P rocedure 1.

•  Initialization. Let i =  1 and Oj =  {ui }.

•  Iteration (i-th). Let Mi =  mat(Oi). Let us perform the Algorithm 
for Maximal Structure Generation for the structural model M, =  
(P,R,Oi) .  If there exists the maximal structure, then terminate; the 
maximal structure is an optimal solution and the optimal value is 
w(ui).  In the opposite case, let Oj+i =  { u i , . . . ,  ul+i}, i := i +  1, and 
proceed to the next iteration.

It is easy to see that the time complexity of this procedure is n-q  where 
q denotes the time complexity of the Algorithm for Maximal Structure Gen
eration.

R em ark. We note that this time complexity can be improved by changing 
the performance of the procedure. It is easy to see that one can start with 
i — [ra/2], and if there is the maximal structure, then, as the next step, one 
can choose the middle point of [l,i], and in the opposite case, the middle 
point of [i, n]. This performance provides a better time complexity, which 
is q • log(n), where q denotes the same constant as above.

4. fc-sum version of PNS problem

Let (M , O) be the maximal structure of a reduced structural model of PNS 
problem M  =  (P , R , 0 ). Furthermore, let A; be a fixed positive integer. We 
are to find such a feasible solution for which the sum of weights of the k 
weightest operating units is minimal.
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To formalize the problem considered, let us denote by , . . . ,  Uik, the k 
weightest operating units of (m,o). The k-sum PNS problem is then

k
(3) m in { ^ w(uit) : (m,o) £ S^M)},

t=l

where by if a feasible solution has less operating units than k, we equip the 
weightest operating units with the copies of a fictious operating unit having 
0 weight.

Since o determines the P-graph (m, o) uniquely, for every feasible solu
tion, (3) is a particular case of the SUM(A:) problem.

For solving (3), Let O =  { i q , . . . ,  un}. Without loss of generality, we 
can assume again that w(u\) < w{u2 ) < . . .  < w(un). Let us fix now such 
a linear ordering, denoted by on the subsets of at most k elements of O 
for which

r s
{uii : . . . ,Ui r} ^  {uh , . . . , Uj , }  if and only if ^ w { u it) < J 2 w ( u it).

t= l i= l

Such an ordering there exists; moreover, it can be determined by some rules. 

For every subset { u q , . . . ,  iqr} C O , let

0 { U i i v . . , U i r } =  { t X i , , . . . , U i r }  U { t x t  : ut £ O k w ( u t) < w{un )},

where it is supposed that utl has the smallest index in { u q , . . . ,  ulr}. Fur
thermore, let M { u i i r }  =  (P, R, 0 ( Uii Then, the following asser
tion is valid.

Lem ma 2 . If for some {u q ,. . .  ,uq} C O, ....Uirj) has the maxi
mal structure and for every subset {«q , . . . ,uq}  C O with {uj l f . . .  ,ujs} ^  
{ l iq , . . .  Uir}, S ( j) has no the maximal structure, then the maxi
mal structure of S (M {Uii....Uirj) is an optimal solution of (3), and the opti
mal value is w(uit ).

On the basis of Lemma 2, one can determine an optimal solution of (3) 
by the following procedure.

Procedure 2 .
• Step 1. Establish the corresponding linear ordering.
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• Step 2. Let i =  1.

• Step 3. Consider the f-th subset of O regarding the fixed ordering.
Let {ujj, . . .  ,Ujr} be this subset. Perform the Algorithm for Maximal 
Structure Generation for If there exists the maximal
structure, then terminate; the maximal structure is an optimal solu
tion. In the opposite case, let i := i +  1 and repeat Step 3.

The time complexity of this procedure is £ t= i (*) ’ 3- where q denotes 
the time complexity of the Algorithm for Maximal Structure Generation.

It is worth noting that the technique presented in this section is suitable 
to solve a generalized version of (3). Namely, if the object function is not the 
sum of the weights of the k weightest operating units but it only depends 
on them, i.e., it has a form z(w(ui1) , . . .  ,w(v.ik)), where fictious operating 
units are allowed, then we obtain the following problem:

(4) m i n ^ i i ; ^ ) , . . . , w{uik)) : (m,o) € S(M)},

In this case, the linear ordering has to satisfy the following condition:

{«i i , . . . ,  uir} ^  {uh , . . . ,  ujs} iff z iw iu ii) , . . . ,  w(uik)) < z(w(uh ) , w ( u jk)).

The bottleneck PNS-problem is well-solvable, but the PNS problem is 
NP-complete (cf. [2], [9]). Our method for solving the A;-sum version of 
PNS-problem is polynomial for “small” fixed k, similarly to the example of 
minimization of the sum of k tardinesses in scheduling, was examined by 
Woeginger [11].
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