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A bstract
A manufacturing system consists of operating units converting ma

terials of different properties into further materials. In a design prob
lem, we are to find a suitable network of operating units which produces 
the desired products from the given raw materials. If we consider this 
network design from structural point of view, then we obtain a com
binatorial optimization problem called Process Network Synthesis or 
(PNS) problem. It is known that the PNS problem is NP-complete. 
In this work, we present such a subclass of PNS problems which is 
well-solvable.
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1. Introduction
In a  manufacturing system, materials of different properties are consumed 
through various mechanical, physical and chemical transformations to result
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in desired products. Devices in which these transformations are carried out 
are called operating units, e.g., a lathe or a chemical reactor. Hence, a man
ufacturing system can be considered as a network of operating units which 
is called process network. A process design problem in general, and flow
sheeting in particular, mean to construct a manufacturing system. A design 
problem is defined from a structural point of view by the raw materials, the 
desired products, and the available operating units, which determine the 
structure of the problem as a process graph containing the corresponding 
interconnections among the operating units. Thus, the appropriate process 
networks can be described by some subgraphs of the process graph belonging 
to the design problem under consideration. Naturally, the cost minimization 
of a process network is indeed essential.

The importance of process network synthesis (PNS) arises from the fact 
tha t such networks are ubiquitous in the chemical and allied industries. The 
foundations of PNS and the background of the combinatorial model studied 
here can be found in [3], [4], [6], [7], and [8]. Therefore, here we shall confine 
ourselves only to the recall of the necessary definitions.

It has recently been proven (see [1], [5], [9]) that the PNS problem is 
NP-complete. When a problem is NP-hard or NP-complete, then the stud
ies of some special classes can result in effective procedures for solving the 
instances of these special classes. A well-known example is the integer linear 
programming problem which is NP-complete, while such particular cases as 
the assignment problem or transportation problem can be solved in polyno
mial time. Another example, the TSP which is NP-complete, but there are 
some well-solvable subclasses of TSP, a nice overview on them can be found 
in [2] and [11]. The first well-solvable special classes of PNS problems were 
studied in [10]. In this work, we present a  new subclass of PNS problems 
which can be solved in polynomial time.

2. Preliminaries
In a combinatorial approach, the structure of a process can be described by 
the process graph (see [6] and [7]) defined as follows.

Let M  be a finite nonempty set, the set of the materials. Furthermore, 
let 0 ^  O Ç p '(M ) x p '(M ) with M flO  =  0 where p '(M ) denotes the set of 
all nonempty subsets of M . The elements of O are called operating units and



On a well-solvable class o f the PNS problem 23

for an operating unit (a, ¡3) 6 0 , a  and ¡3 are called the input-set and output- 
set of the operating unit, respectively. The elements of a  and (3 are called 
the input and output materials of (a, /?), respectively. Furthermore, for every 
subset S  of materials, let us denote by A (S) the set of the operating units 
having output materials in S. We shall also use the following notations: for 
any finite set of operating unit o, let

m atin(o) =  U{a : (a, ¡3) € o} and m atout(6 ) =  U{/3 : (a, (3) 6 o}.
The pair (M, O) is defined to be a process graph or shortly P-graph. 

The set of vertices of this directed graph is M U O , and the set of arcs 
is A = A i U A 2 where A \ =  {(X, V) : V =  (a ,(3) € O and X  6 a} 
and A 2 =  {(Y, X) : Y  = (a ,(3) 6 O and X  6 /?}. If there exist vertices 
X i ,X 2, ..- ,X n , such tha t ( X i ,X 2), (X 2, X 3) , . . . ,  (X n- i , X n) are arcs of the 
process graph (M , O ), then the path  determined by these arcs is denoted by 
[Xu X n].

Let the process graphs (m, o) and (M, O) be given, (m, 6 ) is defined to 
be a subgraph of (M, O), i f m C M  and o C O.

Now, we can define the structural model of PNS for studying the problem 
from structural point of view. For this reason, let M* be an arbitrarily fixed 
possibly infinite set, the set of the available materials. By structural model 
of PNS, we mean a triplet M  =  (P, R, O) where P , R , O are finite sets, 
0 /  P  C M* is the set of the desired products, R  C M* is the set of the 
raw materials, and 0 ^  O C p'(M *) x p'(M *) is the set of the available 
operating units. It is assumed tha t P  n  R  =  0 and M* D 0  =  0; moreover, 
a  and (3 are finite sets for every (cc, ¡3) =  u € O.

Then, the process graph (M , 0 ), where M  =  U{o: U ¡3 : (a, ¡3) 6 O}, 
represents the interconnections between the operating units of O. Further
more, every feasible process network, which produces the given set P  of 
products from the given set R  of raw materials using operating units from 
O, corresponds to a subgraph of (M, O). Examining the corresponding sub
graphs of (M, O), therefore, we can determine the feasible process networks. 
If we do not consider further constraints such as material balance, then the 
subgraphs of (M, O) which can be assigned to the feasible process networks 
have common combinatorial properties. They are studied in [?], and their 
description is given by the following definition.

The subgraph (m, o) of (M, O) is called a  solution-structure of (P, R, O) 
if the following properties are satisfied:
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(A l) P  C m ,
(A2) VX G m, X  G R  o- no (Y, X )  arc in the process graph (m, o),
(A3) VF0 G o, B path [Fo,Tn] with Yn G P,
(A4) VX G m, 3 (a ,/?) G o such that X  G a  (J/?.

Let us denote the set of solution-structures of (P, R, O) by S(P, R , O). 
P N S  p ro b lem  w ith  w eig ths

Let us consider the PNS problems in which each operating unit has a 
weight. We are to find a feasible process network with a minimal weight 
where by weight of a  process network we mean the sum of the weights of 
the operating units belonging to the process network under consideration. 
Each feasible process network in such a class of PNS problems is determined 
uniquely from the corresponding solution-structure and vice versa. Thus, 
the problem can be formalized as follows:

Let a structural model of the PNS problem (P, R, O) be given. Moreover, 
let w be a positive real-valued function defined on O, the weight function. 
The basic model is then the following minimization problem:

(1) min{y~) w(u) : (m ,o ) G S (P ,R ,0 )} .
u  Ç.0

For the sake of simpicity, in what follows, we call the elements of S(P, R, O) 
feasible solutions, and by a PNS problem we always mean a PNS problem 
with weights.

3. Hierarchy cal PNS problems
A PNS problem is called hierarchy cal if there exists the partition M q = 
R , . . . ,M i  =  P  of M  and the partition 0 \ , . . . ,  Oi, of O such that O, contains 
only operating units having input materials from M j_i and output materials 
from Mi, for all i, i = 1 , . . . ,  Z. The hierarchycal PNS problems, which are 
thin in the sense that the size of Oi, i =  1 and the size of M u i = 
1 are bounded by a fixed constant, are well-solvable. To formulate this 
statem ent more precisely, we use the following definition. A PNS problem is
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called k-wide hiemrchycal if it is a hierarchycal problem; moreover, \M{ \ < k 
and \ O j \  < k are valid, for a li i  =  0 , . . . ,  i, j  =  1 , . . . ,  l.

T h e o re m  1. I f  a PNS problem is k-wide hierarchycal, then the following 
procedure either provides an optimal solution of the problem or it gives that 
the problem has no feasible solution. The time complexity of this algorithm 
is C • l where C is a constant depending on k.

P ro c e d u re
S u b p ro c e d u re  1. (Computing functions Fi and Gi.)

•  Initialization. Let N  be a number which is greater than \0\ ■ q where 
q denotes the maximum of the weights of the operating units.

•  Part 0. Let Go(S) = 0 and Fq(S) =  0, for all S  C  M$.
•  Part i. (i =  1 , . . . , / ) .

— Step 1. If there exists a set S  C Mj for which the functions Fx and 
Gi have not yet determined, then choose one of them and perform 
the following steps for it. Otherwise, proceed to the i +  1-th part 
if * <  l , and terminate if i = l.

— Step 2. Consider the subset A (S) of O, and for every set Q C  
A (S) examine the validity of S  C  m aioui(Q). If this relation 
is false for every Q, then proceed to Step 4. Otherwise, let the 
sets satisfying the relation above be denoted by Q i , . . . ,Q t and 
proceed to Step 3.

— Step 3. For every Q j, j  = 1 ,. . .  ,t , calculate the following value:

Cj = G i-i(m a tm (Q j)) +  ^  w(u)
u€Q j

Let us denote a set with a minimal value by Q j. If there are more 
sets with the same minimal value, then choose the set having the 
smallest index. Furthermore, let Fi(S) = Qj, Gt(S) — Cj, and 
proceed to Step 1.

— Step 4■  Let Fi(S) — 0, G i(S) = N , and proceed to Step 1.
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S u b p ro c e d u re  2. (For finding an optimal solution)

• Initialization. If GfiP) > N , then terminate; the problem has no 
feasible solution. Otherwise, let A q = P, Oq = 0, and r =  1,

• Iteration (r-th ).
-  Step 1. Let Or =  Or_iUF}+i_ r (Ar_i), A r = m atin(Fi+i_r(Ar-{)). 

If r =  /, then proceed to Step 2, otherwise let r := r + 1 and pro
ceed to the next iteration.

-  Step 2. Terminate; the optimal solution is the P-graph (m ,o ), 
where o — Ou and m  = m attn(o) U m atout(o).

Proof. First, we prove that if the algorithm gives a solution, then the pro
duced sets m, o yield a P-graph which is a feasible solution. By the definition 
of m, it is obvious that for the sets m, o, the P-graph (m, o) exists and satis
fies property (A4). Let us observe that if i < l, then for each element of A t, 
there exists an operating unit in o producing it. This observation follows 
from the definition of the functions F j, j  =  1 , . . . , / .  Thus, by A q =  P, 
we have that (m, o) satisfies property (Al). Since in a hierarchycal PNS 
problem there is no operating unit producing raw material, we get that in 
(m, o) there is no edge leading into a raw material. To prove the second 
part of property (A2), let A  G m  be a material with A  ^ R. Since X  G m, 
thus A  is an output or input material of some operating unit from o. In 
the first case, we get by the definition of the P-graph, that there exists an 
edge leading into A. In the second case, let u G o be an operating unit 
having A  as an input material. Since u G o, there exists an index r for 
which u G Fi+i_ r(Ar- 1). This gives tha t A  G A r. On the other hand, by 
induction on the number of iterations it is easy to see that A t C for 
all i, i = 0 , . . . ,  /. This observation results in r  ^  I. Thus, A  G At for some 
i < l which yields that there exists an edge in (m, o) leading into it. Con
sequently, property (A2) is also valid for (m ,o ). To prove property (A3), it 
is enough to show that for each operating unit from Oi, i =  1 ,. . .  ,f, there 
exists a path  in (m, o) leading from it into a desired product. We prove this 
statement by induction on i. For the case i = 1, we have A q = P, thus, 
by the definition of the function F), the validity of the statement follows. 
Now, let 1 <  i < l, and let us suppose that the statement is valid for i. 
We show tha t it is also valid for i +  1. Since Oj+i =  Oi U 
thus, by the induction hypothesis, it is enough to prove the statement for
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the operating units contained in Fi+1_(i+1)(Aj). Let u € Fi+1_(i+1)(j4j) be 
arbitrary. By the definition of the function Fi+1_(i+1), we can obtain that 
u has an output material from the set A{. (Otherwise, during Step 2 of the 
construction of the functions, *i+i C A(Aj) is not valid, which is
a contradiction.) Let such a material be denoted by Z. By the definition 
of Ai, it follows that Z  is an input material of some operating unit v G Ot. 
Then, by the induction hypothesis, there exists a path [v, Y] in (m, o) where 
Y  is a desired product. Completing the beginning of this path  with u and 
Z , we get a path  in (m, o) leading from u into the desired product Y . Thus, 
we have proved our statement for i +  1 which yields that property (A3) is 
valid for the P-graph (m, o). Consequently, the P-graph determined by the 
algorithm is a feasible solution.

Now, we prove the correctness of the procedure. To do this, we show 
first the following statement concerning G/.

L em m a 1. For every feasible solution, the weight of the feasible solution is 
at least G i(P).

Proof. Let (m, o) be an arbitrary feasible solution of the problem. Let o% =  
Oi fl o, for i — 1 , . . . ,  /. Since (m, o) is a feasible solution and the materials 
of P  can be only produced by operating units from 0 \, by properties (Al) 
and (A2), we have tha t P  C m a t^ fo i )  . The definition of the function G; 
and this observation yield the following inequality:

Gi(P) < G i- \(m a tn(o{)) +  ^  w(u).
u €oi

On the other hand, (m, o) is a feasible solution, thus m atin(oi) C m. The 
input materials of the operating units from oi are in the set M /_i, thus, if l ^  
1, then they are not contained in R. This yields that for each of them, there 
exists an operating unit in o having it as an output material. Furthermore, 
the problem is hierarchical, and hence, the materials from the set M/_i are 
produced only by operating units from 0 ;_ i . These observations yield that 
m attn(oi) C mat™*'(oi-i). This relation and the definition of function G/_i 
imply the following inequality:

G /_i(m at,n(oi)) < G i-2{matm (oi-i)) +  ^  io(u).
u£0(_ i
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In the same way as above, we obtain that the following inequality is 
valid, for all i , i =  1 , — 1:

G i(m atin(c>i+1)) <  G i-i(m a tin(oi)) +  E ]  w(u).
u eoi

Summarizing the obtained inequalities, by Go (S') =  0, we get the following 
inequality:

g i (p ) < E E “ («).
i = i  ueoi

which gives the required result.
By Lemma 1, we can prove the correctness of the procedure.
First, we prove that there is no feasible solution of the problem if G/(P) > 

N . Contrary, let us suppose that there is a feasible solution of the problem. 
Let us denote the weight of this solution by K . By the definition of N , we 
have that N  > K . On the other hand, Lemma 1 states that G[{P) <  K  
which results in the contradiction N  > N .

Now, we show that the feasible solution produced by the algorithm is 
optimal if G i(P) < N . First, let us observe that the weight of the produced 
solution is Gi(P). This observation follows immediately from the construc
tion of the algorithm. Thus, by Lemma 1, we obtain that the weight of any 
feasible solution is at least so large as the weight of the produced solution 
which means that we get an optimal solution.

Finally, let us examine the time complexity of the procedure. In Subpro
cedure 1, we perform l parts. During a part, we examine every subsets of 
A (S), for each subset S  of M*. Since the problem is fc-wide hierarchical, Mi 
has at most 2k subsets, and since for each such subset S, A (S) C Oj, thus, 
A (5) can have only 2k subsets. Consequently, we obtain that the number 
of operations performed in each iteration is independent on the size of the 
problem (it depends only on k). In Subprocedure 2, which is based on the 
functions Ft and Gj, we perform l iterations and the number of operations 
in each iteration is a constant. This implies that the number of operations 
performed by the procedure is bounded by C l.
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Thus, for every fixed k, the above algorithm solves any fc-wide hierarchi
cal problem in linear time. However, we have to note that the constant C 
in the complexity of the algorithm is exponential in k. This shows that our 
procedure can be really effective only for small k.

On examining the presented algorithm one can arrive at an interesting 
observation on the solvability of hierarchical PNS problems.
C o ro lla ry  1. For a hierachical PNS problem, if every material, distinct, 
from the raw materilas, is produced by some operating units, then the problem 
has a feasible solution.
Proof. Let us perform the algorithm for the problem. By the above as
sumption, we obtain that S  C  m at0Ut(A (S)) for each subset S  of materials, 
which gives tha t Step 4 is not performed in Subprocedure 1. This yields 
G t(P) < N , and then the problem has a feasible solution.
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