
PU.M.A. Vol. 17 (2006), No. 3–4, pp. 229–239

Heuristics on a common generalization of TSP
and LOP

Z. Blázsik
University of Szeged, Department of Informatics

H–6720 Szeged, Árpád tér 2, Hungary
e-mail: blazsik@inf.u-szeged.hu

and
T. Bartók

University of Szeged, Department of Informatics
H–6720 Szeged, Árpád tér 2, Hungary

and
B. Imreh

University of Szeged, Department of Informatics
H–6720 Szeged, Árpád tér 2, Hungary

and
Cs. Imreh

University of Szeged, Department of Informatics
H–6720 Szeged, Árpád tér 2, Hungary

and
Z. Kovács

University of Szeged, Department of Informatics
H–6720 Szeged, Árpád tér 2, Hungary

(Received: July 12–15, 2006)

Balázs Imreh deceased on 8-th of August 2006, the remaining authors would like to
dedicate the paper to his memory.

Abstract. In many important combinatorial optimization problems it is re-
quired to find a permutation of vertices of a complete directed graph that mini-
mizes a certain cost function. In this paper we consider a new such optimization
model where the objective function is a mixed linear cost function of the func-
tions used in the TSP and the LOP problems. The motivation of this common
generalization of TSP and LOP is a practical vehicle routing question. We
present and analyse some heuristic algorithms for the solution of the problem.

Mathematics Subject Classifications (2000). 90C27, 90C59

This research has been supported by the Hungarian National Foundation for Scientific
Research, Grant T046405 and by the research and development project NKFP-2/015/2004.

229



230 Z. BLÁZSIK et al.

1 Introduction

In many important combinatorial optimization problems it is required to find a
permutation of vertices of a complete directed graph that minimizes a certain
cost function. The most familiar one is the min-cost Hamiltonian path problem
– or its closed-path version, the Traveling Salesman Problem (TSP ) –, when
the cost of a permutation is the sum of the distances of the consecutive node
pairs. This problem is one of the most investigated combinatorial problems,
an overview of the problem and its variations can be found in [5]. Another
problem known as the Linear Ordering Problem (LOP ) is to find a linear order
of the nodes of a directed graph such that the sum of the arc weights, which are
consistent with this order, is as large as possible. An overview on the results
concerning the LOP problem can be found in [8], and [9].

In this paper we consider a new optimization model using a mixed linear cost
function from these two. The motivation of this common generalization of TSP
and LOP is the following practical question. We consider the problem where a
vehicle has to visit some places but it can be used for internal transports during
its tour. This means that in the case when a place i is visited before a place j
then the vehicle can be used to transport some goods from i to j. The profit
which can be achieved by such a transport is denoted by Bij . The goal is to
find an ordering of the places which maximizes the total profit which can be
achieved by the internal transports. This vehicle routing question leads to the
LOP model. On the other hand we also have to take into account the cost of
the tour. We reduce the profit by this cost and the difference gives the objective
function of the mathematical model. We call this problem min-cost Hamiltonian
path problem with internal transport, HPPIT in short. We note that there
exists another TSP model where the goal is the maximization of the profits, this
model is called the selective TSP model (LM90). In the selective TSP version
the profit is assigned to the points and the goal is to find the subtour with
maximal total profit among the subtours having total distance below a given
constant.

HPPIT is a generalization of two NP-hard problems therefore it is also NP-
hard. For NP-hard optimization problems, the construction and analysis of
heuristic algorithms is a rapidly developing area. By heuristic algorithms we
mean fast, (polynomial time) algorithms which do not guarantee an optimal
solution in general, but always result in a feasible solution. Heuristic algo-
rithms are important for several reasons. The feasible solutions found by these
algorithms can be used in procedures based on branch and bound techniques.
Moreover, in practical problems often there is not enough time to find an op-
timal solution by an exponential algorithm, or the size of the problem is too
large to use an exponential algorithm. In these cases, heuristic algorithms can
be useful again. It can also occur that we do not need an optimal solution, it is
sufficient to find a feasible solution the cost of which is not far from the optimal
cost.

In this paper we extend some heuristic algorithms which are defined for
the TSP problem to this more general model, and we develop some further



HEURISTICS ON A COMMON GENERALIZATION OF TSP AND LOP 231

algorithms. The algorithms are analysed by an empirical analysis.
The paper is organized as follows. In Section 2, we define the mathematical

model of the problem and we present the used notations. Then, in Section 3,
some heuristic algorithms are defined for the solution of the problem. In Section
4 the empirical analysis is presented which is used to compare the presented
algorithms.

2 Notions and notation
The vehicle routing problem with inner transportation leads to the following
mathematical model. Let G(V,A) be a directed complete graph, where V =
v0, v1, . . . , vn is the set of vertices, (v0 is the depot, and the other vertices are the
places which should be visited by the vehicle). Furthermore two (n+1)×(n+1)
size nonnegative matrices are given, B and D. Bij is the possible profit which
can be achieved by the inner transportation from vi to vj if vi is visited before
vj (Bii = 0 for each i). Dij gives the cost of travelling from vi to vj (Dii = 0
for each i).

In the HPPIT problem we would like to find a tour which visits each city
exactly once and starts at the depot and returns there at the end of the tour. The
objective is to maximize the total profit achieved by the inner transportation
taking into account the cost of the tour. A feasible solution can be defined
as a permutation p of the set {1, . . . , n}. The permutation describes the tour
where the vehicle starts and ends at v0 and visits the other vertices in the order
vp(1), vp(2), . . . , vp(n). Then the objective function is given by the formula

z(p) =
∑

0<i<j<n+1

Bp(i),p(j) +
n∑

i=1

(B0,p(i) + Bp(i),0)−
∑

0≤i<n

Dp(i),p(i+1) −Dp(n),0,

and the goal is to maximize this function. In the objective function the profit
of the inner transportation from and to v0 is independent on the order of the
other vertices, thus it is a constant.

We can also represent the solutions as the directed cycles of the graph V
which contain all of the vertices. Some of the presented algorithms use this
representation. In this case a directed cycle containing less vertices than n + 1
is called a subtour. For an arbitrary subtour which contains v0 and for a vertex
v of the subtour PRE(v) contains the vertices which are on the path (v0, v) in
the subtour and SUC(v) contains the vertices which are on the path (v, v0) in
the subtour.

3 Heuristic algorithms
In this section we present some heuristic algorithms for the solution of the prob-
lem. First we give six tour building algorithms which use different heuristic rules
to build a feasible solution. Then a tour improvement algorithm is presented
which is based on the neighborhood search technique.



232 Z. BLÁZSIK et al.

3.1 Tour building techniques

Algorithm TB1 (Tour Building 1)
In this greedy algorithm we define the order of the vertices one by one.

In each step we select the vertex which yields the maximal profit, taking into
account the travelling cost. (We note that in the iteration steps we do not
consider the cost between the inserted vertex and the depot, since in the next
iteration this cost will be eliminated.) The algorithm can be defined as follows:

Step 1: Let 0 < k < n + 1 be the value, where
∑

0<j<n+1 Bkj − D0k =
max0<i<n+1

∑
0<j<n+1 Bij − D0i. Let p(1) = k. If more than one k

exists with this property, then we choose the smallest one. Let t = 1. Go
to Step 2.

Step 2: If t = n, then the procedure is finished, p is defined, the resulted
tour is v0, vp(1), . . . , vp(n), v0. If t < n, then let p(t) be the smallest k
(k 6= p(s), s < t) such that: −Dp(t−1),k +

∑
0<j<n+1, j 6=p(s), s<t Bkj =

max0<i<n+1, i 6=p(s), s<t{−Dp(t−1),i +
∑

0<j<n+1, j 6=q(s), s<t Bij}. Increase
the value of t and go to Step 2.

Algorithm TB2
In this greedy algorithm we build the order from two directions from forward

and from backward. In each step we choose one vertex from backward and one
from forward to extend the current partial order. We always choose the vertices
which yield the maximal profit (taking into account the travelling cost). The
algorithm can be defined as follows.

Step 1: (Definition of the last and the first vertices vp(n) and vp(1)): Let 0 < k <
n + 1 be the value, where

∑
0<j<n+1 Bjk −Dk0 = max0<i<n+1

∑
0<j<n+1

Bji − Di0. If more than one k exists with this property, then we choose
the largest one. Let p(n) = k, F = {k} (F is the set of the ordered ver-
tices). If n > 1, then let 0 < k < n + 1, k /∈ F be the value, where∑

0<j<n+1, j 6=p(n) Bkj − D0k = max0<i<n+1, i/∈F

∑
0<j<n+1, j 6=p(n) Bij −

D0i. Let p(1) = k. If more than one k exists with this property, then
we choose the largest one. Let t = n− 1, z = 2, and F = F ∪ {k}. Go to
Step 2.

Step 2: In this Step we determine p(t), the next element from backward in
the tour. If z = n, then the procedure is finished, p is defined, the tour is
v0, vp(1), . . . , vp(n), v0. If z < n, then let p(t) be the maximal k, k /∈ F such
that: −Dk,p(t+1) +

∑
0<j<n+1, j /∈F Bjk = max0<i<n+1, i/∈F {−Di,p(t+1) +∑

0<j<n+1, j /∈F Bji}.
Let z = z + 1, t = n− t + 1, F = F ∪ {k} go to Step 3.

Step 3: In this Step we determine p(t), the next element from forward in the
tour. If z = n, then the procedure is finished, p is defined, the tour is



HEURISTICS ON A COMMON GENERALIZATION OF TSP AND LOP 233

v0, vp(1), . . . , vp(n), v0. If z < n, then let p(t) be the minimal k, k /∈ F , such
that: −Dp(t−1),k +

∑
0<j<n+1, j /∈F Bkj = max0<i<n+1, i/∈F {−Dp(t−1),i +∑

0<j<n+1, j /∈F Bij}.
Let z = z + 1, t = n− t, F = F ∪ {k} go to Step 2.

Algorithm TB3 (Next insertion)

Initialization Let r = 0, Ir = 0, Er = {(0, 0)}. (v0 is the starting subtour). Let
r = 0 and go to the iteration part.

Iteration part (r-th iteration) If r = n, then the procedure is ended, the tour
given by the edges of Er is the solution resulted by the algorithm. Other-
wise, determine for r the edge (u, v) from the set Er, where∑

i∈PRE(v)

Bir +
∑

j∈SUC(u)

Brj −Dur −Drv + Duv

= max
(s,t)∈Er

 ∑
i∈PRE(t)

Bir +
∑

j∈SUC(s)

Brj −Dsr −Drt + Dst

 .

Let Er+1 = Er \ {(u, v)} ∪ {(u, r), (r, v)} where (u, v) is the selected edge.
Increase r by 1, and go to the next iteration.

Algorithm TB4 (Best insertion)
In this algorithm in each step we have a subtour. Then we choose the vertex

which can be inserted with the smaller cost into this tour. The algorithm is the
extension of the cheapest insertion TSP heuristic algorithm which is analysed
in [4] and [3]. The algorithm can be given as follows.

Initialization Let r = 0, Ir = 0, Er = {(0, 0)} (v0 is the starting tour). Go to
the iteration part.

Iteration part (r-th iteration) If r = n, then the procedure is ended, the tour
given by the edges of Er is the solution resulted by the algorithm. Oth-
erwise, determine for each k from set N \ Ir the edge k(u, v) from the set
Er, where

C(k(u, v)) =
∑

i∈PRE(v)

Bik +
∑

j∈SUC(u)

Bkj −Duk −Dkv + Duv

= max
(s,t)∈Er

 ∑
i∈PRE(t)

Bik +
∑

j∈SUC(s)

Bkj −Dsk −Dkt + Dst

 .

Let k be the value where the above maximum is maximal. Let Ir+1 = Ir∪k
and Er+1 = Er \ {(u, v)} ∪ {(u, k), (k, v)} where (u, v) is the edge which
gives the maximal C(k(u, v)) value for the selected k. Increase r by 1, and
go to the next iteration.



234 Z. BLÁZSIK et al.

Algorithm TB5 (Best insertion II)

The algorithm is very similar to algorithm TB4, the main difference is the se-
lection of the starting subtour. In this version we use the following initialization
part:

Initialization Choose the pair (i, j) for which the value Bij − Dij is maximal
and let Ir = {i, j}, Er = {(i, j)}. (vi, vj is the starting subtour). Let
r = 1, go to the iteration part.

Iteration part The iteration part is the same as in the case of TB4, the only
difference that i is considered as the depot during this part.

Algorithm TB6 (Path patching algorithm)

This algorithm uses similar ideas as the two patching algorithm analysed
by Karp ([6]). In each step we have a set of paths and we concatenate two
of them. We use the following function of the paths, s(Q) and f(Q) are the
starting and the final points of the path, function l(Q) is the length of the path,
c(Q) is an estimation on the cost of the path. If Q and R are two paths, then
QR denotes the paths received by writing the points of R to the end of Q and
con (QR) = c(Q) + c(R) +

∑
i∈Q, j∈R Bij − Df(Q),s(R). The algorithm can be

defined as follows.

Initialization Let L = {(v0), (v1), . . . , (vn)} be a list containing paths, let l(vi) =
1, c(vi) = 0 for each i. Go to the iteration part.

Iteration Part

Step 1: If L contains only one path then connect the endpoint and the starting
point of the path and the resulted tour is the feasible solution given by
the algorithm. If L contains more elements, then go to Step 2.

Step 2: Let Q ∈ L be the shortest path in L (the element with the minimal l(Q)
value). If there are more elements with this property then we choose the
one which is the first among them in list L. Delete Q from L. Now let R
be the shortest path in L, if there are more elements with this property
we choose such R where the value max{con (QR), con (RQ)} is maximal.
Delete R from L. If con (QR) ≥ con (RQ), then go to Step 3, otherwise
go to Step 4.

Step 3: Let l(QR) = l(Q) + l(R), c(QR) = con (QR) and put the path QR to
the end of list L. Go to Step 1.

Step 4: Let l(RQ) = l(Q) + l(R), c(RQ) = con (RQ) and put the path RQ to
the end of list L. Go to Step 1.



HEURISTICS ON A COMMON GENERALIZATION OF TSP AND LOP 235

3.2 Tour improvement procedure

Some procedure can be used to improve the solution given by a tour building
heuristic. We present here an algorithm which belongs to the class of the neigh-
borhood search algorithms (see [1] for details). We call a tour the neighbor of the
ordering X if we can receive it by changing the position of two vertices. This
neighborhood definition is also used in the area of single machine scheduling
problems (cf. [2]). Now we can define the tour improvement algorithm.

Tour improvement algorithm

Initialization Part Define a tour X by some heuristic procedure. Let X0 = X,
r = 0, and go to the iteration part.

Iteration Part (r-th iteration)

Step 1: Generate the neighbors of Xr. If z(Xr) ≤ z(X) is valid for each neighbor
X, then the procedure terminates, Xr is the tour resulted by the algorithm.
Otherwise go to Step 2.

Step 2: Let X be the tour among the neighbors of Xr with the maximal objec-
tive function value. Let Xr+1 = X, increase the value of r by 1, and go
to the next iteration, to Step 1.

Concerning the time complexity of this algorithm we have to note that it
can have exponential running time. The size of the neighborhood of a feasible
solution is bounded by O(n2), but there is no polynomial bound on the number
of iterations.

4 Empirical analysis

We have implemented the algorithms presented above and analysed their be-
havior on randomly generated test cases. The test have been performed on a
computer which has the following parameters: Intel P4 2.8GHz Prescott, ASUS
P4P800SE, 1GB DDR400, Windows XP Pro SP2.

During the empirical analysis we investigated the following 14 algorithms.

• the tour building algorithms TB1, . . . , TB6 defined in Section 3,

• 6 further algorithms IM1, . . . , IM6 which are the tour improvement al-
gorithms using the results of TB1, . . . , TB6 as starting solution,

• BTB which gives the best solution among the solutions of the algorithms
TBi,

• Best which gives the best solution among the solutions of the algorithms
IMi.



236 Z. BLÁZSIK et al.

To test the algorithms we considered randomly generated matrix pairs of
sizes n. We used the following distributions.

• Test A: Both matrices (B and D) are generated uniformly from the interval
(0, 500).

• Test B: Matrix B is generated uniformly from the interval (0, 500), matrix
D is generated uniformly from the interval (0, 500n/2).

• Test C: Both matrices (B and D) are generated uniformly from the interval
(400, 600).

• Test D: Matrix B is generated uniformly from the interval (400, 600),
matrix D is generated uniformly from the interval (200n, 300n)

Tests A and C are used to test the situations where the two matrices have
the same distribution. In tests B and D we try to balance the cost and the profit.
The cost is the sum of n distances, the total profit is the sum of approximately
n2/2 profit values.

We generated 500 matrices of size 100 from each test case. We have per-
formed the algorithms on the generated matrices, the average values of the
objective function are summarized in Table 1 and 2.

Table 1: The average profit (TB size 100)

TB1 TB2 TB3 TB4 TB5 TB6 BTB

Case A 1246680 1235690 1328640 1334750 1326960 1270270 1360430
Case B 1086660 1092810 1087470 1111690 1129850 1064050 1141340
Case C 2399830 2357190 2510870 2513650 2549850 2488090 2563150
Case D 376879 379556 455414 465313 535639 445394 535772

Table 2: The average profit (IM size 100)

IM1 IM2 IM3 IM4 IM5 IM6 BEST

Case A 1286160 1265300 1337620 1339360 1360090 1337020 1364520
Case B 1111970 1111780 1097645 1118600 1135880 1116050 1146720
Case C 2415320 2369900 2514560 2515520 2563500 2514040 2565210
Case D 386664 387159 458269 467020 537720 467339 537843

We have also considered the running time of the algorithms, the Tour Build-
ing algorithms had very small running time, only a few second for the 500 tests.
The tour improving algorithms required significantly larger time, we give the
data in Table 3 below.



HEURISTICS ON A COMMON GENERALIZATION OF TSP AND LOP 237

Table 3: The average running time (IM n = 100)

IM1 IM2 IM3 IM4 IM5 IM6 BEST

Case A 103 188 49 66 188 243 539
Case B 9 18 9 22 24 32 67
Case C 99 96 51 69 178 231 935
Case D 10 9 9 24 24 31 119

We also generated matrices of size 1000 from each test case. We generated
200 matrix pairs and performed the algorithms. The tour improvement algo-
rithms have extremely long running time on the test cases A and C (it took
more than 4 days to perform 10 tests), therefore we tested these algorithms
only on the test cases B and D. The results on the average values of the objec-
tive function are summarized in Table 4, the running times are summarized in
Table 5.

Table 4: The average profit (size 1000)

TB1 TB2 TB3 TB4 TB5 TB6 BTB

Case A 125685000 125837000 127493000 127702000 127904000 124903000 127955000
Case B 122797000 122904000 119264000 120317000 120284000 120858000 123046000
Case C 249276000 248938000 250793000 250880000 250970000 249758000 251380000
Case D 48513900 48571600 47911300 48332500 49038800 4858880 49039800

IM1 IM2 IM3 IM4 IM5 IM6 BEST

Case B 12320800 123278000 119326000 120359000 120330000 121631000 123342000
Case D 48671100 48703200 47923900 48338600 49060500 48860900 49039300

Table 5: The running time IM size 1000 in s

IM1 IM2 IM3 IM4 IM5 IM6 BEST

Case B 16752 28892 25528 47400 43920 91628 255644
Case D 31948 18052 42092 45376 24292 86244 298730

Besides the average values of the cost function we also collected how many
times the best solution was given by the different tour building algorithms.
These results are summarized in Table 6.



238 Z. BLÁZSIK et al.

Table 6: The number of best solutions

TB1 TB2 TB3 TB4 TB5 TB6

Case A (n = 100) 0 0 0 487 13 0
Case B (n = 100) 1 15 0 309 170 5
Case C (n = 100) 0 0 0 467 23 10
Case D (n = 100) 0 0 0 0 500 0

Case A (n = 1000) 0 0 0 198 2 0
Case B (n = 1000) 0 24 0 172 0 24
Case C (n = 1000) 0 0 0 195 3 2
Case D (n = 1000) 0 0 0 0 199 1

Evaluation of the results

First consider the objective value of the tour building algorithms on our tests.
We can conclude that the best results are given by TB4 and TB5. It is interesting
that the performance depends on the test case. For the test cases D algorithm
TB5 gives the better results. In the other cases the two algorithm gives similar
results, TB4 gives the best solution in most cases but in the average value of the
cost function TB5 gives better results for Case B and C. Algorithms TB3 and
TB6 give the second best results, their performance is similar, but it is worth
noting that TB3 never resulted the best tour building solution. The weakest
results are given by TB1 and TB2. TB2 has slightly better performance, in
some cases it gives the best tour building solution. We can observe that there
is a significant difference (6,8 percentage) between the performances of the best
and the worst algorithms. If we consider BTB then we can conclude that it gives
only 2,3 percentage improvement compared to the algorithms TB4 and TB5.
Similar statement is true for the tour improvement algorithms, they could not
achieve much better solution than the tour building algorithms. We think so
that the reason is that the objective values achieved by TB4 and TB5 are not far
from the optimum. We can also observe that the tour improvement algorithm
has more effects on the worst solutions.

Considering the running time of the algorithms we can make the following
observations. The tour building algorithms are fast, they use only a few seconds
for the tests of size 100. For the larger matrices their running time is a little
bit larger and there are significant differences (we did not present the detailed
data in the paper). We can conclude, that TB3, TB6 are the fastest algorithms,
then TB1 and TB2 follows and TB4 and TB5 are the slowest ones. Thus we
can observe that the slowest tour building algorithms gave the best results in
the objective function, but not the fastest ones are the worst. There were no
significant differences in the running time of these algorithms on the different
test cases. Considering the running time of the tour improving algorithms it is
an interesting observation that it strongly depends on the test cases. For the



HEURISTICS ON A COMMON GENERALIZATION OF TSP AND LOP 239

test cases B and D they had smaller running time, on the tests A and C the
running time is much larger. This property can be observed on the smaller size
inputs, and in the case of the larger size inputs the difference is much higher.
The reason may be that the objective function values are larger in the cases A
and C and this may cause the difference in the number of iterations. We could
also observe that in the cases A and C the tour improvement algorithm could
make a slightly larger improvement in the small size instances than in the case
B and D, it is likely that this is also true for the larger instances.

References
[1] E. Aarts and J.K. Lenstra, (eds). Local Search in Combinatorial Opti-

mization, Wiley Interscience, Chichester, England, 1997.

[2] E.J. Anderson, C.A. Glass and C.N. Potts, Machine scheduling, In:
Local Search in Combinatorial Optimization, E. Aarts, J.K. Lenstra (eds).,
Wiley Interscience, Chichester, England, 1997, 361–414.

[3] A.M. Friese, G. Galbiati and F. Maffioli, On the worst-case perfor-
mance of some algorithms for the asymmetric traveling salesman problem,
Networks, 12 (1982), 23–39.

[4] B. Golden, L. Bodin, T. Doyle and W. Stewart Jr., Approximate
traveling salesman algorithms, Operations Research, 28 (1980), 694–771.

[5] G. Gutin and A.P. Punnen, editors, The traveling salesman problem and
its variations, Kluwer Academic Publisher, Dordrecht, 2002.

[6] R.M. Karp, A patching algorithm for the nonsymetric traveling salesman
problem, SIAM J. Comput., 8 (1979), 561–563.

[7] G. Laporte and S. Martello, The selective travelling salesman problem,
Discrete Applied Mathematics, 26 (1990), 193–207.

[8] G. Reinelt, The linear ordering problem: algorithms and applications, Re-
search and Exposition in Mathematics, 8, Heldermann Verlag, Berlin, 1985.

[9] T. Schiavinotto and T. Stützle, The linear ordering problem: instances,
search space analysis and algorithms, J. Math. Model. Algorithms, 3 (4)
(2004), 367–402.


