
Acta Cybernetica 19 (2009) 125–133.

Parameter Learning Online Algorithm for

Multiprocessor Scheduling with Rejection∗

Tamás Németh
†

and Csanád Imreh
†

Abstract

In multiprocessor scheduling with rejection the jobs are characterized by

a processing time and a penalty and it is possible to reject the jobs. The

goal is to minimize the makespan of the schedule for the accepted jobs plus

the sum of the penalties of the rejected jobs. In this paper we present a

new online algorithm for the problem. Our algorithm is a parameter learning

extension of the total reject penalty algorithm. The efficiency of the algorithm

is investigated by an experimental analysis.

Keywords: online algorithms, scheduling, experimental analysis

1 Introduction

In this paper we develop a new algorithm for the solution of the online scheduling
with rejection problem on identical machines. The algorithm is based on the idea of
learning the parameter of the Reject Total Penalty (RTP) algorithm. We measure
the efficiency of the new algorithm by an experimental analysis.

The problem of scheduling with rejection is defined in [2]. In this model, it is
possible to reject the jobs. The jobs are characterized by a processing time and a
penalty. The goal is to minimize the makespan of the schedule for the accepted
jobs plus the sum of the penalties of the rejected jobs. In the online case a 2.618-
competitive algorithm is given for arbitrary number of machines. This algorithm
is called Reject Total Penalty (RTP). One basic idea in scheduling with rejection
is to compare the penalty and the load (processing time divided by the number of
machines) of the job, and reject the job in the case when the penalty is smaller. This
greedy algorithm can make a bad decision when the number of machines is large and
this makes possible to appear large jobs with small loads. RTP handles these jobs
more carefully. We give the detailed definition in the next section. In [2] a further,
1.618-competitive algorithm is presented in the case of 2 machines. Matching lower
bounds are also given. In the offline case an FPTAS is presented for fixed number

∗This research has been supported by the Hungarian National Foundation for Scientific Re-

search, Grant F048587.
†Institute of Informatics, University of Szeged E-mail: {tnemeth,cimreh}@inf.u-szeged.hu



126 Tamás Németh and Csanád Imreh

of machines, and a PTAS in the case where the number of machines is part of the
input. The preemptive version of online scheduling with rejection is studied in [14],
a generalized version of the reject total penalty algorithm is analyzed, and it is
proved that this generalized algorithm is 2.387-competitive for arbitrary number
of machines. A general lower bound of 2.124, and a lower bound of 2.33 for the
class of obliviously scheduling algorithms (the accepted jobs are scheduled without
knowledge of the rejection penalties) are also proved. In [7] the offline scheduling
problem with rejection is investigated in some more complex machine models. In
[8] an FPTAS is given for scheduling with rejection on related parallel machines. A
further extension of the problem where the machines have cost and the algorithm
has to purchase the machines before using them is investigated in [6] and [13]. A
general machine scheduling problem on two sets of machines which generalizes the
problem of scheduling with rejection is presented in [11].

Typically, the quality of an online algorithm is judged using competitive analy-
sis. An online scheduling algorithm is C-competitive if the algorithm cost is never
more than C times the optimal cost. On can find many details about competi-
tive analysis in [4], [9] and [12]. Considering the competitive ratio the problem of
scheduling with rejection on identical machines is completely solved in the general
case, where no further restrictions are given on the jobs, algorithm RTP is an opti-
mal online algorithm in the sense that it achieves the smallest possible competitive
ratio. On the other hand in some cases the algorithm which has the best compet-
itive ratio does not work well in average cases or on real data sets. In the area of
online scheduling algorithms only a few papers present experimental studies, such
papers are, for example, the next ones: In [1] the algorithms for online multipro-
cessor scheduling to minimize the makespan are investigated. In [3] a multicriteria
version of the scheduling problem is studied. In [5] online scheduling with release
dates to minimize the weighted total completion time is investigated.

The paper is organized as follows. In the next section we introduce the basic
notations and recall the most important results which are used in the paper. In
Section 3 we present the developed parameter learning algorithm. Section 4 con-
tains the description of the experimental analysis, and the evaluation of the results.
In Section 5 we summarize the results and list some further open problems related
to the paper.

2 Notations and preliminaries

In the problem considered there are m identical machines. Each job j has a pro-
cessing time denoted by pj and a penalty denoted by wj . For an arbitrary list J of
jobs and an algorithm A, we denote by A(J) the cost of the schedule produced by
algorithm A on list J .

As a subroutine we will use an online scheduling algorithm. Several algorithms
are developed for the online scheduling problem on n identical machines (see the
survey [15]), we will use the classical, greedy online scheduling algorithm LIST
([10]). This algorithm always schedules greedily the arriving job on the least loaded



Parameter Learning Online Algorithm for Multiprocessor Scheduling with. . . 127

machine.
Considering the problem of multiprocessor scheduling with rejection, it is a

straightforward idea to reject the jobs where the penalty is smaller than the load.
The following greedy algorithm gives this solution for the problem.

Algorithm Greedy

If wj ≤ pj/m is valid for job j then reject it otherwise accept and schedule it
by LIST.

Unfortunately Greedy makes bad decisions in some cases. If only one job arrives
with a large processing time M and penalty M/m + ε, then Greedy accepts and
schedules it, and this shows that it is not better than m competitive. Therefore its
competitive ratio is not constant.

In [2] an algorithm called RTP is defined which achieves a constant competitive
ratio. It is a refined version of Greedy, it also rejects some large jobs with wj >
pj/m, these jobs are collected in set R. We can define this algorithm as follows.

Algorithm RTP(α)

• 1. Initialization. Let R := ∅.

• 2. When job j arrives

– (i) If wj ≤ pj

m
, then reject.

– (ii) Let r =
∑

i∈R wi + wj . If r ≤ α · pj , then reject job j, and set
R = R ∪ {j}.

– (iii) Otherwise, accept j and schedule it by LIST

In [2] the following statement is proved about the competitive ratio of RTP.

Proposition 1. RTP is (3+
√

(5))/2 competitive, with parameter α = (
√

(5)−1)/2

In the same paper it is proved that no algorithm with better competitive ratio
exists.

Proposition 2. There exists no online algorithm that is β-competitive for some

constant β < (3 +
√

5)/2 and for all m.

3 Parameter learning algorithm

Proposition 1 and Proposition 2 solves the problem of multiprocessor scheduling
with rejection on identical machines for the general case as far as the competitive
analysis is concerned. RTP ((

√
5−1)/2) is the best possible online algorithm for the

solution of the problem. On the other hand sometimes the algorithms which have
better competitive ratio show worst performance in average case on real or randomly
generated inputs. In the area of online scheduling such example can be found in [1]



128 Tamás Németh and Csanád Imreh

where the online algorithms for multiprocessor scheduling to minimize makespan
are analysed by an experimental analysis and it is shown that the simple LIST
algorithm has better performance than some of the more complicated algorithm
with smaller competitive ratio.

In the case of scheduling with rejection the parameter α = (
√

5 − 1)/2 is the
value which minimizes the competitive ratio, thus it is a natural question whether
using some other parameter can improve the average case. In this section we present
a new algorithm PAROLE (Parameter Online Learning) which tries to learn the
best parameter during its execution. The algorithm works in phases, after each
phase it chooses a new parameter based on the known part of the input. First
we define a frame algorithm which uses the selection of the new parameter as a
subrutin, then we define the subrutin which finds the new parameter. We defined
the phases by the number of arriving jobs, the phase is finished after 250 jobs.

Algorithm PAROLE (PHASE i)

• At the beginning of phase i, use algorithm CHOOSE to find a new parameter
αi.

• Perform RTP (αi) on the arrived part of the input. Change set R.

• Use RTP (αi) for the jobs arriving during the phase.

It is a straightforward idea to use the value αi where the cost RTP (αi)(I) is
minimal for the known part of input. Unfortunately it seems to be difficult to find
the optimal value of the parameter. RTP (α)(I) is neither monotone nor continuous
function of α. It is a step function, but it may have many pieces. Our conjecture
is that it is an NP-hard problem to find the optimal value of α, but it seems to
be difficult to prove that. Therefore we used the following sampling algorithm to
find the new value of the parameter. The algorithm uses the previous value of the
parameter denoted by α∗.

Algorithm CHOOSE

• Generate one element from the intervals [(i − 1)/10, i/10] by uniform distri-
bution for i = 1, . . . , 10. Denote this set by S1. Consider the value α from S1

where RTP (α) has the smallest cost on I. Denote it by ᾱ.

• Generate one element from the intervals [α⋆ − i/100, α⋆ − (i− 1)/100], [α⋆ +
(i−1)/100, α⋆ + i/100], [ᾱ− i/100, ᾱ−(i−1)/100], [ᾱ+(i−1)/100, ᾱ+ i/100]
for i = 1, . . . 10 by uniform distribution. Denote the set of the generated
elements by S2. Return the value α from S2 ∪{α∗}∪{ᾱ} where RTP (α) has
the smallest cost on I.

The basic idea of CHOOSE is to select a good parameter value. We investigate
the neighborhoods of two candidates, one is the previous value of the parameter
and a further one is a new value ᾱ which is the best among several candidates
selected independently on the previous value of the parameter.



Parameter Learning Online Algorithm for Multiprocessor Scheduling with. . . 129

4 Experimental analysis

4.1 Description of the performed tests

To investigate the performance of the new parameter learning algorithm we per-
formed the following experimental study. We have implemented the algorithms
presented above and analysed their behavior on randomly generated test cases and
on real data.

During the analysis we investigated the following algorithms.

• the Greedy algorithm

• RTP (α) with α = (
√

5 − 1)/2

• the parameter learning algorithm PAROLE.

To test the algorithms we considered the following classes of input. We used
real data sets (Tests A and B) furthermore we used randomly generated inputs
which were defined by the same distributions as in [1] and [3]. In each cases we
used relatively large inputs in the tests, the reason is that for large inputs PAROLE
has enough possibility to learn and use the best value of the parameter.

• Test A (real data): We collected the processing times of the tasks on the
server www.szakoktatas.hu. The database contained around 100000 jobs.
The average size of the jobs were 2597.1, the standard deviation was 20129.96.
The smallest job had size 1, the largest had size 3134460. Therefore the jobs
sizes followed the situation described in [1], there were very large jobs. On the
server each process had a priority value which measured the importance of
the task, this value is received by some properties of the jobs. The following
properties were considered: the owner of the jobs (each user had a priority),
the type of the job (the jobs are assigned to different classes by their type
and each class has some priority value), some jobs had deadline (the deadline
were also taken into account). We used a linear combination of these values
to define the penalty. The average penalty was 272.83 the standard deviation
was 229.32. The minimal penalty was 1, and the maximal was 2613.

• Test B (real data): We collected the processing times of the tasks on the
server www.moravarosi.hu. The database contained around 200000 jobs and
the jobs were larger than in the previous test. The average size of the jobs were
15608.96, the standard deviation was 120991.53. The smallest job had size 1,
the largest had size 18839728. We used the priority to define the penalty in
the same way as in Test A. We obtained larger penalties, the average penalty
was 572.99, the standard deviation was 481.58. The minimal penalty was 1,
the maximal one was 5487.

• Test C: In this case we generated the size of the jobs by exponential distribu-
tion. We used the parameter λ = 1/1000, therefore the expected value of the



130 Tamás Németh and Csanád Imreh

size of the jobs were 1000, the variance was 1000000. We generated the penal-
ties by exponential distribution as well, the used parameter was λ = 1/100,
therefore the expected value of the penalty of the jobs were 100, the variance
was 10000.

• Test D: In this case we generated the size of the jobs by hyperexponential dis-
tribution. We used two value λ1 = 1/800, p1 = 1/2, λ1 = 1/1200, p2 = 1/2.
Therefore the expected value of the size of the jobs is p1/λ1 + p2/λ2 = 1000,
the variance was 1080000. We generated the penalties by hyperexponen-
tial distribution as well, te used parameters were λ1 = 1/80, p1 = 1/2,
λ1 = 1/120, p2 = 1/2, therefore the expected value of the penalty of the
jobs was 100, the variance was 10800.

• Test E: In this case we generated the size of the jobs by Erlang-2 distribution.
The used parameter was λ = 500, thus the expected size was 1000, the
variance was 500000. We generated the penalties by Erlang-2 distribution
as well, the used parameter was λ = 1/50, therefore the expected value of the
penalty of the jobs was 100, the variance was 5000.

• Test F: In this case we generated the size of the jobs by bounded pareto
distribution. We used the distribution B(k, p, α) where k (the bound on the
smallest job size) was 1, p (the bound on the longest job size) was 20000, α
is chosed to get the expected size 1000. We used the same distribution for
penalties with upper bound 1000 and expected value 100.

In the case of the real data sets we used two subcases: the large input contained
the full list of the jobs, in the small input we only used the first 20 percent of the
jobs. We used 10 machines. The results are summarized in table 1. In the randomly
generated tests we also investigated 2 subclasses. In the smaller size inputs 10000
jobs, in the larger size inputs one million jobs were generated and again we used 10
machines in the test. For every class we performed 100 randomly generated tests,
the average results are summarized in table 2.

Table 1: The cost for real data

A(Small) A(Large) B(Small) B(Large)
Greedy 883549 4326745 2813479 13976483
RTP 843756 4117672 2889437 14245263

PAROLE 843679 4118935 2876559 14169854

We also investigated the number of rejected jobs. There was a big difference
between test A and test B, in test A about 25 percent of the jobs was rejected and
in test B around 42. This was expected since in test B the ratio of the expected
values of the penalties and the jobs are smaller (in test A this ratio is 0,105 and in



Parameter Learning Online Algorithm for Multiprocessor Scheduling with. . . 131

Table 2: The average costs for randomly generated inputs

C(Small) C(Large) D(Small) D(Large)
Greedy 7487543 713456754 7964338 701341876
RTP 6822435 674523268 7657424 731735218

PAROLE 7014345 698764525 7776885 707823932
E(Small) E(Large) F(Small) F(Large)

Greedy 5698614 498238711 6718917 614492728
RTP 5254355 476521848 6396234 592718325

PAROLE 5317817 475632194 6512922 595598238

test B it is 0.037). In the randomly generated tests the ratio of the rejected jobs
moved between 22 and 30 percent.

Considering the behavior of the algorithms we can observe that in each cases
Greedy rejected the less jobs, and RTP rejected the most jobs. It is what we
expected RTP and PAROLE reject each job which is rejected by Greedy.

If we consider the two type of costs then Greedy pays the less penalty and RTP
the most. On the other hand only a small difference appeared in the amount of
the paid penalty, it was less than 2 percent in all cases. In most tests the penalty
is between 35 and 45 percent of the total cost, in the case of test B this ratio is
larger, 60 percent.

4.2 Analysis of the results

Evaluating the results of the tests we can make the following observations:

• In most cases there is only small difference in the efficiency of the algorithms.
The largest ratio of the costs occurred in test C(Small), where the ratio
Greedy/RTP is 1.098. In most cases the ratio of the best and worst solution
is below 1.05.

• RTP gave the best results in 6 test cases, PAROLE in 4 test cases and Greedy
in 2 cases. On the other hand we note that PAROLE never resulted the worst
result among the three algorithms. Thus we can conclude that PAROLE
either gives the best result or its performance is between the performance of
the other algorithms.

• The experimental results show that Greedy has better performance for the
larger inputs. We think so that the reason of this property is that for large
inputs Greedy can correct more easily the consequences of its bad decisions
(when it accepts a large job, which actually should be rejected).

• We excepted that Greedy rejects the less jobs, and it has the less penalty cost
and RTP pays the most penalty cost. Our tests confirmed this assumption.



132 Tamás Németh and Csanád Imreh

It seems that PAROLE is more careful in rejecting jobs than RTP. On the
other hand we can conclude that there are not big differences in the number
of rejected jobs, in the test cases the three algorithms have similar behavior.

Summarizing the results of our experimental analysis we can conclude that
the performance of PAROLE is usually between the performances of the other
algorithms, therefore it can be useful in online computation where we have no
information about the input.

5 Conclusions and further questions

In this paper we presented a new algorithm for the solution of the online scheduling
with rejection problem. The efficiency of the algorithm is studied by an experimen-
tal analysis. The analysis shows that the algorithm gives good results on randomly
generated inputs and on real data. Considering the algorithm defined in this paper
some further open questions arise, we list them below.

The most important question is to characterize the complexity of finding the
optimal value of the parameter of RTP. We conjecture so that this problem is NP-
hard. It would be interesting to find better algorithms than CHOOSE to generate
the next value of the parameter, we think so that such algorithm might improve
significantly the efficiency of the algorithm. Finally we note that there exist further
online problems where the best algorithm belongs to a class of algorithms and it is
defined by fixing a parameter value which achieves the best competitive ratio. It
is also an interesting question whether the idea of parameter learning is useful for
such problems.

References

[1] Albers, S. and Schröder, B. An Experimental Study of Online Scheduling
Algorithms. ACM Journal of Experimental Algorithms, article 3, 2002.

[2] Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J. and Stougie, L.
Multiprocessor scheduling with rejection, SIAM Journal on Discrete Mathe-

matics, 13:64–78, 2000.

[3] Bilo, V., Flammini, M. and Giovannelli, R. Experimental analysis of online
algorithms for the bicriteria scheduling problem, J. Parallel Distrib. Comput.,
64:1086–1100, 2004.

[4] Borodin, A. and El-Yaniv, R. Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

[5] Correa, J.R., and Wagner, M. LP-Based Online Scheduling: From Single to
Parallel Machines Mathematical Programming, to appear (prelinimary version
in Proceedings of IPCO 2005 LNCS 3509, 186–209).



Parameter Learning Online Algorithm for Multiprocessor Scheduling with. . . 133

[6] Dósa, Gy. and He, Y. Scheduling with machine cost and rejection, Journal of

Combinatorial Optimization, 12(4):337–350, 2006.

[7] Engels, D.V, Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N. and
Wein, J. Techniques for scheduling with rejection, Journal of Algorithms,
49:175–191, 2003.

[8] Epstein, L. and Sgall, L. Approximation schemes for scheduling on uniformly
related and identical parallel machines, Algorithmica, 39(1):43–57, 2004.

[9] Fiat, A. and Woeginger, G.J., editors, Online algorithms: The State of the

Art, LNCS 1442, Springer-Verlag Berlin, 1998

[10] Graham, R.L. Bounds for certain multiprocessor anomalies, Bell System

Technical Journal, 45:1563–1581, 1966.

[11] Imreh, Cs. Scheduling problems on two sets of identical machines, Computing,
70:277–294, 2003.

[12] Imreh:, Cs. Competitive analysis, In Iványi, J., editor, Algorithms of Infor-

matics Volume 1, pages 395–428, Budapest 2007, mondAt.

[13] Nagy-György, J. and Imreh, Cs. On-line scheduling with machine cost and
rejection, Discrete Applied Mathematics, 155: 2546–2554, 2007.

[14] Seiden, S.S. Preemptive Multiprocessor Scheduling with Rejection, Theoretical

Computer Science, 262:437–458, 2001.

[15] Sgall, J. On-line scheduling, In Fiat, A. and Woeginger, G.J., editors Online

algorithms: The State of the Art, LNCS 1442, pages 196-231, Berlin, 1998,
Springer Verlag.


